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constrains are imposed to the estimated tensor splines using
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arms, legs, and other limbs or cylindrical features.

7 Claims, 7 Drawing Sheets

(51) Int. CL
GO6K 9/46 (2006.01)
GO6T 7/521 (2017.01)
GO6T 7/149 (2017.01)
(52) US.CL
CPC ... GO6T 17/20 (2013.01); GO6T 2207/10016

(2013.01); GO6T 2207/10021 (2013.01); GO6T
2207/10024 (2013.01); GO6T 2207/10028
(2013.01); GO6T 2207/30196 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

8,970,590 B1* 3/2015 Brennan ............ GO6T 17/10
345/423

2003/0034971 Al* 2/2003 Fujiwara .............. GO6T 17/30
345/420

2006/0182314 Al* 82006 England .............. GO1C 15/002
382/106

2008/0018647 Al* 1/2008 Bunnell ... GO6T 13/00
345/426

2008/0309664 Al* 12/2008 Zhou ........ccoevunne GO6T 13/40
345/420

2009/0284627 Al* 11/2009 Bando ... GO6K 9/00201
348/273

2010/0020073 Al* 1/2010 Corazza ................ GO6T 13/40
345/420

2010/0030532 Al*  2/2010 Arora ........... GO6F 17/5009
703/2

2011/0267356 Al1* 11/2011 Rennuit ............. GO6T 13/40
345/473

2012/0013617 Al* 1/2012 Zhang ..........c....... GO6T 17/00
345/420

2012/0163723 Al 6/2012 Balan et al.
2013/0106852 Al* 5/2013 Woodhouse ............ GO6T 17/20
345/423
2013/0271565 Al* 10/2013 Chen .......c.......... HO4N 13/0048
348/43
2013/0286012 Al* 10/2013 Medioni ........c....... GO6T 17/00
345/420
2013/0342527 Al* 12/2013 Molyneaux ........... GO6T 7/0032
345/419
2014/0035901 Al* 2/2014 Chen .......cceeeennee GO6T 13/40
345/419
2014/0092439 Al* 42014 Krig ..o GO6T 9/001
358/2.1

OTHER PUBLICATIONS

A Semantic Segmentation Algorithm of 3D Model, Bai et al,
Networked Computing and Advanced Information Management
(NCM), 2011 7th International Conference.*

An algorithm for fitting data over a circle using tensor product
splines, P. Dierckx, Dept. of Comp Sci, Feb. 1985.*

Tensor Splines for Interpolation and Approximation of DT-MRI
With Applications to Segmentation of Isolated Rat Hippocampi, A
Barmpoutis, IEEE Transcations on Medical Imaging, vol. 26, No.
11, Nov. 2007.*

Leandro Cruz et al.,, “Kinect and RGBD Images: Challenges and
Applications”, 25th SIBGRAPI Conference on Graphics, Patterns,
and Images Tutorials, Aug. 22-25, 2012, pp. 36-49.

John R. Herring, “Using Spline Functions to Represent Distributed
Attributes”, Proceedings of the International Symposium on Computer-
Assisted Cartography, Mar. 25-28, 1991, pp. 46-58.

Angelos Barmpoutis, “Automated Human Avatar Synthesis for
Obesity Control using Low-Cost Depth Cameras”, 20th MMVR
Conference: Medicine Meets Virtual Reality, Feb. 20-23, 2013, 8
sheets.

International Search Report/Written Opinion, International Appli-
cation No. PCT/US2014/050341, PCT/ISA/210, PCT/ISA/237, dated
Nov. 17, 2014.

* cited by examiner



U.S. Patent Nov. 6, 2018 Sheet 1 of 7 US 10,121,273 B2

110
/

Receive RGB-D data
(frame)

‘ l 130

Fit representative
segments of body
with estimated
positive-definite
tensor spines

h 4
Output fitted 130

positive-definite
tensor-spline model

FIG. 1
211 231
- 210 \ 9
/ =230 7
RGB&D \ Ia
mapping Quadratic =
4 mesh
] > segmentation -
Skeleton 2 9 % %
fitting g E
23
Q285
5 , | TS
é%“ P I Tensor-spiine Robust } j:“*1“*;:_
O wi fitting data filtenngj Frk

- 250



U.S. Patent Nov. 6, 2018 Sheet 2 of 7 US 10,121,273 B2

FIG. 3




US 10,121,273 B2

Sheet 3 of 7

Nov. 6, 2018

U.S. Patent

FIG. 4

FIG. 5



U.S. Patent Nov. 6, 2018 Sheet 4 of 7 US 10,121,273 B2

FIG. 6



U.S. Patent Nov. 6, 2018 Sheet 5 of 7 US 10,121,273 B2

FIG. 7




US 10,121,273 B2

Sheet 6 of 7

Nov. 6, 2018

U.S. Patent

FIG. 8

FIG. 9



U.S. Patent Nov. 6, 2018 Sheet 7 of 7 US 10,121,273 B2

[l

1022\ 1000

Avatar reconstruction| .
and synthesis module| .

1024

" 1010

\\ Memory _/

Quadratic
mesh
segmentation

Applications

1026
Tensor-spline
fitting

2 Storage
1040

!
RGB-D Processor Display
camera

\ \ 1050
k 1005
1045

FIG. 10



US 10,121,273 B2

1
REAL-TIME RECONSTRUCTION OF THE
HUMAN BODY AND AUTOMATED AVATAR
SYNTHESIS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a national stage application of Inter-
national Patent Application No. PCT/US2014/050341, filed
Aug. 8, 2014, which claims the benefit of U.S. Provisional
Patent Application No. 61/863,486, filed Aug. 8, 2013, the
disclosures of each of which are incorporated herein by
reference in their entirety, including any figures, tables, and
drawings.

BACKGROUND

The combination of infrared (IR) depth cameras and
red-green-blue (RGB) video can be referred to as RGB-D,
which provides color and depth data. RGB-D cameras are a
type of range camera that have been widely used as low-cost
peripheral devices for various applications related to virtual
reality interaction using natural user interfaces, for example
MICROSOFT KINECT®. The information captured by
these devices can be used to extract useful information
related to the tridimensional shape of a person’s body, as
well as track changes on its size, range of motion and
physical condition. RGB-D cameras (and sensors) can be
used as part of a natural user interface for controlling
(without touch) a cursor or other tool on a screen for
interacting with images, documents, games, and other appli-
cations or software.

Human avatars can be reconstructed in 3D using image-
based or video-based approaches. These methods perform
various intermediate steps such as image processing to label
object pixels, calculating the volume intersection, and ren-
dering the visual hull. However techniques that require prior
environmental setup (such as specific arrangement of mul-
tiple cameras in the 3D space) do not lend themselves to
arbitrary arrangements. Furthermore, such avatars are often
reconstructed as non-articulated rigid objects, and as a
consequence cannot be re-rendered in new arbitrary pos-
tures.

BRIEF SUMMARY

This disclosure describes a method for reconstructing in
real time the human body as an articulated generative 3D
model that can be re-rendered in arbitrary postures. The
described method fits a parametric model—a positive-defi-
nite tensor spline model—to the data captured from a single
range camera in real-time. The range camera can be a
RGB-D camera. The depth (D) data is used for generating a
3D model and the RGB color can be used to make the avatar
life-like. Advantageously, a human subject can be recon-
structed in 3D while they naturally move and interact with
the system, without requiring the subject to stand in a
particular posture.

Avatars can be synthesized from RGB-D data by perform-
ing body segmentation and dynamic robust data filtering.
Cylindrical-type objects (of the body) are parameterized
using tensor splines and positive-definite constrains are
imposed to the estimated tensor splines using a Riemannian
metric defined on the space of positive-definite tensor
splines. The Riemannian metric can also be employed for
interpolation/extrapolation between avatars.
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In certain implementations, a system is provided that
includes a reconstruction processor that receives data from
a RGB-D camera/sensor and performs segmentation, data
filtering, and tensor-spline fitting. The data may be received
from an intermediate processor or stage that performs skel-
eton fitting and/or mapping of the RGB and D to each other;
or such processes may be performed by the reconstruction
processor. The output of the reconstruction processor can be
rendered for display or otherwise used by the system to
re-render the body in arbitrary positions. In some imple-
mentations, the display may be part of a computing system
at a separate location from that of the reconstruction pro-
cessor. In further implementations, the RGB-D camera/
sensor may be included as part of the system.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a process flow diagram of a method for
reconstructing the human body as an articulated generative
3D model.

FIG. 2 shows a flow chart for avatar reconstruction from
RGB-D frames.

FIG. 3 shows examples of the quadratic mesh segmenta-
tion results obtained from different RGB-D frames depicting
various orientations of the body. The fitted skeleton is shown
on the fourth plate.

FIG. 4 shows an intermediate state of the 3D recon-
structed model before convergence (left) and the rectangular
grid made of the current peaks of the data histograms
superimposed on the current input frame in 3D (right).

FIG. 5 shows an example of fitted tensor-splines in the
form of quadratic meshes. An image of the corresponding
human subject is shown on the right.

FIG. 6 shows an example of fitted-tensor splines to a
female human subject.

FIG. 7 shows Avatars on a geodesic defined in the
Riemannian space of positive-definite tensor splines. The
results of extrapolation and interpolation between the two
data points show natural transitions in the appearance of the
body, such as the body fat added in the extrapolant on the left
(A==0.5).

FIG. 8 shows reconstructed tensor-spline avatars rendered
in different arbitrary natural postures.

FIG. 9 shows reconstructed avatars in various postures
rendered inside a life-size digitized ancient theater for
experiential learning.

FIG. 10 shows a block diagram illustrating a computing
system for reconstruction of the human body and automated
avatar synthesis in which implementations of the invention
may be carried out.

DETAILED DESCRIPTION

Systems and Techniques for real-time 3D reconstruction
of the human body are described. Avatars (the rendered 3D
reconstruction of the human body) can be generated from
real-time captured RGB-D images of a person. These gen-
erated avatars have an articulated body with separately
translatable and rotatable arms, legs, and other limbs or
cylindrical features.
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Avatars can be synthesized from the RGB-D data by
performing body segmentation and dynamic robust data
filtering. Cylindrical-type objects of the body, including
arms, legs, and torso are parameterized using tensor splines;
and positive-definite constrains are imposed to the estimated
tensor splines using a Riemannian metric defined on the
space of positive-definite tensor splines. The Riemannian
metric can also be employed for interpolation/extrapolation
between avatars.

FIG. 1 shows a process flow diagram of a method for
reconstructing the human body as an articulated generative
3D model. The method illustrated in FIG. 1 may be per-
formed by a reconstruction processor or a general purpose
computer executing instructions to carry out the method.
Referring to FIG. 1, images from a RGB-D camera/sensor
can be captured, and the data received (110). The RGB-D
data from the captured images can then be used to estimate
positive-definite tensor spines that are fit to representative
segments of a human body (120). For example, as each new
RGB-D frame is received, the new frame is combined with
the previous result of the fitting step (120) to improve the
estimation and fit (e.g., the fitting can be recursive). The
estimation can be performed using a mathematical model for
parameterizing the space of positive-definite tensors. This
mathematical model may involve a convex approximation of
the space to ensure that the estimated tensors lie within the
positive-definite side of the space.

For example, the model can employ Cartesian tensor basis
and b-spline basis to define a tensor spline, which is a
smoothly varying 1-dimensional field of closed 2D-curves.
The tensor spline includes intrinsic positive-definite con-
straints in order to approximate cylindrical-type 3D objects
with positive volume, and can be referred to as a positive-
definite tensor slice model. This positive-definite tensor
spline model can be employed to approximate the arms,
forearms, thighs, legs and torso in the human body using an
energy-driven data fitting process. Other cylindrical features
of a subject may be modeled by including additional seg-
ments in the positive-definite tensor spline model.

The fitted positive-definite tensor-spline model can be
output (130) and used for reconstructing and rendering an
avatar. A similar process can be carried out even when the
range camera does not include a color component as the
depth component generates the tensor-spline model and the
color component provides a wrapper that gives the avatar a
skin.

A Riemannian metric on the space of the positive-definite
tensor-splines can be employed for interpolation, extrapo-
lation, and, in general, for computing geodesics between 3D
reconstructed avatars.

The described method for real-time reconstruction of the
human body runs in real-time (i.e., as the images are being
captured) and does not require the human subjects to be
captured in a specific posture. The lack of restrictions on the
postures enables a 3D reconstruction to be depicted in the
RGB-D frames on a variety of postures. The 3D reconstruc-
tion can be performed while the user interacts with a natural
user interface environment. For example, the methods
described herein can be performed while a user plays a
game, enabling a user’s avatar to reflect the motion and
actions of the user.

Implementations of the described techniques can be incor-
porated in systems and applications in the areas of enter-
tainment, education, communications, psychology, tele-
medicine, and others. The 3D reconstruction can be used to
monitor the changes in the shape of human bodies and
perform quantitative analysis of body shapes in a specific
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age/gender group (or across population groups or other
classifications). The resulting data may be useful for statis-
tical studies in general and even studies and diagnostics
related to obesity or other related diseases such as heart
disease as an example. The described techniques may also
be used in a module for frequency-based shape compression
of human bodies depicted in holographic videos.

Most parts of the human body can be modeled as a set of
positive-definite tensor splines that approximate the shape of
the arms, forearms, legs, thighs, and torso. These segments
of the human body can be approximated by rigid tridimen-
sional models, since there are no significant deformations in
their structure during a natural human motion, unlike the
head and hands. The coefficient vector w of each tensor
spline can be estimated from real data captured by RGB-D
cameras. Real-time human avatar synthesis can be per-
formed by fitting positive-definite tensor-spline models to
point-sets collected from a sequence of RGB-D frames.

As described herein, input from an RGB-D camera can be
converted into colored quadratic meshes. From the “D” data,
a skeleton S can be estimated. Then, using both the colored
quadratic meshes and the skeleton S, the parameters of any
3D model may be estimated if the model has an inverse
model mapping function that uses the information in S to
map the points of the quadratic mesh into the parameters of
the 3D model.

FIG. 2 illustrates a method of reconstructing an avatar
from RGB-D data according to an embodiment. Referring to
FIG. 2, distance data D,; (201) and RGB data (202) can be
received from a camera (directly or indirectly).

The camera may include a depth camera that generates
sequences of discrete depth frames 201 in the form of 2D
arrays D, , which can be equivalently expressed as quadratic
meshes given by X, =(i-i.)D, ch"l, Y, =(-i.)D; ch"l, and
Z,7D, , where i j_ denote the coordinates of the central
pixel in the depth frame, and c, is the focal length of the
depth camera. These quadratic meshes provide a 3D model.

The camera may also include an RGB camera that cap-
tures video frames 202. The video frames 202 captured by
the RGB camera can be associated with the quadratic
meshes by using a UV texture mapping given by the
coordinates U, =X, 'Z, ""'c,, V, =Y, 'Z, "'c,, where the
coordinates of the vector [X'Y' Z']” are related to [X Y Z]*
via a known rigid transformation (rotation and translation),
and c,, is the focal length of the video camera.

The transformation relating the coordinates of the vectors
corresponds to the mapping between the locations of the
focal points and orientations of the two cameras (RGB and
D). These calculations (quadratic mesh and UV texture
mapping) may be performed in a RGB-D mapping module
(or processor) 210.

Each frame of the RGB-D sequence can be considered a
setofarrays {X, .Y, . Z, , R, , G, ., B, } (211), where R,G,B
correspond to the red, green, and blue color channels of the
video frame at the image coordinates U, ;, V, ;. This sequence
of data frames can be used to detect the presence of a
particular skeletal geometry (such as human skeletal geom-
etry). Each frame can be fit to a skeletal model (from
skeleton fitting module 220) that may be defined from the
following set of parameters:

s=tacR »eR resozyel)

where L is a set of indices of line segments defined by the
end-points a, and b,, and its orientation in the 3D space is
given by the rotation matrix R,.

There are several algorithms that may be used to compute
S (221) from RGB-D or just D, such as those implemented
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in the Microsoft Kinect SDK (M. A. Livingston et al.,
“Performance measurements for the Microsoft Kinect Skel-
eton,” IEEE Virtual Reality Work-shops, pp. 119-120, 2012),
in OpenNI library (see A. Davison, Kinect Open Source
Programming Secrets: Hacking the Kinect with OpenNI,
NITE, and Java. McGraw-Hill, 2012), and L. Xia et al.,
“Human detection using depth information by Kinect,”
IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, pp. 15-22, 2011. The skeleton fitting
module 210 can include any suitable algorithm for comput-
ing S.

A parametric 3D body model can be reconstructed from a
sequence of colored quadratic meshes given an inverse
model mapping function that maps every vertex p=[X, Y,
D, J]T in the quadratic mesh to the parameters of the corre-
sponding 3D body model. An example of such a 3D body
model is the tensor spline model

n

wi iN k1 () S (XD,
=

xos)= Y
i=1

which has a corresponding inverse model mapping function
that maps every vertex

p=0X, Yy DT

in the quadratic mesh to the parameters (%, s) of the tensor
spline body model given a skeleton S.

More specifically, once the data are converted to a colored
quadratic mesh {X, Y, Z, R, G, B}, ; by the mapping module
210, the mesh can then be segmented into several body
regions (via the quadratic mesh module 230) using the
parameters of the skeletal model S computed from the
skeleton fitting module 220.

For the RGB-D segmentation (performed in the quadratic
mesh segmentation module 230), the parameters in the
skeletal model S (221) can be used in order to segment the
quadratic mesh that corresponds to a frame of the RGB-D
sequence into different body regions. In particular, for every
vertex p=[X,; Y, D, J]T in the quadratic mesh, the index 1 of
the closest line segment in the skeletal model is computed
using equation E-1 as follows:

Hp)=argmineL ks p)(b-a)-pl

where a, b,ER’ are vertices/joints that define a particular
line segment in the skeletal model, and s,(p) is the projection
of p onto the 1 line segment given by equation E-2:

3

The max and min functions in equation E-2 provide that
if the projection falls outside the line segment, the distance
given as the argument of argmin in equation E-1 will be
equal to the Fuclidean distance between p and the closest
end-point of the line segment (i.e min{|la,~pl, |b,~pll})-
Using equation E-1, every vertex p in the quadratic mesh is
assigned to the closest body segment. This process segments
the quadratic mesh into several body regions and is per-
formed for every frame of the RGB-D sequence. The points

_ { ‘ “{(b,—a,)T(p—a,)
si(p) = maxq min ——————",

16 — adl
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that do not belong to the depicted human subject can be
thresholded across Z, ,, since the background objects usually
have larger D, ; values.

Moving to the histogram accumulator module 240, the
points that belong to a particular body region (as determined
in the quadratic mesh segmentation module 230) form the

point-set P~{pER’: 1(p)-l, 0<s,,,(p)<1}. The point-set P,
(231) is used as the data source for the spline model

n

Wi N k1 () (%)
=

xos= Y
i=1

This model provides the positive-definite tensor spline fit-
ting algorithm described in more detail in the examples
section below.

In order to fit a positive-definite tensor spline of the above
spline model to a pointset P, that consists of points on the
surface of the 1” body region, each point in P, is mapped to
the domain of the function in the spline model. According to
certain implementations, the domain is S, xR and corre-
sponds to the relative orientation and location of each point
with respect to the central axis of the tensor spline.

Every point pEP, can be uniquely mapped to R (i.e., the
2D plane of the unit circle S;) by

[0 0], _ath
oo 1 ’(p_ 2]

where a;, b,, and R, are the parameters of the 1 segment of
the skeleton (221), and the role of the matrix on the left is
to project the result to a 2D plane that is perpendicular to the
central axis of the tensor spline. Without loss of generality,
the central axis is assumed here to be parallel to the y-axis
of the Cartesian space, hence the first (x) and the third (z)
components of the rotated vector are used as the elements of
X,

pThe positive-definite tensor spline model can be fitted to
the magpitude |lx,|| by minimizing the following energy
function with respect to the coefficient vector w;:

lth

E(wp) = 2(fixp /11l sy () — [l

The data value ||x,|| in the above equation correspond to
the unit vector x,/|[x,|| in the angular domain of the tensor
spline model and the point s;,,(p) along the longitudinal
dimension. The unknown vector w, can be estimated by any
gradient-based optimization method (for example as
described in C. Lawson and R. Hanson, Solving Least
Squares Problems. Prentice-Hall, 1974) using the analyti-
cally computed gradients of the above equation. Addition-
ally, positive-definite constraints can be applied to the ele-
ments of w, by updating their values using gradients
computed in the Riemannian space.

Finally, the fitting process can be extended to accommo-
date multiple point-sets P, that that correspond to several
RGB-D frames.

The least-squares fitting process described above per-
forms averaging over the data values |x || that correspond to
the same angular and longitudinal coordinates (x, s) of the
tensor spline domain in the tensor spline model. If the
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corresponding data values vary across multiple frames due
to misfit of the skeletal model (221), then the result of the
least-square fit is equivalent to the result obtained by fitting
the tensor spline model to the mean of the corresponding
data values. The average value, or [.2-norm statistical quan-
tities in general, are significantly affected by the presence of
outliers in the data, causing erroneous tensor spline esti-
mates.

This problem can be addressed in certain implementations
by introducing a robust energy function based on the dis-
tribution of the data values, computed in the form of a
histogram (and performed in the histogram module 240) as
follows:

h(F, x5 P )= BN Il TN s: sy (p)s o-f)V(x > K]

Tl

where FER, xS, s€R, and the functions N () and V ()
denote the Normal and von Mises probability density func-
tions respectively. The parameters %, o,°, and « are the
variances and concentration of the probability functions.

For a given pair (x, s) the histogram h(f, x, s; P) shows
the distribution of the data values [|x,|| in the space of real
numbers, parameterized here by f. The peak of the histo-
gram corresponds to the most dominant data value for a
given (X, s), and it is robust to outliers.

For real-time (~25 frames/second) 3D body reconstruc-
tion, the histogram h(f, x, s; P) can be implemented by
discretizing the domains of f, x, and s. The unit circle can
be divided into M sections represented by x,=[cos(2mi/M)
sin(2ni/M)], i=1 . . . M and the longitudinal axis can be
similarly divided into N line segments represented by s=
(G-1)/(N-1), j=1 . . . N. For every new data pair (x,/[Ix,|l,
S1)(0)) the closest bin (x,, s;) in the discretized histogram
will be used.

The domain of f can be dynamically discretized in the
form of an on-line K-means clustering algorithm without
memory. For each of the K clusters the mean value of the
cluster f, is stored as well as the number of data points
assigned to this cluster h,, k=1 . . . K. For every new data
value [[x,|| in the bin (x,, s), the closest cluster is found (i.e.
argming_,  gF, ~IX]|1), and if the distance from this
cluster is smaller than sz, the cluster is properly updated
(e ;= atlx |V + D) and b, <=, 4+1). Oth-
erwise, the cluster with the smaller population is found (i.e.
argming_,  zh, ;), and is updated as follows £, ; <[Ix,|l,
and h; ;,<1.

Robust data filtering can be carried out in a robust data
filtering module 250. The robust data estimate (251) (per-
formed in robust filtering module 250) is given by equation
E-4:

ik

d(xsy=argmax SER (7 x.5.:P),

and can be used for robust positive-definite tensor fitting
in the following energy function, which may be calculated in
the tensor fitting module 260:

E(wp)TsJo! (f fx,5)d(x,5)) disdix.

The integrals in the above equation are over the unit circle
S,, and the [0, 1] interval of the longitudinal axis of the
tensor spline. Note that s=0 and s=1 correspond to two 2D
sections of the tensor spline that are perpendicular to the line
segment (a;, b;) and pass through a, and b, respectively. As
with the previous energy function, the energy function in the
above equation can be optimized with respect to the
unknown vector w, using any gradient-based optimization
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method (for example as described in C. Lawson and R.
Hanson, Solving Least Squares Problems. Prentice-Hall,
1974).

The discretized version of equation E-4 is given by

475, ij.argmaxg=1.xhijx
and can be used for robust positive-definite tensor fitting

(which may be performed in the tensor-spline fitting module
260) with the following energy function

N
Z (ilxi, ;) = di )

J=0

1=

E(w,) =

i

After having reconstructed the 3D shape of a human body
using positive-definite tensor splines, it can be rendered in
any arbitrary posture given in the form of a parametric
skeleton S. The 3D models are colored using the R,G,B
values at the corresponding projection of the points in the
video frames. These values are collected in the K-mean
clusters along with the data values in the dynamic histogram
method.

For example, after estimating the coeflicient vectors
w,VIEL , the human avatar can be rendered in any arbitrary
posture given in the form of a skeleton structure S. For the
purpose of rendering, each tensor-spline model is scaled by
the magnitude of |ja,~bj| along the longitudinal axis, its
center is translated to the point (a;+b,)/2, and is rotated by R,.

A greater understanding of the present invention and of its
many advantages may be had from the following examples,
given by way of illustration. The following examples are
illustrative of some of the methods, applications, embodi-
ments and variants of the present invention. They are, of
course, not to be considered in any way limitative of the
invention. Numerous changes and modifications can be
made with respect to the invention.

The results presented in this section were obtained by
applying the proposed framework to real-time data acquired
using the PrimeSense™ depth sensor as well as the video
camera of Microsoft Kinect™ device. The device was
connected (via a USB 2.0 port) to a 64-bit computer with
Intel Core i5 CPU at 2.53 GHz, and 4 GB RAM. The
resolution of the depth camera was 320x240 pixels with a
viewing range from 0.8 m to 4.0 m and horizontal field-of-
view angle (FoV) angle of 57°. The resolution of the video
camera was 640x480 pixels with horizontal FoV of 62°. The
proposed framework was implemented in Java using custom
bindings to OpenGL and Kinect SDK libraries.

As illustrated by the data flow diagram in FIG. 2, the data
histograms are updated in every frame using the incoming
point-sets and then the robust data computed from the peaks
of the histograms are fed to the tensor spline fitting module
260. The tensor fitting is performed by minimizing the
energy function in the following equation in an on-line
fashion, i.e., one iteration of the minimization algorithm is
executed per frame.

M N
Etw)= ), > ik s) = di)

=1 =1

The process illustrated in FIG. 2 has linear computational
complexity with respect to the size of the input data (O(n)),
and runs in real time (~25 frames/second) using the experi-
mental setup.



US 10,121,273 B2

9

In every iteration of the proposed framework cycle (illus-
trated in FIG. 2) the most recent pair of frames is used as
input data. In the example implementation a skeletal model
was used with 13 joints connected via 13 line seg-
ments (L =1 ... 13). The skeletal model 300 is illustrated
on the fourth plate of FIG. 3. Each line segment corresponds
to a different body region with the only exception of the
torso, which is made out of 4 line segments, segmenting the
data into 11 point-sets P, in total (background, head, torso,
2 arms, 2 forearms, 2 thighs, and 2 legs) using the segmen-
tation process (described with respect to the module 230).

Results from the quadratic mesh segmentation are shown
in FIG. 3. FIG. 3 shows the obtained quadratic mesh
segments in different colors. Each of the eight plates shows
the results produced in real time from various frames during
a natural body motion corresponding to body orientations in
[0°-180° ]. The presented results show that even in extreme
angles the segmentation is visually accurate.

The proposed method uses the obtained point-sets to fit 9
positive-definite tensor-spline models to the torso, arms,
forearms, thighs, and legs.

FIG. 4 shows an example of an intermediate state of the
real-time process, i.e. depicting the result before the fitting
algorithm converges. The right plate shows a frame of the
input data with the current peaks of the data histo-
grams (

d;

251) superimposed as a quadratic grid. The left plate shows
an intermediate state of the 3D reconstructed body model.

FIGS. 5 and 6 show the computed positive-definite tensor-
spline models after convergence. The tensor spline models
are visualized as quadratic meshes obtained by evaluating

Ja@e9) =" " cipip iNjxsr(s)eos’t gsin'2

=0 il

at a predefined discrete set of points in the input do-
main (¢, s). A picture of the corresponding person is also
shown on the right for visual comparison. In both cases, all
tensor-splines use tensor bases of degrees d=2, 3 with cubic
B-splines. That is, the number of unknown tensor coeffi-
cients are 7 per control point. This configuration produces
realistic approximation of the shape of the body segments,
based on visual comparison with the images of the depicted
human subjects.

The use of the Riemannian metric on positive-definite
tensor splines is demonstrated in FIG. 7. The third avatar
from the left and from the right correspond to the positive-
definite tensor-spline models in FIGS. 5 and 6, respectively.
The 9 avatars in FIG. 7 lie on the geodesic defined in the
Riemannian space of positive-definite tensor-splines and
passes through the two aforementioned avatars at A =0
and =1 respectively. Other avatars on this geodesic are
shown for various values of A in the range [-0.5, 1.5] and
correspond to results of interpolation or extrapolation using
the Riemannian metric. By observing the avatar on the left
(4 ==0.5), one can see that the shape of the body shows
natural-looking body fat in the torso and thighs. It should be
emphasized that although the proposed algorithm does not
model special parameters of the body such as body fat, the
result of extrapolation follows a natural increment of the
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body fat while transitioning from the right (thinner body
type) to the left (bulkier body type).

The avatars shown in FIGS. 7, 8, and 9 are examples of
tensor-spline models rendered in various postures.

In the experiments N=64, M=64, K=21, and o=10">.
The histogram in the equation d, =f, argma i does not
use a point-set P as one of its arguments because the
histogram h, ; ; is updated on-line by one data point at a time,
in contrast to equation E-4. The energy equation of the
tensor-spline fitting function

M N
Eom)= ) > (il s) = di)*

=1 j=1

is a polynomial with respect to the unknown vector w, and
its derivatives can be easily computed analytically.

FIG. 9 shows avatars reconstructed using the described
method in various postures inside a virtual environment. The
avatars were positioned in a circular arrangement to dem-
onstrate the dance part (chorus) of a classical drama inside
a life-size digital replica of the ancient theater of Epidaurus.
The tensor-spline avatars are rendered in real time, follow-
ing the natural body motion of the user in front of the
RGB-D sensor.

Example—Tensor Spline Framework

Cylindrical-type 3D shapes with positive volume can be
parameterized by employing Cartesian tensor basis with
positive-definite constraints.

There are several different known parameterizations of
real-valued functions defined on the n-sphere (referred to
here as spherical functions), f(x): S,,—R where S,, denotes
the space of the n-dimensional sphere that lies in the n+l
Euclidean space. Two examples are the finite element basis
parameterization using a triangular grid, and the spherical
harmonic basis (extended to S,) given by the real-valued
angular portion of a set of solutions to Laplace’s equation.
The finite element basis has local support, which allows for
local fitting of the function to data samples, while the
spherical harmonic basis provides a frequency-based global
support, which allows for global fitting to data samples.

The real-valued spherical harmonic bases are linearly
related to the Cartesian tensor bases (or equivalently homo-
geneous polynomial bases), which lead to simple polyno-
mial forms, positive-definite or semi-definite parameteriza-
tions, and other useful properties. Spherical functions can be
parameterized using a tensor of degree d as follows:

n+l  n+l

®
Td(X)=Z

n+l

ig=1

g Xig Xiy -ee iy

=1 ip=0

where x, is the i” component of the (n+1)-dimensional unit
vector XES,,, and ¢, ,, are the tensor coeflicients. The

homogeneous polylr’lgmiél’ in Eq. 1 can be equivalently
expressed in the following more compact form:

i i i
Ty(x) = xia? Lot @

2

i +ig+. Hip 1 =d

’
co. .
5 sigt]
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which has smaller number of coefficients (n+d)!/n!d! com-
pared to (n+1)? in Eq. 1, and the indices i, i, . . . , 1,,,, 5

In the case of n=1, Eq. 2 can be written as

Ty@) = ). cfi,cosl psing 3

iy tip=d

by substituting x, and x, with cos ¢ and sin ¢ respectively,
where ¢ is the angular parameter of S;. The number of
coefficients in Eq. 3 is d+1.

Let T/ denote the space of functions f:S,—R param-
eterized using tensors of degree d given by Eq. 2. It can be
easily shown that T, =T, ,"Vd=C, since 3T, ,ET,,"-
T X)=x"T (x)V given T x)ET;". Furthermore, the
space T corresponds to antipodal symmetric f(x)=f(-x) or
anti-symmetric f(x)=-f(-x) functions for even or odd
degrees d respectively. Based on the above properties, any
spherical function can be approximated by parameterizing
its symmetric and anti-symmetric component as the sum of
an even and an odd degree tensor:

F =T )+ T gy (). (©)]

In the case of n=1, the number of coefficients in Eq. 4 is
2d+3.

In several applications there may be a need to approxi-
mate non-negative quantities, such as distance, magnitude,
and weight. If such quantities are given as a function of a
unit vector, this function can be approximated by fitting the
model in Eq. 4 to the data using positive-definite constraints.
LetT/'’xT,,,” denote the space of the functions given by Eq.
4. The part of the space T,/xT,,” that corresponds to
positive-definite functions is clearly a convex subspace,
more precisely a hyper-cone, since any convex combination
or positive scale of the elements of that subspace is also an
element of the subspace. Therefore, any positive-definite
function in T,/"xT,,,” can be approximated by a positive-
weighted sum of the elements of the boundary of the
hypercone. Given a dense linearly independent sampling of
the boundary, the non-negative elements of T,/'xT,,,” can
be approximated by

n ®
Fa@)= 3 wiffi (0

i=1

where f,*(%) is a set of linearly independent elements of
the boundary of the space of positive-definite functions in
T,/xT,,”, and w~=0Vig[l, m]. The accuracy of the
approximation of the hyper-cone space T,/xT,,,” by the
hyper-polygon in Eq. 5 can be expressed as a function of m
and d. The sum X,_,™ w, is positive but not necessarily equal
to one, since w, also captures the scale of the modeled
function f(x), which is factored out of the boundary ele-
ments f,,*(x) due to their linear independence.

According to certain implementations, the set of positive
semi-definite functions are used in T ;'xT ;" and are given

by

6
fiix = i@ + yi(* ] ©

2
d
mj(‘) cosfwdw
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where y,(X)=x, cos 0,+X, sin 0,, and 6,=2mi/m. Note that Eq.
6 is non-negative for even d, and X,_," f, *(x)=1 VxES,.
Besides these useful properties, this particular function
behaves as a sampling kernel since lim,, ,..J,,,*()=0(x,—
cos 0,)8(x,-sin 0,), where d is the Dirac delta function. This
natural property of sampling kernels associates the sampling
frequency with the degree d of the tensor in our parameter-
ization (i.e. the higher the degree of the tensor, the higher the
frequencies that can be captured by this model).

In the case of d=2, the 7 coeflicients of f, *(x) are cos?
6,/m, sin® 0,/m, 2 cos 6, sin 8,/m, cos® 6,/m, sin® 6,/m, 3 cos>
0, sin 0,/m, 3 cos O, sin> 0/m, and correspond to the
monomials X,%, X,%, X,X,, X,°, X5°, X,°X,, and X, X, respec-
tively. Similarly, the coefficients of f (x) in Eq. 5 are given
by the weighted sum of the coeflicients in f,,*(x). For
example the coefficient 3,_, ™ w, cos® 0,/m corresponds to the
monomial x,2.

The degrees of freedom of the model in Eq. 5 is given by
the number of the tensor coefficients (2d+3 in Eq. 6) and not
by the number m of unknown weights wt. This can be easily
shown by rewriting Eq. 5 as v(x)"Fw, where v(x) is a vector
with all the monomials of x in f, *(x), is a 2D matrix with
all the polynomial coefficients in f, *(x), and w is an
m-dimensional vector that consists of the values w,. The size
of F in Eq. 6 is (2d+3) x m, and its rank (that corresponds
to the degrees of freedom in Eq. 5) is at most 2d+3, assuming
that m>2d+3, since m was defined as the size of a dense set
of linearly independent elements on the boundary of the
space of positive-definite functions in T,/*xT,, ,”.

A continuous and smoothly varying 1-dimensional field
of positive-definite spherical functions in the form of Eq. 5
can be modeled by using the B-spline basis of degree k,
denoted by N, ,,(s), where j corresponds to a discretiza-
tion s, (known as knots) of the domain s as follows:

m n (7)
Salx, s) = Z Z ; iN g1 (8) ().

=1 j=0

In the case of uniform cubic (k=3) B-splines, the bases are
given by Nj_l,4(5):—(1/6)(s—sj)3—0.5(s—sj)2+0.5(s—sj)+1/6,
N, 4(8)=0.5(s—s,)*~(s—s)*+2/3, and N, ,(s)=—0.5(s—s)*+
0.5(s—sj)2+0.5(s—sj)+l/6 for s€[s;, s+1], and zero every-
where else. In Eq. 7 the weights wi,j are the so-called control
points, which are blended across j using the B-spline basis.
Furthermore, the tensors given by X, ,™ w, f, *(x)Vj€[0,n]
play the role of control tensors along a 1-dimensional field.

The mathematical model in Eq. 7 can be used for param-
eterizing cylindrical type of objects with one radial and one
longitudinal dimension. The 3D coordinates of the points on
the parameterized surface are given by [X,f (X, s), X,f -
(X, 8), s|, where the third dimension corresponds to the
longitudinal axis s, and x=[cos ¢, sin ¢]. A typical symmetric
cylinder of radius p and height h can be parameterized using
a uniform tensor spline by setting w, =p¥i, j and s, ,—s =h/
(n+1-k)¥j in Eq. 7.

By substituting Eqs. 3 and 6 into Eq. 7 the following
positive-definite tensor spline model can be derived for S;:

" - ®
Fal@ )= 3" > i iy N a1 (s)o0s't gsin2

=0y
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where the second sum is over all pairs of indices (i, 1,):
i,+1,E{d, d+1}, i, i,E M . In the case of d=2, there are 7

tensor coeflicients ¢, ;, ;, which are listed in table 1.

TABLE 1

List of tensor coefficients in Eq. 8 ford =2

I+ h Citizg

Co05 =it Wl-J-cosz(2ni/m)/m

Cooy =iy WiJsinz(Zni/m)/m

Cy 1y = 2™ W;2c08(2ai/m)sin(27ti/m)/m
C305 =iy Wl-J-cos3(2ni/m)/m

Coay =iy WiJsin3(2ni/m)/m

Cory =iy WZ-J-3cosz(Zni/m)sin(Zni/m)/m
Croy =2 ™ WZ.JScos(Zni/m)sinz(Zni/m)/m

W W W W NN

Eq. 8 is positive-definite f (¢, s)>0V¢€[0, 2], and tE
[Sos S,.11_xl- Note that there are no additional constraints
imposed to the range of the values of the tensor coeffici-
ents c; , , besides the fact that w, >0. The degrees of
freedom of the models in Eqgs. 7 and 8 are given by the
number of tensor coeflicients ¢, ; . In the particular case of
Eq. 8 the number of coefficients is (2d+3)x(n+1), i.e., it
depends linearly on the degree of the tensor as well as the
number of control points of the B-spline.

For the tensor-spline distance measure, let a (X, s) and
b (X, s) be two positive-definite tensor splines (defined as in
Eq. 8), with coefficients g, , ; and b, ,, ; respectively. There
are several possible metrics that can be used to define the
distance between a, and b, such as the Euclidean distance

distlag, ba) = [ 3, 3 (@igipj = bipins)F

J=0iLiy

or the L, by dist(a, by=
\/ijo”f 5,(@{x,8)-b (%,8))?dx. In the latter case, the integrals
can be analytically computed as powers of trigonometric
functions by parameterizing the vectors in S, as x=[cos ¢, sin
¢]. Such metrics are useful for computing not only the
distances between tensor splines, but also the average from
a given set of tensor splines, as well as for interpolation and
extrapolation and for defining energy functions in optimi-
zation methods.

In the case of the two aforementioned metrics, the tensor
splines a,(x, s) and b (X, s) can be treated as elements of a
Euclidean space, and be represented in this space by vectors

a, be R that consist of the coefficients a,,;andb; ;
respectively. However, tensor splines that are not necessarily
positive-definite can also be mapped to the same Euclidean
space, hence there is no guarantee that the result of extrapo-
lation given by a a+i(b-a): AE(—c0, 0)U(1, ) will corre-
spond to a positive-definite tensor spline. This may produce
shapes of negative volume that are unnatural in many
applications, including modeling the 3D shape of human
body parts. To overcome this problem, a positive-definite
parameterization can be employed.

To illustrate the Riemannian metric, let the coeffici
entsa, ,  and b, , . be parameterized as in table 1 using the
positive weights w, “ and w, Jb respectively (the table lists
the formulas for the 2" and 3’7 degree coefficients only but
it can be easily extended to higher degrees by expanding the

terms in Eq. 6). The corresponding tensor splines can be

norm  given

mx(ntl) . .
treated as elements of the R,, ", and be represented in this
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space by stacking the weights w, /* and w, Jb in the form of

mx(nt1)

vectors w_, w,ER,,
positive real numbers.

The distance measure in this space can be defined using
the Riemannian metric on R, *+ that utilizes its tangent
space (defined by the log mapping): dist(a,, b,)=||Log(w,)-
Log(w,)||, where the function Log( ) is the natural logarithm
applied individually to every element of the input vector.
The same Riemannian metric can be used for interpolation/
extrapolation using the exp projection from the tangent
space to R, as follows: Exp(Log(w, )+MLog(w,)-Log
(w,))), where the function Exp( ) is the natural exponential
applied individually to every element of the input vector.
The computed vectors are guaranteed to correspond to
positive-definite tensor splines VAER. The Riemannian
metric assigns infinite distance between positive-definite
tensor splines and semi-definite tensor splines, hence the
boundary of the space of positive-definite tensor splines can
be approached by extrapolating towards the boundary using
lim, ... Examples of interpolation and extrapolation of
positive-definite tensor splines using the Riemannian metric
are shown in FIG. 7.

, where R, + denotes the space of

Example—Computing System

FIG. 10 shows a block diagram illustrating a computing
system for reconstruction of the human body and automated
avatar synthesis in which implementations of the invention
may be carried out. According to an embodiment, the system
1000 can include a processor 1005 and storage system 1010
in which one or more applications 1020 may be loaded.

Processor 1005 may include a microprocessor and other
circuitry that retrieves and executes software (including
applications 1020 and/or an operating system 1030) from the
storage system 1010. Processor 1005 may be implemented
within a single processing device but may also be distributed
across multiple processing devices or sub-systems that coop-
erate in executing program instructions. Examples of pro-
cessor 1005 include general purpose central processing
units, application specific processors, and logic devices, as
well as any other type of processing device, combinations,
or variations thereof.

The storage system 1010 can store software as well as
data generated during the execution of the software. The
storage system 1010 may comprise any computer readable
storage media readable by processor 1005 and capable of
storing software.

Carrier waves and other propagating signals that may
contain data usable by a computer system are not themselves
“storage media.” That is, “computer-readable storage
media” and “storage media” do not consist of carrier waves
or propagating signals.

Storage system 1010 may include volatile and nonvola-
tile, removable and non-removable media implemented in
any method or technology for storage of information, such
as computer readable instructions, data structures, program
modules, or other data. For example, non-volatile storage
1040 may be available within the storage system 1010 to
store persistent information that should not be lost if the
system is powered down.

Examples of storage media include random access
memory (including RAM, DRAM, DDR SDRAM, SRAM);
read only memory (ROM, PROM, EPROM, EEPROM);
flash memory (NVRAM); magnetic and ferromagnetic/fer-
roelectric memories (MRAM, FeRAM); resistive memories
and memristors (resistive random-access memory (Re-
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RAM), PCM, CBRAM); magnetic disks; optical disks;
virtual memory and non-virtual memory, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other suitable storage media. In no
case is the storage media a propagated signal.

In addition to storage media, in some implementations,
storage system 1010 may also include communication media
over which software may be communicated internally or
externally. Storage system 1010 may be implemented as a
single storage device but may also be implemented across
multiple storage devices or sub-systems co-located or dis-
tributed relative to each other. Storage system 1010 may
include additional elements, such as a controller, capable of
communicating with processor 1005.

The software (including applications 1020 and/or an
operating system 1030) may include additional processes,
programs, or components. Software may also comprise
firmware or some other form of machine-readable process-
ing instructions executable by processor 1005.

In general, software may, when loaded into processor
1005 and executed, transform computing system 1000 over-
all from a general-purpose computing system into a special-
purpose computing system. Indeed, encoding software on
storage system 1010 may transform the physical structure of
storage system 1010. The specific transformation of the
physical structure may depend on various factors in different
implementations of this description. Examples of such fac-
tors may include, but are not limited to the technology used
to implement the storage media of storage system 1010 and
whether the computer-storage media are characterized as
primary or secondary storage.

For example, if the computer-storage media are imple-
mented as semiconductor-based memory, software may
transform the physical state of the semiconductor memory
when the program is encoded therein, such as by transform-
ing the state of transistors, capacitors, or other discrete
circuit elements constituting the semiconductor memory. A
similar transformation may occur with respect to magnetic
or optical media. Other transformations of physical media
are possible without departing from the scope of the present
description, with the foregoing examples provided only to
facilitate this discussion.

The processor 1005 processes data according to instruc-
tions of the applications 1020. The applications can include
an avatar reconstruction and synthesis module 1022 per-
forming techniques and calculations described herein. The
avatar reconstruction and synthesis module 1022 can include
a quadratic mesh segmentation module 1024 and a tensor-
spline fitting module 1026. In some cases, one or more of the
following modules may be included as well: a skeleton
fitting module (220), an RGB-D mapping module (210), a
robust data filtering module (250) and a histogram accumu-
lator module (240).

The applications 1020 can be run on or associated with the
operating system 1030 that can also be loaded into the
storage system 1010. Other applications may be loaded into
the storage system 1010 and run on the computing device,
including various client and server applications. An RGB-D
camera 1045 or other range camera can be coupled to the
system via wired or wireless connections. In some imple-
mentations, the RGB-D camera 1045 is connected to a
separate system to capture the data (and in some cases
initially process the data). The captured and optionally
processed data may be sent to the system 1000 via wired or
wireless methods.

Visual output can be rendered and provided via a display
1050. The display 1050 may present graphical user interface
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(“GUI”) elements, text, images, video, notifications, virtual
buttons, virtual keyboards, messaging data, Internet content,
device status, time, date, calendar data, preferences, map
information, location information, and any other informa-
tion that is capable of being presented in a visual form.

The display 1050 may be a touchscreen display. A touch-
screen (which may be associated with or form part of the
display) is an input device configured to detect the presence
and location of a touch. The touchscreen may be a resistive
touchscreen, a capacitive touchscreen, a surface acoustic
wave touchscreen, an infrared touchscreen, an optical imag-
ing touchscreen, a dispersive signal touchscreen, an acoustic
pulse recognition touchscreen, or may utilize any other
touchscreen technology. In some embodiments, the touch-
screen is incorporated on top of a display as a transparent
layer to enable a user to use one or more touches to interact
with objects or other information presented on the display.

In other embodiments, a touch pad may be incorporated
on a surface of the computing device that does not include
the display. For example, the computing device may have a
touchscreen incorporated on top of the display and a touch
pad on a surface opposite the display.

In some embodiments, a natural user interface is facili-
tated through the inclusion of one or more non-touch sensors
(including temperature, video, and electromagnetic sensors)
associated with the system.

Input/Output (I/O) devices (not shown) such as a key-
board, mouse, network card or other /O device may also be
included. It should be understood the any computing device
implementing the described system may have additional
features or functionality and is not limited to the configu-
rations described herein. In addition, it should be understood
that system 1000 may be implemented as a single apparatus,
system, or device or may be implemented in a distributed
manner as multiple apparatuses, systems, or devices.

Certain techniques set forth herein may be described in
the general context of computer-executable instructions,
such as program modules, executed by one or more com-
puting devices. Generally, program modules include rou-
tines, programs, objects, components, and data structures
that perform particular tasks or implement particular abstract
data types.

Embodiments may be implemented as a computer pro-
cess, a computing system, or as an article of manufacture,
such as a computer program product or computer-readable
medium. Certain methods and processes described herein
can be embodied as code and/or data, which may be stored
on one or more computer-readable media. Certain embodi-
ments of the invention contemplate the use of a machine in
the form of a computer system within which a set of
instructions, when executed, can cause the system to per-
form any one or more of the methodologies discussed above.
Certain computer program products may be one or more
computer-readable storage media readable by a computer
system and encoding a computer program of instructions for
executing a computer process.

Any reference in this specification to “one embodiment,”
“an embodiment,” “example embodiment,” etc., means that
a particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the invention. The appearances of such
phrases in various places in the specification are not neces-
sarily all referring to the same embodiment. In addition, any
elements or limitations of any invention or embodiment
thereof disclosed herein can be combined with any and/or all
other elements or limitations (individually or in any com-
bination) or any other invention or embodiment thereof
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disclosed herein, and all such combinations are contem-
plated with the scope of the invention without limitation
thereto.

It should be understood that the examples and embodi-
ments described herein are for illustrative purposes only and
that various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application.

All patents, patent applications, provisional applications,
and publications referred to or cited herein are incorporated
by reference in their entirety, including all figures and tables,
to the extent they are not inconsistent with the explicit
teachings of this specification.

What is claimed is:

1. A computer-implemented method comprising:

receiving discrete depth frames D, ; from a depth camera;

calculating quadratic meshes given by X, =(i-i.)D, ¢ P
Y, =(-1.)D; ¢ s and Z, ;7D;, where i_,j,. denote coor-
dinates of a central pixel in a depth frame, and ¢, is a
focal length of the depth camera;

detecting a presence of a particular skeletal geometry
from a sequence of data frames by fitting each frame of
the discrete depth frames to a skeletal model with
parameters defined from

s={acR »eR’ reso3)el)

where £ is a set of indices of line segments defined by
end-points a, and b,, and its orientation in the 3D space is
given by the rotation matrix R
segmenting the quadratic mesh into body regions by using
the parameters of the skeletal model S; and
fitting a positive-definite tensor spline of a spline model

n

falx, ) = Z Wi N 1 (9) S (x)
Ty

to a point-set P, of points that belong to a particular body
region of the body regions.
2. The computer-implemented method of claim 1, further
comprising:
filtering the point-set before fitting the positive-definite
tensor spline to the point-set, wherein filtering the
point-set comprises:
calculating

Xp

Wox 5Py = SN Il DN GS: 10 (P, o—§>V(x; N
,

peP

p

where fER, xS, s€R, functions N( ) and V() denote a
Normal and a von Mises probability density functions
respectively, parameters sz, 0,2 and ¥ are variances and

concentration of the probability density functions; and
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computing a data estimate

dij= f;,j,argmaxk:l i

3. The computer-implemented method of claim 2,
wherein fitting the positive-definite tensor spline to the
point-set comprises: reconstructing a 3D shape of a human
body by computing an energy function

M N
Eow)= D ) (filsiss)) = di )

=1 j=1

4. The computer-implemented method of claim 1,
wherein segmenting the quadratic mesh into body regions by
using the parameters of the skeletal model S comprises:

calculating, for every vertex p=[X,; Y,; D, =].]"T in the

quadratic mesh, the index 1 of the closest line segment
in the skeletal model as

Hp)=argmine L ks p)(b-a)-pl

where a,, b,ER’ are vertices/joints that define a particular
line segment in the skeletal model, and s,(p) is the projection
of p onto the 1” line segment given by:

1.0}

5. The computer-implemented method of claim 1, further
comprising:
after estimating the coefficient vectors w; VIE.L , render-
ing a human avatar in any arbitrary posture given in the
form of S.
6. The computer-implemented method of claim 5,
wherein the rendering of the human avatar comprises:
scaling each tensor-spline model by a magnitude of ||a,b|
along a longitudinal axis, translating its center to a
point (a;+b,)/2, and rotating by R,.
7. The computer-implemented method of claim 1, further
comprising:
receiving red-green-blue (RGB) video frames from a
video camera;
associating the RGB video frames with the quadratic
meshes to generate a colored quadratic mesh by using
a UV texture mapping given by coordinates U, =
X7, e, V, =Y, 'Z, ™" ¢, where the coordinates of
the vector [X' Y' Z' are related to [X Y Z]7 via a rigid
transformation with rotation and translation, and ¢, is a
focal length of the video camera;
fitting the RGB video frames to the skeletal model with

parameters defined from S={a, ER’ b,£R’, R,ESO(3:
leL}; and

segmenting the colored quadratic mesh into the body
regions by using the parameters of the skeletal model S.

sip) = m{m{w
! 16 — a2
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