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ABSTRACT 
Although significant advances have been done with respect to vehicle technology and roadway construction, driver 

behavior remains the number one contributing factor of traffic crashes worldwide. Studies show that one of the 

major causes of crashes is driver inattention. Driver inattention may occur when drivers are involved with secondary 

activities (e.g., texting, talking on the phone, or eating), and when they fail to follow the cues of the surrounding 

environment while driving.  The latter is particularly important when drivers are negotiating maneuvers and are 

required to interact with other vehicles as in the case of changing lanes or merging onto the freeway. The main 

objective of this research is to investigate the relationship between driver behavior and safety, by looking at the 

actual body movements and posture, as well as the eye fixation of the drivers when they are performing lane 

changing and merging maneuvers under different traffic conditions. To accomplish this objective, a total of 35 

drivers were recruited to participate in an instrumented vehicle field study, where each participant drove for 

approximately two hours along a pre-selected route. Participants’ 3D body posture was recorded with the use of a 

low-cost infrared depth sensor (Microsoft Kinect). In addition, participants’ eye gaze throughout the entire data 

collection effort was recorded with the help of an eye-tracking equipment. Lastly, the vehicle was equipped with two 

cameras that faced the front and the rear, and therefore, information about the traffic conditions during the data 

collection period was obtained. A rich dataset of driver behavior was developed and analyzed as part of this 

research. The analysis findings relate the 3D sequence of driver motion and posture with the actual eye and head 

movement of drivers. The paper presents the research approach, summarizes findings, and provides 

recommendations for enhancing traffic safety. The findings are expected to assist in establishing monitoring 

guidelines for advanced driver assistance systems that take into account the driver’s body position and movements, 

rather than considering solely the vehicle position relative to other vehicles on the road. The results can also assist in 

developing appropriate alert mechanisms for increasing driver alertness. 
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INTRODUCTION 
Despite the advances in vehicle manufacturing technology and roadway construction and design, a large proportion 

of traffic crashes are still due to driver error (World Health Organization-WHO, 2004).  According to WHO, 

annually there are over 1.2 million traffic fatalities and over 20 million serious injuries worldwide.  In the US, the 

100-car naturalistic study sponsored by the National Highway Traffic Safety Administration (NHTSA) concluded 

that driver inattention is the cause of about 80 percent of crashes and 65 percent of near crashes (Dingus et al. 2006).  

 

A lot of attention has been drawn lately to USDOT’s connected-vehicle research program, which uses technologies 

such as advanced wireless communications, on-board computer processing, advanced vehicle-sensors, GPS 

navigation, and smart infrastructure, to identify imminent road hazards and warn the drivers accordingly (USDOT, 

2011). A number of crash avoidance systems have been established to date, such as emergency stop warning, 

forward collision warning, intersection movement assistance, blind spot and lane change warning, and do not pass 

warning.  Additional advanced (or intelligent) driver assistance systems (ADAS) designed to provide added traffic 

safety are already in place (Shaout et al. 2011). These systems do not involve inter-vehicle communication, and are 

designed to provide assistance or warning to drivers by considering the longitudinal position of the vehicle or other 

vehicle-related components.  Examples of ADAS applications include automatic parking, adaptive light control, 

night vision, lane change assistance, traffic sign recognition, collision avoidance system, lane departure warning 

system, and hill descent control. Apart from these systems that focus on the vehicle, there are limited systems 

already in place that are designed to monitor the driver.  These are driver monitoring systems that are capable of 

tracking driver’s inattention and drowsiness using LED sensors to monitor eye movement.  

 

In vision-based systems that involve understanding driver intentions and actions (e.g., inattention or distraction 

states), research studies focus primarily on the head and face of the driver.  For instance, Tijerina et al. (2005), 

Trivedi et al. (2007) and McCall et al. (2007) analyzed head pose and gaze for identifying and predicting driver’s 

intent to change lanes. Tijerina et al. (2005) observed the eye glance of various drivers using a face camera, while 

executing lane changes with an instrumented passenger vehicle and an instrumented van. The authors produced link 

diagrams showing the probabilities of a glance to a specific location (e.g., right/ left mirror, road ahead, center 

mirror, etc.) 10 seconds prior to the lane change event. Tijerina et al. (2005) concluded that drivers did not always 

check their mirrors or turned their heads during the 10 seconds before starting the lane change. 

 

Research has also studied the hand position and grasp in conjunction with head monitoring for lane change intent 

analysis and prediction (Cheng and Trivedi, 2006) or for driver distraction monitoring (Tran and Trivedi, 2009).  

Tran and Travedi (2010) presented a system for tracking the 3D body movement combined with head pose tracking 

system. The authors tested their system in a simulation environment and obtained preliminary results related to body 

posture and lane changing activity. Although the experimental platform appears promising, their results to date are 

limited and do not consider potential differences between various driver groups. Recently, Kondyli et al. (2013) 

developed a 3D framework for exploring drivers’ body activity using depth sensors and, by using a small set of data 

from a pilot study, they showed that the proposed approach captures significant differences between drivers’ body 

movements while performing merging and lane changing maneuvers.   

 

In summary, the literature review reveals that a significant amount of research has been involved with the 

development of advanced driver-assistance systems; however, most of these systems rely on the automobile position 

and do not necessarily consider the drivers actions. Apart from that, the lane trajectory and position of the vehicle 

could potentially differ from the driver’s intent to change lanes. In addition safety research has focused on eye 

tracking as a means of capturing driver’s attention, fatigue, or drowsiness; however, the entire body posture of 

drivers when performing a maneuver as well as differences in postures between various groups of drivers may also 

reveal behaviors that contribute to unsafe driving conditions. 

 

The objective of this study is to investigate the relationship between driver behavior and safety, by looking at the 

actual body movements and posture, as well as the eye fixation of the drivers when they are performing lane 

changing and merging maneuvers under different traffic conditions. The findings can assist in establishing 

monitoring guidelines for advanced driver assistance systems that take into account the driver’s body position and 

movements, rather than considering solely the vehicle position relative to other vehicles on the road. The results can 

also assist in developing appropriate alert mechanisms for increasing driver alertness. 

 

 



METHODOLOGY 
Data Collection and Processing 

The data used in this study were collected using an instrumented vehicle with cameras (front and rear), GPS, 

accelerometer, depth camera (in cabin), and eye tracker (head-mounted). The instrumented vehicle used was a 

Honda Pilot SUV, owned by the University of Florida-Transportation Research Center (TRC). The vehicle has a 

Honeywell Mobil Digital Recorder (HTDR400) system. This system has two digital cameras, which capture front 

and rear view video. The video is stored in the hard drive of the HTDR400 system. The instrumented vehicle is also 

equipped with a GPS. For the depth data collection we used the infrared structure-light sensor embedded in KinectTM 

by Microsoft. The resolution of the depth sensor was 320 × 240 pixels at 30 frames per second and was calibrated so 

that it recorded depth in the range from 0.4m to 3.0m, which was adequate to capture the motion of the driver with 

the sensor mounted on the upper right side of the cabin. The Mobile Eye-XG eye-tracking equipment by ASL was 

used to capture drivers’ gaze, using two high-resolution digital cameras placed on the lightweight head-mounted pair 

of glasses.  

 

A total of 35 drivers were selected to participate in the field data collection based on an eligibility-screening 

questionnaire.  Eligible drivers (i.e., with valid drivers’ license and car insurance) were chosen based on their age 

and gender, in order to have a broad selection of participants. Each of these drivers completed a pre-driving 

questionnaire before each session. The pre-driving questionnaire contained several multiple-choice questions related 

to their driving habits, such as driving frequency to work/school, total duration of driving on weekdays, desired 

speeds on urban streets, lane changing frequency, and frequency of involvement in secondary tasks while driving 

(texting, eating, etc.).  

 

The field data collection was conducted between February and March of 2014 and participants drove during 

morning (AM), midday and afternoon (PM) peak. Each participant drove for approximately 2 hours along a pre-

selected route in Gainesville, FL (Figure 1).  The route consisted of a 5.0 mi section along I-75 in the southbound 

(SB) and northbound (NB) directions, and a mile long arterial segment (Archer Road, EB and WB directions).  The 

freeway segment along I- 75 has three lanes per direction and a posted speed limit of 70 mi/h. The arterial segment 

has three through lanes per direction, several median openings, and four signalized intersections. During the two-

hour experiment, participants were asked to drive along the preselected route shown in Figure 1 several times; 

hence multiple data samples were collected per driver. A researcher accompanied the drivers at all times while 

performing the experiment. The researcher was sitting at the back seat and had minimum interaction with the 

participant, primarily to guide him/her on the driving route.  

 

 
Figure 1: Data collection site 



The researchers analyzed all files obtained through the field experiment. The in-vehicle video provided useful 

information on the subject vehicle environment while driving. This video was available for most of the participants. 

The eye-tracking glasses that captured drivers’ gaze were not available for all participants, because some did not feel 

comfortable wearing the glasses while driving. In addition, some of the eye-tracking videos were not used due to 

failure in calibrating the files. As a result, eye-tracking video data from 13 participants were eventually used. 

Eventually, Kinect sensor video files from 27 participants were further considered in the analysis, as it was not 

possible to process the remaining files due to several technical problems that arose. The data sequences obtained 

from the Kinect sensor are stored in the online Driver’s Motion Depth DataBase (DMDDB), which is available at: 

http://research.dwi.ufl.edu/dmddb.  

 

It should be noted that, processing of all video files collected was a very tedious task that required significant effort. 

An issue that was encountered during the data reduction phase involved the synchronization of the various types of 

video data, in order to check all in-vehicle/ driver-related and vehicle environment-related information. The Kinect 

videos and the eye-tracking videos would start approximately at the same time, so these were more or less aligned. 

However, the in-vehicle videos would start as soon as the car ignition was on, so a significant effort was made to 

synchronize these videos with the rest. 

 

Data Analysis 

Two approaches were followed as part of this study. The first one was a quantitative approach that is based on: a. 

obtaining time-series of body posture during driving, b. deriving an “average” driver behavior, and c. measuring 

deviations from that average for all study participants.  The second approach looked into a qualitative evaluation of 

driving conditions and how driver posture is related to those. Both approaches considered only on the merging and 

lane changing maneuvers that took place during the experiments on the freeway and the arterial segment. This was 

done primarily because these types of maneuvers are associated with increased safety risk as drivers interact with 

others while negotiating a move to their target lane. Other driving situations, such as car following were beyond the 

scope of the study and were not analyzed.  

 

For the purposes of this study, video clips of the merging and lane changing maneuvers were isolated from the entire 

clips as part of the data reduction process. Merging maneuvers occurred at three ramp junctions of I-75 with Archer 

Rd (NB), Newberry Rd (SB) and Williston Rd (NB) (Figure 1). The start and ending points of the merging 

maneuvers vary by junction but for each junction are fixed; i.e., the maneuver starts when the vehicle enters the 

acceleration lane and ends when the vehicle crosses a specific point of the freeway, just after the end of the 

acceleration lane. This was done to facilitate comparison of the maneuvers between the different drivers. The 

duration of the merging clips is approximately 30 seconds (on average as it depends on the vehicle speed). For the 

lane changes a different approach was undertaken since these maneuvers are discretionary. The calculation of the 

entire lane changing maneuver duration requires going back before the actual lane changing occurs, and identify 

when drivers have actually thought and decided to perform the maneuver. This thought process was difficult to 

track, but it was done by checking whether the driver actually looked through the mirror in the eye-tracking video. 

 

Quantitative Analysis  

For the quantitative approach, the depth sequences for each merging and lane changing maneuver were used to study 

the body posture for the entire duration of these maneuvers. An algorithm was developed that located and identified 

the regions of the arms of the drivers using an image segmentation technique applied to the depth frames of the 

dataset (Figure 2).  

http://research.dwi.ufl.edu/dmddb


 
Figure 2: Example of a depth frame from our dataset, visualized here as a 3D surface using computer graphics shading. 

The area of machine learning has rich literature that presents and evaluates supervised learning algorithms that 

employ different types of classifiers (Haykin, 2009). Artificial neural networks and support vector machines are just 

a few examples that use classifiers with simple polynomial forms, which lead to efficient algorithms with linear 

complexity. The classifier is typically defined as a parametric function into two classes based on the sign of the 

classifier's value. The unknown parameters of the classifier can be estimated by a supervised training process that 

fits a set of training samples and their corresponding desired responses to the classifier using an optimization 

process. For the purposes of our experiments a multi-layer feed-forward neural network was employed. The 

implemented neural network had 3 layers with 10 neurons in the input and intermediate layer, and two neurons in 

the output layer. The network was trained by performing least squares fitting to a manually defined training set using 

the Levenberg-Marquardt optimization method (Lawson, 1974) and the back-propagation algorithm (Haykin, 2009). 

 

The effectiveness of the learning algorithm, and as a consequence the performance of the classifier, depends on the 

type of features used as the input vector and their descriptive capabilities, in terms of how rich is the information 

they contain. Each depth frame is given as a 2D matrix, in which each element d(i,j) represents the depth value of a 

3D point whose perspective projection falls into the (i,j) pixel location at the frame lattice. These raw features, i.e. d, 

i, and j are functions of the original point in the physical 3D space of the vehicle's cabin. More specifically, the 

elements i and j are the projections of the x and y coordinates of the original 3D point and their relationship is 

defined by the equation of perspective projection. In addition to the reconstructed 3D coordinates of each pixel, the 

corresponding normal vectors were also calculated. Each of the depicted points lie on the surface of an object, which 

is described by various structural characteristics. The normal vector at the particular 3D point on the surface of the 

depicted object describes the local orientation of the surface and was calculated using a discrete approximation, 

which is expressed as a function of the depth difference Δd from the neighboring pixels. The aforementioned process 

yielded a 5-dimensional feature vector set that consists of x,y, d(i,j), Nx, Ny for every pixel of each the depth frame 

in the dataset, which was used as input to the classification method. 

 

The calculated 3D point coordinates and normal vectors were with respect to the coordinate system of the depth 

camera. However, the depth sensor could have been installed in each data collection session at a slightly different 

location and orientation in the vehicle's cabin. As a result, the feature vectors from two different depth sequences 

may correspond to two different coordinate systems and therefore are not directly comparable.  To address this 

issue, we extended further the feature extraction method by introducing a camera calibration step. In the first frame 

of each depth sequence, the location and orientation of the driver's seat was estimated using simple template 

matching with the depth image of the driver's seat, which was manually cropped from the dataset. The reader is 

referred to Barmpoutis et al. (2015) for a more detailed presentation of the feature extraction and classification 

process. 

 



 
Figure 3: Example of the classification result for the left and right arm in two different depth frames. 

 

Figure 3 shows two representative examples of the classification results obtained by two different depth frames. The 

frames correspond to different body postures and the arms appear differently in each of the frames in terms of their 

projected position, real world position, and the shape/pattern of their arrangement. By observing the results, it is 

evident that in the produced label field the arms were clearly separated from the rest of the 3D scene with smooth 

outlines that extend from the shoulders to the wrists of the two arms. The locations of the segmented arms as well as 

the head of the driver were tracked over time in order to derive general driving patterns for each driver and the 

results are presented in detail in the Analysis and Results section. 

 

Qualitative Analysis 

The qualitative analysis looked beyond driver body posture and investigated driver behavior while performing these 

maneuvers. More specifically, the qualitative analysis process focused on examining drivers’ body movements while 

performing various maneuvers and comparing the results with those from the quantitative analysis.  

 

The following body movements were recorded as a part of the analysis: 

• Head movements, 

• Upper body movements, and 

• Non-driving-related arm movements (e.g., adjusting the glasses, drinking water, adjusting the seatbelt.) 

 

The following assumptions were made for the data analysis: 

• Head movements were recorded if the movement resulted in the driver completely losing sight of the road 

ahead. Primarily, a head movement to check the blind spot on either the left or right side of the driver was 

termed significant.  

• Short and multiple head movements during a maneuver were considered significant and were recorded 

since they were believed to reduce the visibility of the road section ahead.  

• Short and single head movements with duration of less than 0.15 seconds, involving checking the sideview 

mirror were ignored, since these were assumed to not cause significant loss of sight of the road.  

• Minor movements such as head nodding or adjusting position on the seat that did not result in the driver 

losing the sight of the road were ignored. 

• Turning of the upper body. i.e. shoulders was termed significant and was recorded as a valid body 

movement. This movement usually supplemented the head movement of the participants, for example when 

checking their blind spot. 

 

The start and end time of every movement was recorded along with the frequency of each movement during the 

corresponding time interval. The data were recorded for all available lane changing and merging maneuvers, as 

these were defined previously. 

  

In addition, we also examined the duration that drivers were not looking ahead while performing a lane change or a 

merging maneuver. During these situations, the driver may be looking towards the side mirror or the rear-view 

mirror, checking the blind spots or looking at something non-driving related. Investigating the “eyes off the road” 

could reveal potential unsafe situations, especially if this is for a long period of time. To perform this analysis, the 

in-vehicle videos and the eye-tracking videos were used. The in-vehicle videos provided information on the vehicle 



environment while performing the maneuver, and the eye-tracking videos captured what the drivers were actually 

looking at. An example of the field of view of the eye-tracking camera and drivers’ gaze is shown in 

. 

 

In this study it was assumed that if an object appeared in the driver’s horizon and it was close to the gaze crosshair, 

then the driver became immediately aware of that object. It was also assumed that, as shown in 

, 

the crosshair did not necessarily have to coincide with the object in order for the driver to identify it.  

 

 

RESULTS AND ANALYSIS 
This section presents the analysis and results of the quantitative and the qualitative approach.  

 

Quantitative Analysis  

The quantitative analysis was performed in the depth sequences recorded from the Kinect sensor. In total, 523 depth 

video sequences of 27 drivers performing 236 merges and 287 lane changes were used in this analysis. The total 

number of frames contained in this dataset exceeds 300,000. Each depth frame sequence was segmented using the 

classification algorithm described earlier. Three different classifiers were trained using a manually defined training 

set in order to segment the regions of the left arm, right arm, and head of each driver respectively.  

 



 
Figure 4: Field of view from the eye-tracking camera and gaze crosshair capturing (a) following vehicle through the rear-view 

mirror and (b) leading vehicles. 

 

The classification results were tracked across frames by computing the magnitude of the motion observed in each 

respective region. More specifically, the magnitude of the motion of the arms was computed by calculating 

Δx2+Δy2+Δd2 of the 10 right-most pixels of each segmented region. The choice of these pixels approximated well 

the regions of the corresponding wrists; hence their tracking was considered a good descriptor of the arm activity 

during maneuvers. In order to enhance the robustness of the calculations a region of 10 pixels was used, and the 

average location (x,y,d) was computed from these pixels. Similarly, the average location was computed from the 

pixels of the entire head region computed from the classifier. 

 

The total magnitude of the motion was computed individually for the left arm, right arm, and head for each of the 

523 depth video sequences. The average and standard deviation of the magnitude of motion of each driver was 

calculated and plotted in Figure 5. 

 

 

 
Figure 5: Plot of the statistics (average and standard deviation) of the magnitude of the motion observed in the regions of the 

left and right arms and head of each driver. The results are separately reported for merging and lane changing maneuvers.   

 

In Figure 5, the x-axis corresponds to different drivers in the dataset, and the y-axis corresponds to the calculated 

magnitude of motion. The average and standard deviation are shown as color-coded bar plots in blue, green, and red, 

(a) (b) 



for the head, right arm, and left arm respectively. By observing the plots, it is evident that the calculated motion of 

the region of the head was significantly smaller than the magnitude of motion observed in the arm regions, which 

was expected. 

 

Another observation is that the right arm is more active than the left arm in the majority of the drivers, because the 

average magnitude (shown in dots) is slightly higher in the case of right arm (green dot) compared to the left arm 

(red dot). This result was also anticipated, as there is more physical space for right arm movements. However, it 

should be noted that right arm movement could correspond to non-driving related action, which was not separated 

from the statistical calculation. The standard deviation of the magnitude of motion was also notably larger for the 

region of the right arm that indicates inconsistent pattern across video sequences.   

 

Similar analysis can be performed across various groups of drivers in our dataset. Figure 6 shows the statistics 

(average and standard deviation) of the motion magnitude of female drivers (11 subjects), male drivers (16 subjects), 

20 year old drivers or younger (7 subjects), drivers between 20 and 30 years of age (13 subjects), and 30 year old 

drivers or older (6 subjects).  

 
Figure 6: Plot of the statistics of the magnitude of the motion from various groups of drivers based on gender or age.   

In general, minor variations were observed across the different groups of drivers. For instance, the average motion 

of the head was smaller in the female subjects compared to the male drivers, which could indicate either that more 

male subjects moved their head during maneuvers or that in general head motions were more frequent in the male 

drivers. On the other hand the subjects in the middle age group had slightly more intense arm motions compared to 

the younger or older subject, that could either indicate that their driving pattern was more intense or that in general 

they moved their arms and especially the right one more frequently during the maneuvers.  

 

Qualitative Analysis 

Concerning the qualitative analysis of the body movements, it was found that, compared to upper-body movements, 

head movements were the most predominant type of body movements while driving. All study drivers had a 

tendency to look over their shoulders and check the rearview/sideview mirrors to ensure whether it was safe or not 

to complete the merging or lane changing maneuvers. Also, most of the drivers used a substantial portion of their 

upper body (i.e., shoulders) when making the driving maneuvers especially at the very instance of merging and lane 

changing. Non-driving related maneuvers included instances when the driver released his/her hand from the steering 

to perform non-driving related tasks such as: adjusting their glasses, drinking water, adjusting their seatbelt, hand 

gesturing when talking to other passengers in the vehicle, scratching their nose/hand, etc. The non-driving 

movements are not associated with distracted driving instances unlike talking on the cellphone, adjusting the radio, 

etc.; therefore, these movements did not result in drivers taking their eyes off the road. 

 

The start and end of every movement was recorded along with the frequency of each movement during the 

corresponding time interval. Table 1 shows a sample for the qualitative analysis for merging maneuvers on SB 

Newberry Road for Driver ID 110. The data were recorded for every round completed by the driver. The start and 

the end times of the maneuver correspond to the frame on the Kinect player. To determine the total duration of the 

maneuver in seconds, the difference between the start and end frame was divided by 25 (25 frames per second). The 



frequency denotes the number of relevant body movements that the driver made during the corresponding time 

interval. 

 
Table 1. Sample Qualitative Data Analysis for Merging Maneuvers Performed by Driver ID 110 on SB Newberry Rd. 

Driver ID Round 

Type of Body Movement 

Head Upper body 
Non-driving related 

arm movement 
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1 422 440 0.72 1                 

  500 515 0.60 1                 

  639 852 8.52 3 639 688 1.96 1         

2 34 53 0.76 1                 

  461 490 1.16 1                 

  514 819 12.20 5 539 591 2.08 1         

3 365 397 1.28 1         793 835 1.68 1 

  500 525 1.00 1                 

  598 752 6.16 4                 

  793 835 1.68 1                 

  932 953 0.84 1                 

 
After analyzing a total of 235 videos of merging maneuvers and 335 videos of lane changing maneuvers, the 

following generalized conclusions can be drawn: 

• Head movements were the most predominant type of body movement when driving. In the majority of the 

cases head movements accounted for checking the blind spot before performing the required maneuvers.  

• The average duration of a head movement was about 4 seconds for the merging maneuvers with a 

frequency of 2 movements, consistent for all three merge junctions.  

• Interestingly, the average duration of head movement for a lane changing maneuver on the freeway was 

approximately 3.75 seconds with a frequency of 1.8 movements and the average duration of head 

movement for a lane changing maneuver on the arterial was approximately 2.3 seconds with a frequency of 

1.1, consistent for both study locations. Therefore, drivers were more careful when making the lane 

changing maneuvers on the freeways than the arterials.  

• Upper-body movements were observed only when a driver required checking the blind spot. Although, it 

was observed that the upper body movements were relative to each driver and varied from driver to driver, 

it cannot be concluded from the qualitative analysis that checking the blind spot involved the use of upper 

body movements for all the drivers. At the three merge junctions, the average duration of an upper body 

movement was 4.5 seconds while during lane changes, the average duration was 3.5 seconds. 

• Non-driving related movements did not appear to impact the drivers’ safety in this study. None of the 

drivers engaged in texting or using their cellphones during the course of the study, behaviors that often are 

associated with hampering of the drivers’ vision of the road and diminished safety. The most common non-

driving related movement was the drivers’ tendency to use their hands for gesturing when talking to the 

vehicle occupants. Coincidentally the average duration of the non-driving related movements at the three 

merge junctions and at the two lane changing locations was 3.12 seconds. Thus, it could be suggested that 

non-driving related body movements are not correlated to the type of the driving maneuvers involved and 

were performed by the drivers irrespective of the two maneuvers, i.e. merging and lane changing. 

 



Lastly, during each lane changing maneuver performed, we investigated the amount of time that drivers’ eyes were 

off the road when they performed that maneuver. This assessment focused on lane changing events, because in these 

situations the relationship with the lead vehicle is more prominent. In merging maneuvers a leading vehicle was 

typically absent from our database; thus, the need to evaluate the duration of time that the participants’ eyes were off 

the road was minimal. 

 

Data from 13 participants were used for the analysis of “eyes off the road” data during lane changing events. Each 

lane changing maneuver performed by the participants was looked thoroughly, and the times where the drivers were 

not looking at the leading vehicle were recorded. Table  presents the results of the analysis, along with some 

demographic information (gender and age) of the 13 study participants. 

 
Table 2. Summary of Eyes off the Road Time when Performing Lane Changing Maneuvers Findings 

Driver 

ID 

# of Lane 

Changes 

Average 

Duration 

Median 

Duration 

Min 

Duration 

Max 

Duration Gender Age 

103 12 0:00:04 0:00:04 0:00:01 0:00:07 F 35 

104 8 0:00:04 0:00:03 0:00:01 0:00:07 F 21 

106 7 0:00:03 0:00:02 0:00:01 0:00:07 M 16 

109 21 0:00:03 0:00:03 0:00:01 0:00:08 M 24 

111 25 0:00:04 0:00:03 0:00:01 0:00:15 M 30 

118 7 0:00:02 0:00:02 0:00:01 0:00:03 M 20 

119 4 0:00:04 0:00:03 0:00:01 0:00:07 F 25 

120 20 0:00:04 0:00:03 0:00:01 0:00:08 M 20 

121 29 0:00:03 0:00:02 0:00:01 0:00:08 F 22 

122 23 0:00:03 0:00:03 0:00:01 0:00:09 M 54 

124 13 0:00:03 0:00:03 0:00:01 0:00:10 M 21 

125 24 0:00:03 0:00:02 0:00:01 0:00:09 M 21 

126 17 0:00:03 0:00:03 0:00:01 0:00:06 F 25 

 

As it can be seen in Table , the average time duration of eyes off the road ranges from 2 to 4 seconds and is similar 

for the study participants. This duration is also consistent with the average duration of head movement discussed 

earlier. However, the maximum duration where drivers were not looking at the vehicle in front differs significantly. 

Such situations could hide unsafe conditions during the lane changing maneuver. Unfortunately, the small variation 

between the ages of the study participants and the limited sample size available do not allow for an in depth analysis 

of the impact of age or gender on the likelihood of drivers taking their eyes off the road for long periods. 

 

 

DISCUSSION AND CONCLUSIONS 
The exact body posture of drivers while performing various maneuvers may reveal significant information with 

respect to what drivers actually look at and how safely they manage to interact with other vehicles. In addition, 

being able to understand and monitor driver behavior inside the vehicle has numerous applications regarding traffic 

safety. This research developed and tested an algorithm that tracked the skeleton of drivers’ arms and head with 

acceptable accuracy, assuming that an adequate training dataset is available. In addition, the results of the 

quantitative analysis showed that, drivers tend to move their right hands more often. Variations in the head/arm 

movements between female and male drivers, as well as drivers of different age groups were observed.  

 

Apart from the quantitative analysis, investigation of the entire driver posture by using additional video sources and 

considering traffic conditions and the surrounding environment, provide some interesting conclusions. The average 

head movement duration during merging maneuvers was 4 seconds, whereas the corresponding duration for a 

freeway lane change was 3.75 seconds. On arterials, the average duration was significantly less, at 2.3 seconds. This 

indicates that drivers are more cautious when driving on the freeway. Upper-body movements were observed only 

when a driver required checking the blind spot, and their average durations for merging and lane changing were 4.5 



and 3.5 seconds, respectively. Lastly, non-driving related arm movements were not related to secondary activities, 

such as texting, talking on the phone, etc., therefore, there is no evidence from our data that these negatively impact 

safety.  

 

The qualitative study contemplates the results obtained from the quantitative approach, since the former looked at 

arm movement that are not related to driving and, therefore, capture instances where hands were off the wheel, while 

this was not possible to extract from the latter. In addition, the motion magnitude can only be inferred from the 

quantitative analysis, and not from visual inspections of the available videos.  

 

As a future step, the proposed algorithm could be further used to predict the intentions of the driver, identify 

potential hazardous conditions in vehicle’s cabin and warn the driver accordingly through an advanced driver 

assistance system. For such applications, immediate feedback should be produced, and the computational 
complexity of the data processing algorithms should be such that real-time execution is feasible. 
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