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ABSTRACT

Research has shown that driver inattention is tlstnprevalent cause of traffic collisions accouptiior an
estimated 25 to 56% of crashes in the US. Drinatténtion may result from drivers engagement tosdary
activities (such as texting or cellphone use), awkl of awareness of the surrounding environmeng irain
objective of this research is to investigate tHatienship between potentially unsafe driving egeand the actual
driver body posture and movements when performidgang maneuver under different traffic configtioms. The
paper presents results from a pilot study thaturagdtthe 3-D posture and activity of three driwetsle performing
both mandatory (merging) and discretionary (lanangfing) maneuvers on freeway and arterial segmients
Gainesville, Florida. The body posture of the drsvwas captured through the use of a low-cosariedr depth
sensor. A 7-point human skeletal model was fit he taptured depth frame sequences using our prdpose
framework. The comparative analysis of the paréinip’ body movements while performing the maneuvers
revealed differences between the participants’ baativity when performing the same maneuvers. Tindirigs of
this research provide significant insights regagdimhich body movements may hide unsafe situatiohdew
performing a driving maneuver that requires therdaton of the surrounding environment.

Keywords:. Infrared depth sensors, driver behavior, mergiragess, lane changing, body posture

INTRODUCTION

Driver error constitutes a major cause of traffiashes internationally (Peden et al., 2004). Adogrtb the World
Health Organization (WHO), annually there are o%e® million fatalities and over 20 million seriouigjuries
worldwide. In the US, the 100-car naturalistic stu@®ingus et al., 2006) concluded that driver distion is
responsible for about 80 percent of crashes aneké&ent of near crashes. In an effort to assisedsiin the driving
process and reduce the degree of uncertainty dulriver error, a number of advanced (or intelligeativer
assistance systems (ADAS) have been introducedo(het al., 2011). Such systems are typically desigto
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provide assistance or warnings to drivers by taking account the position of the vehicle or ottiehicle-related
components. Examples of driver-assistance systechsdie lane departure warning, pedestrian proteckitind spot
detection, collision avoidance, lane change assistsand automatic parking.

Recognizing the importance of driver assistancé wéspect to traffic safety, the Federal Highwaymiistration
(FHWA) and the US Department of Transportation (@80 introduced the connected-vehicle research pragr
This program offers a mixture of cutting edge tembgies such as advanced wireless communicationdoard
computer processing, advanced vehicle-sensors,f@fifation, and smart infrastructure, to identifhdavarn the
drivers on unsafe roadway conditions. The conneegdticle program supports vehicle-to-vehicle (V2afd
vehicle-to-infrastructure communication researctividies. The vehicle-to-vehicle communication edated to the
exchange of data (e.g., speed, acceleration, gpadigle, etc.) over wireless network that provitdfermation on
surrounding vehicles status and allows for perfagngalculations and issue driver warnings to awashes. The
communication option is based on Dedicated ShongBaCommunications (DSRC). Although the developnoént
the communication component of this program isemwnhplete to date, a number of crash avoidance ragste.g.,
blind spot and lane changing warning, forward sa@lh warning, etc.) have been established sodatulgust 2012,
DOT launched the Safety Pilot "model deploymenttatiaboration with University of Michigan’s Transgation
Research Institute (UMTRI), where nearly 3,000 vkds were deployed in the largest-ever road tesv2ay
technology. DOT testing is indicating interoperapibf V2V technology among products from differerghicle
manufacturers and suppliers and has demonstraaéethtty work in real-world environments (NHTSA, 201

It should be noted that currently available ADAStsyns are designed to look at vehicle’s externgirenment

whereas systems that focus on the drivers’ beh&éad actions inside the vehicle are still limitelhwever, the
next generation of advanced driver assistance mgsthould also consider human factors issues d itdo

account interactions among drivers and vehiclgébeein relation to their own vehicle or the sumding vehicles.
A multifaceted approach that looks at both the eeagwics aspect of human factors research as wethas
psychological aspects of the engaged participargspected to advance the state-of-the art of ABys$ems in the
future.

Toward this direction, this paper investigated thmtionship between potentially unsafe driving régeand the
actual driver body posture and movements when peifgy a driving maneuver (e.g., lane changing, mneng

under different traffic configurations in a natustit setting. The ultimate objective of this raszh is to develop a
framework for constructing an in-vehicle driveriasance system that accounts for the driver's bpaosture and
movements, rather than considering solely the \elpigsition relative to other vehicles on the road.

LITERATURE REVIEW

A significant amount of research has focused oretstednding driver intentions and actions (e.g.jtémdion or

distraction states), using vision-based systemseseRrch studies primarily look into tracking of tiead and the
face of the driver. For example, Huang and Triy@fi04) and Murphy-Chutorian and Trivedi (2010) deped a
system that monitors and predicts drivers’ headepasing video detection. Their head detectionesgstvas
designed for identifying drivers’ inattention anistcaction, however, the authors did not specifjcatldress how
inattention was detected. Similarly, Braathenle2001), developed an approach for identifyingrganeous facial
expressions, such as blinking, to monitor alertragss anxiety. Huang et al. (2003) and Wu and Tiia08)

proposed a model that combines head pose detettiomctual vehicle movement direction.

In addition, past research (e.g., Tijerina et 2005; Trivedi et al., 2007; McCall et al., 2005;dboet al., 2011)
analyzed combination of head pose and gaze datddatifying and predicting driver’s intent to clignlanes and
perform a maneuver. Research has also studiedogitgm of hands and the grasp in conjunction witbnitoring

the head pose for lane change intent analysis amdigtion (Cheng and Trivedi, 2010) or for drivastdaction

monitoring (Tran and Trivedi, 2009). A system thats developed to track the 3D body movement conabivieh

head pose was also introduced in Tran and Trivedi@), where preliminary results of body posture éame

changing activity were collected in a simulationvieonment. Tran et al. (2012) used video-based yaislin

conjunction with pedal sensor measurements andetbat drivers’ foot behavior. They developed prialic
models for braking and acceleration and conclutatithe foot behavior depends greatly on the dtiyge.
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A significant amount of research has dealt withdpring automobile driving posture for purposeswvehicle
interior design. Reed et al. (2002) developed aehthat predicts driver posture through a seriesascading
regression functions. The final model is constrddteproduce the best fit for the eye and the loigitn using data
from drivers with varying anthropometric charactéds. Fatollahzadeh (2006) proposed mathematioalels that
predicted truck drivers’ comfortable sitting pogtuend position. Mathematical models using multidgression
analyses on selected body landmarks as well asogaimetrical measures were developed which propadeatar
correlation between parameters. Kovacevic et &1@2 explored the impact of anthropometric measergson
ergonomic driver posture and concluded that antmggiric measurements of drivers and surrounding
measurements of car controls affect traffic safetg driver’s fatigue.

Overall, the literature review reveals that a digant amount of research has been involved withdévelopment
of advanced driver-assistance systems; howeverf ofofhese systems rely on the automobile posibanthe

roadway and do not necessarily consider the dripesture and actions. Apart from that, the langet¢tary and

position of the vehicle could potentially differofn the driver’s intent to change lanes. In addisafety research
has focused on eye tracking as a means of captdriugr's attention, fatigue, or drowsiness; howeg\the entire

body posture of drivers when performing a maneageawell as different postures between various ggaiprivers

may also reveal behaviors that contribute to undaféng conditions.

METHODOLOGICAL FRAMEWORK

This research proposes a novel approach for stgdyie actual movements of drivers inside the vehiathen
performing specific maneuver types or while enggdim secondary tasks that require a certain bodyement.
With the use of a low-cost infrared depth sendw,3D shape of selected participants is being oactsd, as they
are performing various driving maneuvers and/agragaged in secondary tasks while driving. A bresdiption of

the methodology undertaken to collect and analyme 3D data is presented here; however, more detaile
information can be found in Kondyli et al. (2013ach data frame captured by a digital depth seissartwo
dimensional array of depth values (i.e., distanetsvben the sensor and objects). Similarly, a cotle®f frames is

a three dimensional array that can be represestgg g gWxHxN , where N denotes the total number of recorded

frames, and W and H denote the number of pixelssacthe width and height of the depth frame respeyt The

depth value in a particular pixel with coordinagg) on frame i is denoted b}s OR In practice, each depth
it

camera has a specific range of operation, whicticesaccordingly the range of the recorded valigeg depicted
field of view in Figure 1). The depth frames can bguivalently expressed as quadratic meshes giyen b

- -1 L 1 _ , where . ., denote the coordinates of the central
Xijt = (i _Ic)Di,j,tf ! Yot =(J _Jc)Di,j,tf ! Zi,j,t _Di,j,t (e )

IC' c
pixel in the depth frame, arfds the focal length of the depth camera. One efativantages of the quadratic mesh
representation of the depth frames is that theybmeasily visualized using virtual lighting, shagli perspective
and point of view using standard computer graptéachniques (Faugeras, 1993). An example of thergtiadnesh
of a captured depth frame is shown in Figure X)(lef

The 3D shape of the body of the driver and parthef vehicles’ cabin are clearly captured in thetiddpame.
Optionally, the color information from a video fransan be applied as a texture to the quadratic wietite depth
frame (Figure 2) and can also be used to enhaercaetiection of the body features.

The primary goal of our data processing method teasrace body features using the captured deptimera
sequences. The body features of our interest irduldeX, Y, Zcoordinates of the wrists, elbows, and shouldsrs a
well as the orientation of the torso. The valuethebe quantities can be estimated by fitting adruskeletal model
to each of the depth frames in our datasets. The amallenge in the skeletal fitting process i tie human body

in our particular field of view is very close toher objects such as the driver's seat, the stesriragl and the
driver's door. Any generic skeletal fitting algbrit performs better when the human body is cleadiple and at a
distance from nearby objects, and therefore will ifa our in-cabin setting. For instance, the skatetracking
algorithm included in the Microsoft Kinect Softwabevelopment Kit (SDK) fails in detecting the dniteebody as

it was previously reported in Kondyli et al. (2013)
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Figure 1. Left: visualization of a depth frame. RigThe corresponding mask with enhanced boundbeggseen objects,
computed using our framework

Figure 2. Two 3D views of the same frame fromrémrded dataset. The video and depth frames asemied as a sequence of
textured 3D frames. The field of view of the depéimera is also shown as a trapezoid.

In order to overcome the aforementioned skeletttimdi challenges we developed a novel algorithnt thas
designed to fit a 7-point skeletal model to theybofl the driver using a sequence of depth framas. sBeletal
model included the line segments between the fatigyoints: right wrist, right elbow, right shouldeneck, left
shoulder, left elbow, and left wrist. The skelatadel is visualized in Figures 5 and 6. In our ai&ation we also
show the triangle formed by the left shoulder, lgat shoulder and the neck, whose normal vectas used as an
indicator of the torso orientation.

The proposed skeleton fitting algorithm scans thtld frames in a diagonal fashion from upper righbwer left,

pixel stripe by pixel stripe until the entire imaigecovered. In each diagonal pixel stripe the mleploints of the
masked regions (see mask in Figure 1) are detettemedial points that belong to the same regfaie mask
are connected so that they form medial line cuiveall the masked regions. It should be noted thatmedial
points and curves are calculated in 3D and nohén2D coordinates of the frames. After that thected medial
curves are filtered so that potential noise caumethe depth sensor is removed. Finally the cutlkiescorrespond
to the arms are detected by using spatial constragwell as geometrical constraints regardingsibe, orientation
and curvature of the arms. This process fits opoiit skeletal model to the best matching mediaves. The
proposed algorithm has linear complexity, whiclowallus to perform the fitting of the skeleton inlréme in less
than 15 milliseconds per depth frame in the compeaefiguration described in the next section.
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DRIVER BEHAVIOR DATA COLLECTION

The field data obtained for this research wereectdld along a 2.6 mi stretch of Interstate 75 {l-ifbthe
southbound (SB) and northbound (NB) directions, arid7 mile long arterial segment (Newberry RoastlEaund
and westbound approaches) in Gainesville, FL. fié®way segment along I-75 has three lanes pectitireand
the arterial segment has three through lanes pectitin, several median openings, and includestal td six
signalized intersections. A schematic of the datkection sites is presented in Figure 3.

Figure 3. Map of the data collection route aloriland Newberry Road in Gainesville, FL.

The data collection effort took place on Sundayt&mber 1st 2013, between 10 am and noon. Tradficliions
were generally uncongested and free-flowing, esfigcon the freeway segment. Traffic on the artesiegment
was light, although towards the end of the datdectbn effort the flows were considerably incrahse~or the
purposes of this pilot study, three participantdiatied with the research team were asked to cetapbne route
along the freeway and arterial segments. The fgatits performed two mandatory lane changes (herging onto
the freeway) and several discretionary lane changdabe freeway and the arterial street. The edtiration of the
experiment for each participant was approximat@yritnutes.

The real-time driver behavior data were acquiradgithe PrimeSenseTM depth sensor contained itibeosoft
Kinect™ sensor. The device was connected (via a USB 21 fpoa 64-bit computer with Intel Core i5 (quaate)
CPU at 2.53GHz and 4GB RAM. The computer and thesarewere both powered using a 75 Watt car power
inverter. The resolution of the depth camera wa& 8 240 pixels with horizontal field-of-view anglEoV) angle

of 57°. The resolution of the video camera was 640 x gi@@ls with horizontal FoV of 62 The range of the
camera was calibrated so that it records depthegain the range from 0.5m to 3.0m, which is suéafolr the
limited space of the cabin of a typical passengéicle. The sensor was fixed on the front passéndeor, so that
the driver is within the field of view of the dep#imd video camera&rror! Reference source not found. shows

the field of view of the depth camera. The greectangle depicts the closest plane of sensing,hnisidocated
0.5m in front of the sensor (shown as the tip efybllow pyramid in Figure 2).
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DATA ANALYSIS

The video and depth sequences captured duringtildy were segmented into several fragments tha¢gmond to
the merging and lane changing maneuvers that wenfermed as participants were driving along thevray and
the arterial segment. Each of the fragments walyzathindependently using the framework presengetiez, and a
comparative analysis was performed across the sporeling datasets from different participating ersy The
proposed framework was implemented in Java usiegava-for-Kinect library introduced by Barmpoy£2913).

One characteristic of the Microsoft Kinect is titahas embedded an accelerometer that can be assutdin the
signature of the roadway segment that was usddsrstudy. The output of the accelerometer is a&vettor, which
typically indicates the direction of gravity in thase of a steady sensor. If the sensor movesodhe motion of the
vehicle, the output of the accelerometer may bectdtl by the slope of the roadway as well as claimgie speed
of the vehicle. Figure 4 shows the the X and Zrdomtes of the accelerometer reading for the tlihéeers
participated in this study. It should be noted tiwt Y dimension is perpendicular to the roadway terefore is
mainly affected by the vector of gravity and therefit does not capture significant information atbthe signature
of the road. Although the time stamp varies byalridue to differences in their driving speeds,abtial profiles
of the accelerometer signature are very consisieming all three drivers. These signatures essigntlakcribe
changes in the elevation and slope of the roadwgynent. For example, the first part of the gragaidy depicts
the vertical alignment change due to vehicle dgvirom the arterial street on the on-ramp (upgraae) onto the
freeway (downgrade). Similarly, the last part of tiraph shows the change in elevation due to thizleeexiting
the freeway through the off-ramp (downgrade). Thérmation from the accelerometer is very useful fo

identifying the exact locations for obtaining th&leo and depth sequences of interest (e.g., mergimg the
freeway).

|-75 SB Entrance I-75 5B Exit — Accelerometer X

* * — Accelerometer Z

Driver3 Driver2  Driver 1

0 50 100 150 200 250 300 380 400 450
Time (sec)

Figure 4. Microsoft Kinect accelerometer data otatd for three participants.

Using the framework presented earlier, this stuxgngned differences in the body posture duringree lahange
maneuver for two of the three participants. Figbrehows the seven point skeleton model before &ed @ lane
change maneuver for Driver 1 and Driver 3. Theed#hces in the body posture between the two drigegs
apparent from this figure. The torso of Driver ingns practically unaltered during the maneuvegneas Driver 3
clearly shifts her body to the left in order to Baa better visual of the traffic at the next la®a. the other hand,
Driver 1 shifts only the head to identify potentainflict at the next lane through the rear mirror.
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Driver 1 Driver 3

Before changing lane

After changing lane
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Corner view

o

Figure 6. Change in body posture due to a mengiageuver for Driver 3. The plot shows the torsemtation during the
merging maneuver. The depth frames and fitted &ka$eof 3 frames are shown from two 3D perspectives
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In addition to the lane change maneuver, a comparahalysis of the body posture during a mergirmgeuver was
also performed. Figure 6 presents the frame segudaring a merging maneuver for Driver 3, alonghvthe

corresponding time-series of the torso orientatidn. this graph the torso orientation represents ribtation in
degrees from the torso position perpendicular ¢ostieering wheel. The orientation is positivel&dt-turn rotation

and negative for right-turn torso rotation. Framde® and C are taken as before, during, and #fieexecution of
the merging maneuver. From these graphs it ig ¢t the torso rotation of Driver 3 is considdyaincreased
during the merging task. Driver 3 torso orientatiduring this merging maneuver is consistent with tane
changing example shown in Figure 5.

The same analysis was performed for the remaimiogparticipants while merging on the freeway. Tinge-series
plots of the torso orientation are presented inuf&d.
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Figure 7. Comparison of the torso orientation igia merging maneuver at the same ramp merge gunotitween the three
participants.

A comparative analysis of the time-series of thsitorientation shows considerably different pesilof the torsi
during the merging maneuver task. Comparable teeDB, Driver 2 also displayed increased torsatiot during

the merging task; however, the profile of the tams@tion is different, as this is evident by thesmooth time-series
plot. Driver 1 torso orientation differs significdy from the other two. As shown in Figure Driver 1 does not
seem to have an apparent torso rotation, but iseseme rotation throughout the merging task (thera small

detected rotation at around 10 degrees for thedyseconds of the task).

Similarly to the torso orientation, a comparativealgsis of other parts of the participants’ bodytimo can be
performed. Figure 8 shows the time-series of th& XZ coordinates of the wrists, elbows, shouldersDriver 3,
during the entire duration of the driving task. indsthe data shown in Figure 8 it is easy to obiastances where
there is significant body activity by identifyingikes in the respective graphs, and further anatllygeunderlying
conditions for these instances.

By observing Figure 8 it is evident that theraimore frequent arm motion detected during theriatteegments
compared to the freeway segments as we anticipatedexample in this dataset the driver startedgmegr onto the
freeway at 100 sec. and exited at 300 sec. whictegpond to intense arm activity as indicated ksigaificant

change to the coordinates of the wrists and thevedsbDuring the freeway segment (between 100 set380 sec.)
there was no significant change of posture detezteldthe coordinates of the traced joints change aictasionally
as it was also anticipated. This smooth drivindgratis significantly different compared to the aieserved during
the arterial segments which corresponds to 0 sHa0 sec., 300 sec. - 480 sec., and 650 sec. setd®During these
segments the driver stopped at red traffic lightd #ollowed a path that included many 90-degreeduas it is
shown in Figure 3. All of these instances were radliyiassociated with arm activity, which corresgsrio changes
in the coordinates of the wrists slightly as itsteown in Figure 8. Finally, the segment from 480.s 650 sec.
corresponds to the northbound freeway segment,hmvees associated with occasional body motion adegrib
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the plots in Figure 8.
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Figure 8. Skeleton activity versus time for Driger

CONCLUSIONS AND RECOMMENDATIONS

In this paper a pilot study was conducted to capthe 3-D posture and activity of three driversle/ipierforming
various driving maneuvers. A low-cost infrared depénsor was used to capture the 3-D posture. &hieipants
were observed to perform merging and lane changiageuvers on freeway and arterial segments in Gélle
Florida. A comparative analysis of the particigantody movements while performing the maneuvers wa
conducted which revealed differences between thiicipants’ body activity when performing the samaneuvers.
More specifically, it was observed that there ayasiderable differences in terms of the torso #gtier both lane
changing and in merging maneuvers between diffedenters. It is recommended to further examine tihnso
activity in conjunction with the activity of the shlder, elbows and wrists, in order to obtain moognplete
representation of the entire body posture. luishier suggested to evaluate the effect of actaffid conditions,
such as proximity of the subject vehicle to theaadpt lead/lag vehicles, to the body posture wigldorming these
maneuvers. The findings of this research can geogignificant insights regarding which body moveisemay
hide unsafe situations while performing a drivinqarmauver that requires the attention of the surrimgnd
environment.
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