
Assessing the Effectiveness of Emoticon-Like Scripting in

Computer Programming

Angelos Barmpoutis
1
, Kim Huynh

1
, Peter Ariet

1
 and Nicholas Saunders1

1 University of Florida, Digital Worlds Institute, Gainesville, Florida 32611,

United States of America

 angelos@digitalworlds.ufl.edu, {huynhtina123,pjpariet,password1}@ufl.edu

Abstract. In this paper a new method is proposed for learning computer pro-

gramming. This method utilizes a set of human-readable graphemes and tokens

that interactively replace the grammatical tokens of programming languages,

using a concept similar to emoticons in social media. The theoretical framework

of the proposed method is discussed in detail and two implementations are pre-

sented for the programming language ECMAScript (JavaScript). The results

from user testing with undergraduate students show that the proposed technique

improves the student’s learning outcomes in terms of syntax recall and logic

comprehension, in comparison to traditional source code editors.

Keywords: Computer Education · Programming Languages · Human Factors ·

Interaction Design · Emoticons · Graphemes

1 Introduction

In many ways, learning to program can be challenging for beginners of all ages. This

is often attributed to poor self-efficacy, limited prior experience with computers, or

inability to relate personal experiences to abstract programming concepts [1]. In turn,

these challenges often result in beginners to regard programming as "boring and diffi-

cult" [2]. Since the early 1960’s, there have been a number of tools developed to ad-

dress these issues and overall focused on making programming accessible for every-

one. With the wide array of modern Computer Science (CS) educational tools availa-

ble, identifying the benefits and challenges associated will be necessary to gain in-

sight into the varying effectiveness of each tool [3, 4,5]. Currently, the two most nota-

ble types of interactive tools for computer science education are Tangible User Inter-

faces (TUI) and Graphical User Interfaces (GUI).

TUI systems are in the form of physical objects and environments, which can rep-

resent or be augmented by digital information [6]. The biggest advantage of TUI sys-

tems is that they build directly on existing knowledge and experience from the real

world [4]. One example of a TUI system is Robo-Blocks, which enable users to pro-

gram a moving robot by connecting blocks that contain embedded technology, where

each block represents a certain command [7]. Studies have shown that the use of

Robo-Blocks show considerable potential in helping children learn how to debug, and

further develop problem solving skills [5,7]. Another example is Tern, which is a set

In Proceedings of the 8th International Confernce on Human Factors and Ergomonics, 2017, Springer.

mailto:angelos@digitalworlds.ufl.edu

of wooden blocks, where each block represents a basic command that can be connect-

ed with others in order to create a program [8]. Through minimizing the amount of

resources used in creating Tern, it provides a practical way for children to have real-

time interactions with CS concepts [9]. Studies have shown that children had noticea-

bly high hands-on interaction when using Tern, which indicates that it can encourage

children to take more active roles in learning [8,9]. However the major disadvantage

of TUIs is their disconnect from programming languages and thus cannot be used

beyond an early stage of learning.

GUI programming tools employ virtual graphic components as means for interac-

tion with a computer, which have attracted in general a wider demographic variety of

users than TUIs, since GUIs have greater flexibility in content and have the capability

to improve user's understanding at a university level. One example of a GUI system is

Alice, which is a programming environment that enables novices to develop 3D envi-

ronments using drag and drop scripts [10,11]. Studies on the use of Alice in introduc-

tory CS courses have shown that the average student scores were consistently higher,

when compared to those in courses using Java [10]. Scratch is another example of a

GUI system, which allows users to program "interactive stories, games, and anima-

tions" through an online platform [12]. User studies indicate that middle school and

college students found Scratch to be a reliable way to introduce beginners to the ba-

sics of programming, because it removed the complexity of syntax [12,13]. However,

in the same studies, a number of students did not favor Scratch because it underesti-

mates the detail and complexity of more comprehensive programming languages.

While GUIs can provide a reliable starting point, the students should transition into a

more advanced programming language [12], which is the main limitation of this

method.

In this paper, we propose a new educational framework that overcomes the prob-

lems of the aforementioned approaches by adding a human-readable layer on the top

of existing programming languages. The proposed method is based on the use of

emoticon-like typing that has become popular with social networks. Emoticons are

visual representations that have one to one relationship with a corresponding combi-

nation of characters such as “:)”. These can be perceived as visual interpretations of

the corresponding characters that provide instant feedback to the user regarding the

meaning associated with the typed code. The proposed framework utilizes a set of

meaningful visual replacements of each grammatical token in a given programming

language that appear instantly when complete valid tokens are typed.

The proposed method, dubbed Brain-Activating Replacement method (BAR), is

based on the following three hypotheses: a) the immediate feedback given to the pro-

grammer can result in improved learning outcomes as it stimulates the brain to build

one-to-one connections, b) the unique correspondence of each visual replacement,

with a valid programming token re-enforces the learning of the syntax in an intuitive

trial-and-error framework, c) the use of visual replacements remove visually the

grammatical and syntactical details of a programming language and reveal to the users

the logic of the program in the form of a pseudo code.

The developed framework was evaluated in a pilot study using 35 undergraduate

students, and the results conclusively demonstrate the merits of the proposed method.

2 Methods

The smallest units in any writing system are known as graphemes [14]. Graphemes

are not only the characters in a given alphabet but also the accents, punctuation marks,

and other symbols that may be used in the corresponding writing system. Similarly, in

any programming language a set of graphemes is used, which usually includes the

graphemes of the Latin alphabet as well as other logical, mathematical, and structural

symbols required for the needs of a particular programming language.

One or more graphemes can form morphemes, which are the smallest grammatical

units in a particular language. One or more morphemes can function as components of

a word, which along with various self-standing graphemes and morphemes are the

smallest self-standing units in a language, also known as tokens. Morphemes contrib-

ute a particular meaning to a token when used as suffix, prefix, or as an intermediate

compound of the token. For example, in computer programming the morphemes “+”

and “=” can form the token “+=”, or they can function as independent tokens by

themselves. In this example, the token “+” denotes addition, the token “=” denotes

assignment, and the token “+=” denotes “be increased by”, which contains addition

and assignment.

This hierarchical structure of written languages continues in higher levels in order

to compose more complex constructions as ordered compositions of lower level units,

such as sentences, paragraphs, sections, chapters, books, and book series. Similarly, in

computer programming one or more tokens when used in the proper order can form a

command. Subsequently, one or more commands can form a self-contained program,

such as a function. Finally, one or more functions can compose larger structures such

as classes, or an executable computer program.

Let be the set of graphemes in a written language. A morpheme can be ex-

pressed as an ordered set of graphemes as follows:

 (1)

If is the set of all morphemes in a written language, a token can be expressed simi-

larly as:

 (2)

where , which is the set of all tokens in a given language. Equations 1 and 2

can be generalized in order to account for higher grammatical levels as follows:

 (3)

where is an element of the previous hierarchical set. For example, in the case of

k=1, represents a grapheme, in the case of k=2, represents a morpheme, in the

case of k=3, represents a token, etc.

2.1 Human-Readability of Programming Languages

One key difference between written natural languages and programming languages is

that the former are constructed as representations of spoken languages, and for this

reason, the formation of graphemes and morphemes imitates the corresponding pho-

nemes of the spoken language. This correspondence between graphemes and pho-

nemes makes a written text easy to be read and comprehended by speakers of the

corresponding spoken language. However, such correspondence does not exist in

programming languages, since their graphemes were not derived by a phonetic system

but were specifically defined in order to facilitate the communication with computers.

In that sense, the source code of a program is meant to be natively read by a computer

rather than humans, who can in turn decipher the corresponding programming context

but can only communicate it after having interpreted it to a human spoken language.

Therefore, the primary role of graphemes and tokens in a programming language is

to serve as input to computers rather than as output to humans. This leaves a signifi-

cant gap in the process of writing/reading a computer program, which is more evident

in the case of beginner programmers who often try to read and comprehend a given

text written in a computer programming language. For example the text “a+=2;” in

many programming languages means “increase the value of a by 2”. By comparing

the original phrase with the translated one, it is evident that the latter is easier to read

and understand especially in the case of beginner programmers.

In this paper, a new text-editing process is proposed as a solution that bridges the

aforementioned gap in computer languages. The proposed solution does not intend to

form a new programming language but enhance the readability of existing ones by

extending the traditional human-computer interaction of text editors.

Let us consider the following written sample: “not:(or:|!be:)” and its equivalent in

another written language with different graphemes: “notor!be”. Obviously, the

latter is easier to read, but the former is easier to write in the form of a typed text in a

computer device. This example shows that there exist written languages that are pri-

marily meant to be written (possibly to serve as an input to a computer system), and

others that are primarily meant to be read. Furthermore, there exists a mapping that

maps elements of the former language to elements of the latter:

 (4)

where denotes the set of elements in the k
th

 hierarchical level of one language, and

 denotes the set of elements in the same hierarchical level of another language.

According to the previous example, “”, where k is the token-level

and C denotes the context set , which is an

element of the next hierarchical level k+1.

The role of the context in Eq. 4 is to enable us to define context-depended

mappings for a particular element . For example, the token “=” in ECMAScript

(JavaScript) programming language can be mapped to “be:”, unless it is followed by

the token “[”, in which case it can be mapped to “be the following array:”. Finally,

Eq. 4 can be further generalized in order to consider the context in different hierar-

chical levels as follows:

 (5)

Equations 4 and 5 can be used in order to provide readability to computer pro-

gramming languages without altering in any way the programming languages them-

selves. A set of mappings and a target language must be defined according to

Eqs. 4 and 5. Different mappings may be defined in different hierarchical levels. For

instance, the previous example in ECMAScript defined the following token-level

mapping: {“a”, “=”, “2”} → {“a”, “be:”, “2”}. An additional command-level map-

ping can be defined in order to map {“a=2”} → {“Set a to 2”}. The corresponding

mapping can be used as soon as the required input elements of the original language

are typed. For example, during the composition of a token, a grapheme-level mapping

can be used. Once a complete token is composed, a token-level mapping can be em-

ployed in order to render the token. Similarly, a command-level mapping can be used

as soon as a complete command is composed.

Obviously, the result of mappings can be modified or cancelled when the input that

activated these mappings is changed. For example, when a previously typed command

is being edited, the command-level mapping is cancelled, and a token-level mapping

is used to render the tokens of this command. Similarly, when the user edits a previ-

ously typed token, the token-level mapping is cancelled, and a grapheme-level map-

ping can be activated to render this token.

2.2 Properties

The theoretical framework presented in the previous sections for interactively replac-

ing the elements of an input written language with elements of a target language

has the following properties:

Preservation of Cardinality. The mapping from to should preserve the number

of elements in each level, i.e. N tokens in should be mapped to N tokens in , M

commands in should be mapped to M commands in , etc.

Interpretative Replacements. The elements of the target language can employ

graphemes, symbols, or other textual representations that interpret the corresponding

elements of the original language. The replacements can be properly chosen based on

the age, proficiency in , or personal preferences.

Interactive Validation. The instant replacement of elements of provides continu-

ous feedback that validates the user’s input and offers a trial-and-error interface for

text composition.

Authentic Reproduction. A text in cannot be reproduced unless the original text is

re-typed in , which requires that the user is capable of composing the original text in

 . Therefore, it is an authentic reproduction since the user cannot blindly copy the

text in in order to achieve the desired result.

Syntax Discovery. The combination of authentic reproduction and interactive valida-

tion facilitates the discovery of syntactical phenomena and is hypothesized to re-

enforce learning by stimulating the brain to build connections between the program-

ming language () and its interpretation ().

Identity Mapping. Traditional text editors can be considered special cases of the

proposed framework in which the identity mapping is used between and . Source

code editors that utilize color-coding are also special cases, in which the graphemes in

 differ from those in only in their color properties and not in their structure.

The aforementioned properties extend the traditional text editing process by intro-

ducing new interactive features that do not currently exist in source code editors, but

the general audience has established familiarity with them through emoticon scripting

in social media and text messages.

3 Implementation

The proposed method, dubbed Brain-Activating Replacement (BAR) method, was im-

plemented for ECMAScript (JavaScript) in two different target languages. The first

implementation was designed for beginner programmers and employs iconic graphemes

and visual metaphors such as nametags for the names of variables and pipes for repre-

senting functions. The second implementation was designed for more mature users and

employs more discrete iconic graphemes with primarily text-based token replacements.

For each implementation, a set of 88 BAR-tokens was designed. Table 1 shows a sam-

ple list of the tokens from the target language designed for beginner programmers.

Table 1. A sample list of the BAR-tokens created for beginner programmers. The table shows

19 out of the 88 types of tokens implemented for ECMAScript (JavaScript).

variable

variable being modified

number

string

true, false

null, undefined

;

method()

= be: ==, !=, === is equal to, is not, strictly is
var Let { } begin, end

As shown in Table 1, all data values are visualized inside rectangular boxes that re-

semble fields in an electronic form. Comparison and logical operators as well as struc-

tural markers are replaced by textual interpretations, such as “begin”, “is not”, etc. An

example of JavaScript source code visualized in the two implemented target lan-

guages is shown in Fig. 1.

By comparing the output of the two implementations as shown in Fig. 1, it is evi-

dent that the implementation designed for beginners is more colorful and iconic, com-

pared to the one designed for mature audiences, which is primarily text-based and can

be read almost as a continuous text: “Let main be the following process: Begin. Let

start be true. Let robot be a new object of the type Avatar. Position_x of robot be in-

creased by 2.5 x speed. Robot do jump. End.” One interesting observation is that the

tokens “=” and “.” were interpreted differently based on their context as defined in

Eq.5. For example “.” was interpreted as “do” when followed by a method and as “of”

when followed by a property.

Fig. 1. Side-by-side comparison of the two implemented target languages for beginners (right)

and for more mature users (middle). The corresponding JavaScript source code is on the left.

The two implementations (Fig 1 middle and right) and the traditional implementa-

tion (Fig. 1 left) were developed in JavaScript using the open-source library VisiNeat,

which is licensed under BSD 2-clause by the University of Florida. The developed

BAR-enabled text editor is available in the VN JavaScript Studio and was used in a

series of experiments discussed in the next section.

4 Experimental Results

The proposed BAR method was tested during the academic semester of Spring 2017,

using students volunteers from the on-line and on-campus undergraduate program of

Digital Arts and Sciences at the Digital Worlds Institute at the University of Florida,

with partial support from the University of Florida On-Line Institute and the grant

PRDSP024 from the University of Florida Provost’s office.

 In total 35 students (22 female) used the developed text editor to complete 6 pro-

gramming assignments for a period of 7 weeks. During this period, the proposed

method was adopted as the primary method of instruction; hence, all the content de-

livered to the students as part of lectures or additional material was in the form of

BAR-tokens. It should be noted that the students were allowed to choose between the

two developed BAR-enabled text editors (Fig. 1 middle and right) and a regular

source code editor (Fig. 1 left), or transition between the editors as they wished.

The students in this program focus on the theory and practice of interactive digital

media, and, as part of their curriculum, learn programming fundamentals. Although

the majority of the students have limited prior experience in programming, others

have taken prior programming classes or practiced programming on their own. It was

anticipated that the proposed framework would have different effect on the students

based on their programming level, as it is demonstrated later in this section.

4.1 Manual Observation of Student Coding Patterns

During the course of this experiment, the keystrokes performed by the participating

students within the developed text editors were recorded in order to manually inspect

the coding patterns of the students with or without the proposed framework. After

systematic inspection of the recorded sequences of keystrokes, the following scenari-

os were noted.

Fig. 2. This figure shows an example of erroneous use of spaces within the name of a variable.

The corresponding BAR-tokens provide instant visual feedback in order to self-correct this

error. In this case, 2 nametags are shown and only the second one is affected by the assignment.

Fig. 3. The percentage of the students who used the proposed editor and/or traditional code

editor during this experiment. The plot shows the transitions of the students between editors.

The students who typed their assignments in a BAR-enabled text editor were able

to identify and correct syntax errors as well as discover unknown syntax rules on their

own before the compilation of their code. A common mistake was the use of spaces

within the name of a variable as shown in Fig. 2. The corresponding BAR tokens

provided instant visual feedback that assisted the students to identify and correct their

mistakes.

On the other hand, students who made similar mistakes in a traditional text editor

were not able to identify their mistake prior to compilation. What is more, there were

several instances where the students could not understand their mistake even after

receiving an “unexpected identifier” error message from the compiler.

Another mistake that was observed several times is the incorrect use of the equal

sign in an attempt to test equality instead of the double equal sign “==”, which is the

appropriate token to be used in this case. The problem in this scenario is that this is a

logical rather than a syntax error; hence, the compiler does not provide any error mes-

sage to help the programmers identify their mistake. However, in the case of BAR

tokens, there is a clear difference between the correct and incorrect case of testing

equality. More specifically, in the correct test of equality the target code reads

“if(score is equal to 100)”, which corresponds to the source code “if(score==100)”.

On the other hand, when the source code is “if(score=100)”, the target code reads

“if(score be: 100)”, which reveals the incorrect logic. It has been recorded several

times in the collected data that the students who used the BAR-enabled editor were

able to identify the difference between these two statements and correct their logic

without further assistance.

Fig. 4. The recorded number of syntax and run-time errors per keystroke per person during this

experiment. The results are reported separately for the proposed and traditional text editors.

Fig. 5. The percentages of successful syntax recall, new syntax discovery, and error reduction

that correspond to the proposed method versus traditional text editors.

4.2 Quantitative Analysis

Several types of data were recorded during this experiment, including the type of text

editor used in each keystroke and the error messages generated by the system (syntax

errors and run-time errors), in addition to the keystroke sequences produced by each

student.

Fig. 3 shows the transitions of the students between the provided text editors dur-

ing the data collection period. As expected, a gradual transition from the BAR-

enabled editor to the traditional editor was observed as the competency of the students

in programming increases, although a small transition back to the BAR-enabled editor

was also observed towards the end of the data collection period. It should be noted

that a significant percentage of the students completed their programming assign-

ments using both editors.

The syntax and run-time error messages generated by each student are shown in

Fig. 4. The data were normalized by the number of keystrokes per student in each

type of editor. Although the absolute value of the reported numbers depend on the

particular level of difficulty of each week’s programming assignment, we can com-

pare the data across categories. By observing the data in Fig. 4, it should be noted that

the number of run-time errors generated by the students who used the BAR-enabled

editor is less than the corresponding number of errors from the traditional text editor,

and this is true throughout the entire data collection period. A similar pattern was

observed for syntax errors with the exception of weeks 2 and 4. This observation may

indicate that the effect of the proposed method on logic understanding is stronger than

the effect on syntax recall, since the majority of the run-time errors are typically asso-

ciated with logic errors.

At the end of the data collection period, the students were asked to recall particular

syntax rules as well as try to comprehend unfamiliar syntactical structures. Fig. 5

shows that 90% of the students who used BAR-tokens were able to successfully recall

the syntax compared to 75% for the case of a traditional text editor. This result sug-

gests that the students who see the typed source code are not able to remember the

syntax as effectively as the students who do not see the typed code.

Furthermore, only 30% of the students who read an unfamiliar sample of code in a

conventional text editor were able to comprehend it. The same task in the BAR-

enabled editor was reduced to the study of a text in plain Engish, which was compre-

hended by all students.

Finally, Fig. 5 reports that the overall reduction of errors using the BAR method

was larger than the corresponding errors in a traditional text editor. If the reduction of

errors is assumed to be correlated with the learning outcomes, then the results may

suggest that higher learning outcomes can be achieved using the proposed method.

Fig. 6. The distribution of the students based on their responses on the TAM questionnaires as

shown on the dominant eigen-plane of the response data. The students can be linearly separated

based on their perception regarding the improvement of their learning performance, depicted in

green and red for positive and negative responses respectively.

4.3 Perceived Usefulness and Perceived Ease of Use

Finally, at the end of the data collection period, the proposed method was evaluated

using the technology adaptation model (TAM) [15]. The original questionnaires of the

TAM model were extended in order to capture the perception of the students regard-

ing the effect of the proposed technique on syntax recall and logic comprehension.

In order to evaluate the effect of the proposed method as a function of the student’s

competency in programming, each student’s programming level was assessed through

programming questions. Principal component analysis of the responses on the TAM

survey showed that the students were divided into two groups based on their percep-

tion regarding the effect of BAR-tokens on their learning performance (Fig. 6).

Fig. 7. The students’ responses on the key questions of the extended TAM survey [15]. The

results are also shown separately based on the students’ perception regarding the improvement

of their learning performance (middle row: positive response, bottom row: negative response).

The group of students who believed that the proposed method did not improve their

learning outcomes includes more than 70% of the students who were identified as

advanced programmers. Therefore, the independent analysis of the two groups can

give us insights on how students of different programming levels perceived the use-

fulness and ease of use of the proposed method.

Fig. 7 shows that the majority of students on both levels agreed that the proposed

method challenges them more to learn the syntax. This result aligns with the “authen-

tic reproduction” property of our theoretical model as discussed in Sec. 2.2.

Furthermore, the students in group A, who are predominantly beginners in pro-

gramming, agreed on the majority of the questions, as they found that they could un-

derstand the programming logic easier with the proposed method. Furthermore, they

believed that the proposed method improved their learning performance and can make

them skillful in programming. They also found that the proposed method is useful,

easy, and flexible to interact with.

On the other hand, the students in group B, who are predominantly more experi-

enced programmers, appeared to be divided on several questions regarding the flexi-

bility and ease of use of the proposed method. As it was expected, the effect of the

proposed method on the more advanced students was limited, which is reflected on

the students’ perception on the ease of use and usefulness of the proposed method.

5 Conclusions

This paper presented a novel method for learning computer programming, dubbed

Brain-Activating Replacement method, which is based on the hypothesis that the in-

teractive replacement of syntactical tokens in programming languages with human-

readable tokens, facilitates the building of stronger connections between the source

code and its logical meaning. Two implementations of the proposed method were

presented and tested in a pilot study. The results suggested that the proposed frame-

work increases the learning outcome of the students. The observed benefit is stronger

in the case of beginner programmers, whose performance has improved in terms of

syntax recall and logic comprehension, compared to the performance achieved using

traditional text editors for source code editing.

References

1. Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M.: A study of the difficulties of novice pro-

grammers. ACM SIGSCE Bulletin 37(3), 14--18 (2005)

2. Jenkins, T.: On the difficulty of learning to program. In Proceedings of the 3rd conference

of the LTSN Centre for Information and Computer Sciences, Vol. 4, pp. 53--58 (2002)

3. Busch, T.: Gender differences in self-efficacy and attitudes towards computers. Journal of

Educational Computing Research, 12(2), 147--158 (1995)

4. Jacob, R.J.K., Girouard, A., Hirshfield, L.M., Horn, M.S. Shaer, O., Solovey, E.T., and

Zigelbaum, J.: Reality-Based Interaction: A framework for PostWIMP interfaces. In Proc.

of the SIGCHI conference on Human factors in computing systems, pp. 201--210 (2008)

5. Sapounidis, T., Demetriadis, S., & Stamelos, I.: Evaluating children performance with

graphical and tangible robot programming tools. Personal and Ubiquitous Computing

19(1), 225--237 (2015)

6. McNerney, T. S.: From turtles to Tangible Programming Bricks: explorations in physical

language design. Personal and Ubiquitous Computing, 8(5), 326--337 (2004)

7. Sipitakiat, A., and Nusen, N.: Robo-Blocks: designing debugging abilities in a tangible

programming system for early primary school children. In Proceedings of the 11th Interna-

tional Conference on Interaction Design and Children, pp. 98--105 (2012)

8. Horn, M. S., Solovey, E. T., Crouser, R. J., & Jacob, R. J.: Comparing the use of tangible

and graphical programming languages for informal science education. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, pp. 975--984 (2009)

9. Horn, M. S., & Jacob, R. J.: Tangible programming in the classroom with tern. In CHI'07

extended abstracts on Human factors in computing systems, pp. 1965--1970 (2007)

10. Moskal, B., Lurie, D., & Cooper, S.: Evaluating the effectiveness of a new instructional

approach. ACM SIGCSE Bulletin, 36(1), 75--79 (2004)

11. Sykes, E. R.: Determining the effectiveness of the 3D Alice programming environment at

the computer science I level. J. of Educational Computing Research 36(2), 223--244

(2007)

12. Malan, D. J. and Leitner, H.H.: Scratch for Budding Computer Scientists. ACM SIGCSE

Bulletin 39(1), 223--227 (2007)

13. Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M.: Learning computer science concepts

with scratch. Computer Science Education, 23(3), 239--264 (2013)

14. Coulmas, F. The Blackwell Encyclopedia of Writing Systems, Blackwell, pp. 174 (1996)

15. Davis, D. F.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Infor-

mation Technology. MIS Quarterly 13(3), 319--340 (1989)

