
Integrating Algebra, Geometry, Music, 3D Art, and

Technology using Emoticoding

Angelos Barmpoutis, Member, IEEE
University of Florida, angelos@digitalworlds.ufl.edu

Abstract – Emoticoding is a technique for learning

computer programming that has been shown to improve

student learning outcomes and reduce blank page

trauma during the students’ first encounter with text

editing interfaces. In this paper, a generalized method is

presented for integrating computer education with other

learning topics, such as algebra, geometry, music, and

3D art, using emoticoding. The proposed method is

based on the theoretical framework of brain-activating

text replacements, which assists students to make

connections between the tokens of a typed language

(such as computer code) and a set of replacing

graphemes (such as interpretative visual or textual

replacements). When the computer code is instantly

being replaced with graphemes from another learning

topic, for example geometric shapes or music notation,

the students can build associations between the

underlying concepts, which in turn reinforces learning of

the associated topics. A work-in-progress user interface

with four sets of visual replacements is presented in this

paper for substituting the discrete tokens of a computer

program (JavaScript) with symbols from algebra,

geometry, music notation, and solid shapes. The

proposed replacements are demonstrated with computer

scripts through the emoticoding framework using

learning objectives from K-12 common core standards.

Index Terms - Computer Education, Emoticoding, Source

Code Editors, STEM Education, Computer Programming

INTRODUCTION

In the past decade, information and communication

technology curricula have been designed and made

compulsory in K-12 education in several countries [1, 2].

Research on early computer education, however, has been a

well studied subject since the 1960’s [3], and until today

several techniques have been developed for addressing

learning difficulties related to computer coding [4,5,6].

These learning techniques can be categorized based on:

a) the type of user interaction they use; b) the different age

group or stage of learning they target; and c) the degrees of

freedom given to the users. Table I provides a synoptic

overview of these categorizations. Overall, there are three

different types of educational interfaces:

 Tangible User Interfaces (TUI) consist of limited sets of

physical blocks, which represent various programming

functions that the user must arrange in a logical order. It

TABLE I
CATEGORIES OF LEARNING INTERFACES FOR COMPUTER CODING

Type Stage Degrees of Freedom Examples

TUI

1 Sequence of command blocks,

Limited set of tangible blocks.

RoboBlocks [7], Turn [8],

and others.

GUI

2 Sequence of command and

input argument blocks,

Limited set of visual blocks.

Scratch [9], Tynker [10],

Alice [11], Greenfoot [12],

and others.

TEI 3 Sequence of typed characters,
Easy to use but limited API.

Processing [13], EarSketch
[14], and others.

TEI 4 Sequence of typed characters,
Easy to use, full-control API.

Python, JavaScript, Swift,
Java, etc.

has been shown that TUIs can be very effective in early

computer education (K-3) [7,8].

 Graphical User Interfaces (GUI) are the virtual

equivalent of TUIs [9, 10, 11, 12]. They offer a block-

based programming environment in which the users can

drag and drop coding blocks to create simple programs.

GUIs have been effective in middle stages of learning.

 Text Editing Interfaces (TEI) are closer to the

professional programming languages, as they offer a

text editor within an integrated development

environment, in which the users can type scripts that

adhere to the syntactic rules of a programming language

[13,14]. These are more appropriate for higher stages of

learning (9
th

 grade-college), and may be limited to a

focus area, such as graphic design, music remixing,

game design, etc.

One key problem in this sequence of educational tools

is the large disconnect between GUIs and TEIs, as the

former underestimate the complexity of the latter [9] in

terms of degrees of freedom as well as overall capabilities

that may lead to “blank page trauma” during the students’

first encounter with coding interfaces [6,15]. A hybrid

solution between GUIs and TEIs is the technique of

Emoticoding [16,17], which offers a visual overlay that

appears instantly in the text editor on top of each

programming token using an interaction similar to the

typing of emoticons in social media [16].

This paper utilizes the theoretical framework of brain-

activating text replacements, in order to assist students to

build associations between a typed computer script and a set

of replacing graphemes and symbols from algebra,

geometry, music notation, and solid shapes through the

method of emoticoding. A work-in-progress user interface is

presented that integrates various STEM areas, such as math,

To appear in the Proceedings of the 8th IEEE Integrated STEM Education Conference, March 10, 2018

and technology, with other learning topics, such as 3D art

and music. The proposed method is hypothesized to

simultaneously reinforce learning on both computer

programming and other individual topics that will be used

as interactive code replacements.

The contributions of this paper are threefold: a) a novel

work-in-progress framework for integrating algebra,

geometry, music, 3D art, and technology is presented; b) the

brain-activating replacement method [16] is extended to

account for couplings of tokens between two different

learning subjects; c) new sets of proposed replacements are

demonstrated using coding exercises with learning

objectives from K-12 common core standards [18].

METHOD

Let be the set of all acceptable tokens in a given

programming language. A computer script can be

expressed as an element of a space that contains all

acceptable ordered sets of tokens from as follows:

 , where . (1)

A mapping between the set and another set of tokens

 can be defined as:

 (2)

that maps every token in a given context to a

token , thus forming a new script:

 . (3)

The mapping in (2) and (3) has the following

properties:

 , where . This

implies that a token may be mapped to different

elements of within different contexts and .

 The cardinality of in (1) and in (3) is the same, i.e.

the mapping does not affect the number of tokens.

 From the above properties it is derived that the scripts

and have parallel syntactical alignment.

 The identity mapping is defined as: .

The above framework can be applied to the process of

typing text in a text editor. Typically the typed tokens and

the displayed tokens are identical; hence an identity

mapping is used. If a non-identity mapping is utilized

instead, the typed tokens are instantly being replaced by

 from a different set of tokens . The following

observations can be made for this form of text typing:

 The graphemes of can be different from those in .

For example, they can be visual interpretations of
 The association between the tokens of and is a new

form of knowledge that the user acquires during typing.

 The tokens of can be seen as a form of action

(typing) and the tokens of as a form of reaction, the

alternation of which triggers the cognitive process.

FIGURE I

THE RESULTS OF THE FOUR SAMPLE SCRIPTS DISCUSSED IN THIS PAPER

 In this model, code editing becomes an active

experimentation process that involves action, reflection,

and abstract conceptualization that reinforces learning.

 If the graphemes of are carefully chosen from a

different educational topic, learning can be reinforced

on both associated subjects, i.e. computer programming

() and the other chosen subject ().

 This process is employed in several other functions of

computer typing, such as the use of keyboard shortcuts,

typing of emoticons, typing of Chinese logograms, etc.

IMPLEMENTATION

An implementation of the proposed method has been

developed through the emoticoding framework [17]. The

term emoticoding does not refer to the use of emoticons, but

to the use of the same human-computer interaction as in

emoticon typing. A set of metaphors has been employed to

provide visual interpretation of the tokens in JavaScript

using name tags for variable names and pipes for functions

[15]. Through this set of metaphors, the individual tokens

involved in the syntactic pattern “X(…)” obtain distinct

visual interpretation. For example, the role of the

parenthesis is to construct the opening of the pipe.

Furthermore, jigsaw puzzle metaphors can be used to

visually separate the individual tokens from each other.

Four learning domains have been identified in order to

demonstrate the proposed method, namely algebra,

geometry, music, and visual arts. In addition, technology

(computer programming) will be employed as the fifth

educational area that will be integrated with the others using

the proposed framework. Each case is demonstrated with a

sample coding exercise with learning objectives from K-12

core standards [18, 19, 20]. Figure I presents the

corresponding output obtained from each script.

I. Music and Computer Programming

An example of the proposed method is shown in Fig. II,

which conforms to the music standard: “When analyzing

selected music, read and perform using standard notation.”

(5
th

 grade core standard MU:Pr4.2.5b) [19]. Figure II shows

a 7-line script (in JavaScript) that reproduces a music score

in the form of a computer program using a set of provided

commands, such as “quarterNote”, “eightNote”, etc. Each

command is being replaced with a symbol from music

notation thus exposing the student to both programming and

music principles through the proposed method. The typed

script () is provided on top, and the token replacements

() that the students instantly see are shown on the bottom.

1. quarterNote("D6");

2. eighthNote("G5");

3. eighthNote("A5");

4. eighthNote("B5");

5. eighthNote("C6");

6. track(2);

7. halfNoteDot("G4");

FIGURE II

COMPUTER CODE FOR PLAYING “MINUET IN G MAJOR, BWV ANH. 114

Note that the students do not see what they type in its

original form ; they see instead.

II. Algebra and Computer Programming

Mathematical operations and algebraic thinking are

intrinsically associated with computer programming, as they

are fundamental elements of computational processes. For

example, consider the following learning objective: “Gain

familiarity with factors and multiples.” (4
th

 grade standard

CCSS.MATH.CONTENT.4.OA.B.4) [18]. Several different

programming exercises can be defined for this objective

such as “print out all multiples of 3 up to 30”. This can be

solved using a 6-line script (in JavaScript) using a function

“print”, which is provided to the students. The names of the

variables in this script can be replaced by nametags and the

names of the functions by pipes using the emoticoding

framework as shown in [15].

III. Geometry and Computer Programming

Learning objectives from geometry such as: “Graph points

on the coordinate plane to solve real-world and

mathematical problems.” (5
th

 grade standard

CCSS.MATH.CONTENT.5.G.A.1&2) [18] can be practiced

using a set of provided commands for 2D drawing. Figure I

C shows the output of a script that draws a pentagon. Visual

representations of geometric concepts can be used as token

replacements of the function names “move” and “turn”,

which are provided to the students in order to solve this

problem. For example see the visual replacement of the

function “moveUp” in Fig. III.

1. color('brown');

2. cylinder();

3. moveUp(1);

4. color('green');

5. cone();

FIGURE III

COMPUTER CODE FOR DRAWING A 3D MODEL OF A PINE TREE

IV. 3D Art and Computer Programming

Finally, Figure III shows how multiple learning objectives

from various subjects can be integrated with learning topics

on technology and computer programming. More

specifically, in this task the students are requested to

compose a 3D model of a given shape. This exercise

conforms to the Visual Arts standard: “Explore and invent

art-making techniques and approaches.” (Standards Studio

for fresh ideas - upper elementary) [20] and the

mathematical standard: “Represent three-dimensional

figures using nets made up of rectangles and triangles…”

(6
th

 grade standard CCSS.MATH.CONTENT.6.G.A.4) [18].

This example demonstrates a rich set of visual replacements

for the commands “color”, “cylinder”, “cone”, which are

provided to the students in this exercise in order to compose

the 3D model of a pine tree.

PRELIMINARY RESULTS AND DISCUSSION

By observing the examples provided in this paper, it is

evident that a student who observes a script in the

emoticoding framework (i.e. the visually replaced code) is

prompted to memorize the associated computer code by

following the given visual hints. For example, in the

example of Fig. II, the student who observes the symbol of a

quarter note should first recognize this musical symbol and

then, using this as a hint, should recall the underlying

function name “quarterNote”. In case of error, i.e. if the

student incorrectly identifies this symbol as an eighth note

and subsequently types “eighthNote”, a different visual

token replacement will unexpectedly appear. This active

experimentation process will lead the student to the

following two realizations: a) The symbol for an eighth note

is not the one that the student had originally in mind; b) the

new symbol that appeared corresponds to an eighth note.

This demonstrates that the proposed integrated

framework is a try-and-error environment that reinforces

learning on both directions, i.e. from to and vice versa.

This is a significant benefit over conventional text editors,

and may increase the probability of a student following a

technology-oriented career. One of the future directions of

this project is to assess this hypothesis on a long-term study.

Furthermore, contrary to TUIs and GUIs, such as block

programming, the proposed method does not require

transitioning to a new environment or a subsequent

additional learning curve. As the proposed framework is

actually a TEI method, it trains the students to use a real

programming language, a skill that could be later used in the

professional world.

Preliminary studies on the use of emoticoding as a

computer education framework reported improved student

learning outcomes in terms of syntax recall and logic

comprehension in K-12 [15] and college-level students [16].

Furthermore, these studies indicate that this method reduces

blank page trauma during the students’ first encounter with

text editing interfaces in comparison to the use of

conventional text editors after a 10-week block-based

coding training [15].

These results indicate that the integrated framework

presented in this paper could benefit several other learning

topics beyond computer programming. A future study will

be designed to assess this hypothesis using cross-

disciplinary learning objectives. To facilitate the design and

implementation of this study, a call for collaborators has

been published in the website of the emoticoding project in

order to establish partnerships with K-12 teachers from

various disciplines who would like to experiment with the

integration of the proposed method into K-12 curricula.

Following the design of the study in [15], the

integration of the proposed method will follow a TUI or

GUI-based early exposure to computer programming.

Ideally, the participating schools will have already an

established computer programming training as part of their

STEM curriculum. The proposed method assists the

students on their first encounter with TEI coding interfaces,

which typically does not happen before middle school.

Hence, high-school and late middle-school ages are the most

appropriate target ages for the integration of the proposed

method into K-12.

The implementation will address different pairs of

subjects depending on the focus of each partnering school

and the subject of the participating teacher. For example,

integration of music with technology (Fig. II) can be

implemented as part of the curriculum in a music class in a

STEM-oriented school, or as part of a technology class in an

Arts-oriented school. A series of training modules and

coding exercises will be defined accordingly.

Finally, a dual evaluation mechanism will be

established in order to assess the effect of the proposed

method on the learning outcomes in the two corresponding

subjects (e.g. music & technology) and will be compared

with the outcomes without the proposed method.

ACKNOWLEDGMENT

The author would like to express his appreciation to the

University of Florida College of the Arts for honoring him

with the “Best Teacher of the Year” award in 2017 for

inventing and applying the method discussed in this paper.

REFERENCES

[1] Hu, C. F., Lin, Y. T., Chuang, H. C. and Wu, C. C. April 2014. “A

Recommended ICT Curriculum for K-12 Education.” Proceedings of
the International Conference on Teaching and Learning in Computing

and Engineering (LaTiCE), Kuching, pp. 33-36.

[2] Al-Karaki, J. et al. April 2016. “Towards an innovative computer
science & technology curriculum in UAE public schools system.”

Proceedings of the IEEE Global Engineering Education Conference

(EDUCON), Abu Dhabi, pp. 883-891.
[3] Buckingham, R. A., 1965. “The computer in the university.” The

Computer Journal 8(1), pp.1-7.

[4] Lahtinen, E., Ala-Mutka, K., Järvinen, H.M. September 2005. “A

study of the difficulties of novice programmers.” ACM SIGSCE

Bulletin 37(3), pp. 14-18.

[5] Jenkins, T. August 2002. “On the difficulty of learning to program.”
Proceedings of the 3rd Conference of the LTSN Centre for

Information and Computer Sciences, vol.4, Loughborough, pp. 53-58.

[6] Morgado C. and Barbosa, F. July 2012. “A structured approach to
problem solving in CS1.” Proceedings of the 17th ACM annual

conference on Innovation and technology in computer science
education (ITiCSE), Haifa, pp. 399–399.

[7] Sipitakiat, A., Nusen, N. June 2012. “Robo-Blocks: Designing

debugging abilities in a tangible programming system for early
primary school children.” Proceedings of the 11th International

Conference on Interaction Design and Children, Bremen, pp. 98–105.

[8] Horn, M. S., Jacob, R. J. May 2007 “Tangible programming in the
classroom with Tern.” Proceedings of CHI Extended Abstracts on

Human Factors in Computing Systems, San Jose, pp. 1965–1970.

[9] Malan, D. J. and Leitner, H. H. March 2007. Scratch for budding
computer scientists. ACM SIGCSE Bulletin. 39 (1), pp. 223-227.

[10] García-Peñalvo, F. J., Rees, A. M., Hughes, J. et al. November 2016.

“A survey of resources for introducing coding into schools.”
Proceedings of the 4th International Conference on Technological

Ecosystems for Enhancing Multiculturality, Salamanca, pp. 19-26.

[11] Daly, T. May 2011. “Minimizing to maximize: an initial attempt at
teaching introductory programming using Alice.” Journal of

Computing Sciences in Colleges 26(5), pp. 23–30.

[12] I. Utting, S. Cooper, M. Kölling, J. Maloney, and M. Resnick.
November 2010. “Alice, greenfoot, and scratch–a discussion.” ACM

Transactions on Computing Education (TOCE) 10(4), pp. 17.

[13] Reas, C. and Fry, B. December 2014. Processing: A Programming
Handbook for Visual Designers and Artists, Cambridge: MIT Press.

[14] Freeman, J., Magerko, B. and Verdin, R. March 2015. “EarSketch: A

web-based environment for teaching introductory computer science
through music remixing.” Proceedings of the 46th ACM Technical

Symposium on Computer Science Education, Kansas City, pp. 5-5.

[15] Huynh, K. and Barmpoutis, A. July 2018. “Name Tags and Pipes:
Assessing the Role of Metaphors in Students' Early Exposure to

Computer Programming using Emoticoding.” Proceedings of the 9th

International Conference on Applied Human Factors and Ergonomics,
Orlando, in press.

[16] Barmpoutis, A., Huynh, K., Ariet, P. and Saunders, N. July 2017.

“Assessing the Effectiveness of Emoticon-Like Scripting in
Computer Programming.” Advances in Intelligent Systems and

Computing (AISC) 598, pp. 63–75.

[17] “Emoticoding” 2017. emoticoding.org. Web. Accessed: Dec. 1, 2017.
[18] “Common Core State Standards Initiative”. corestandards.org. Web.

Accessed: Dec. 1, 2017.

[19] “Core Music Standards” nafme.org. Web. Accessed: Dec. 1, 2017.
[20] “National Visual Arts Standards” www.arteducators.org. Web.

Accessed: Dec. 1, 2017.

