
 
 

  

Abstract—Lattice based neural networks are capable of 
resolving some difficult non-linear problems and have been 
successfully employed to solve real-world problems. In this 
paper a novel model of a lattice neural network (LNN) is 
presented. This new model generalizes the standard basis 
lattice neural network (SB-LNN) based on dendritic 
computing. In particular, we show how each neural dendrite 
can work on a different orthonormal basis than the other 
dendrites. We present experimental results that demonstrate 
superior learning performance of the new Orthonormal Basis 
Lattice Neural Network (OB-LNN) over SB-LNNs.  

I. INTRODUCTION 
he artificial neural model which employs lattice based 
dendritic computation has been motivated by the fact 

that several researchers have proposed that dendrites, and 
not neurons, are the elementary computing devices of the 
brain, capable of implementing logical functions. [1, 2]. 
Inspired by the neurons of the biological brain, a lattice 
based neuron that possesses dendritic structures was 
developed and is discussed in detail in [3, 4, 5].  

Several applications of LNNs have been proposed, due to 
their high capability of resolving some difficult non-linear 
problems. LNNs were employed in applications for face and 
object localization [6, 7], Auto-Associative memories [8, 9, 
10], color images retrieval and restoration [11, 12] etc. 
Furthermore, various models of fuzzy lattice neural 
networks (FLNN) were studied in [13, 14] and some of their 
applications in the area of text classification and 
classification of structured data domains were presented in 
[15, 16]. 

Despite the high capabilities of LNNs, training dendritic 
networks such as Lattice Based Morphological Perceptrons 
with Dendritic Structure [3], results in creating huge neural 
networks with a large number of neurons; the size of the 
trained network sometimes is comparable to the size of the 
training data. 

In this work a new model of LNNs is proposed. In this 
model each neural dendrite can work on a different 
orthonormal basis than the other dendrites. The orthonormal 
basis of each dendrite is chosen appropriately in order to 
optimize the performance of the Orthonormal Basis Lattice 
Neural Network (OB-LNN). OB-LNNs have some useful 
properties such as automatic compression of the size of the 
neural network and they show significantly better learning 
capabilities than the standard basis LNNs. Validation 
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experimental results in synthetic and real datasets are 
presented and demonstrate superior learning performance of 
OB-LNNs over SB-LNNs.  

The rest of the paper is organized into the following 
sections: In section 2, we make a brief review of the LNN 
model. In section 3, the Orthonormal Basis Lattice Neural 
Network is presented. This section is divided in two parts. In 
the first part the model of OB-LNNs is presented. This is 
followed by an algorithm for training such a neural network. 
Finally, in section 4, validation experimental results are 
presented which demonstrate superior learning performance 
of OB-LNNs over standard basis LNNs. 

II. LATTICE NEURAL NETWORKS 
The primary distinction between traditional neural 

networks and LNNs is the computation performed by the 
individual neuron. Traditional neural networks use a 
multiply accumulate neuron with thresholding over the ring 
( )×+ℜ ,,  given by the formula 
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where τj(x) is the total input to the jth neuron, xi are the 
values of the input neurons connected with the jth neuron, 
and wij are their weights. Finally θj are bias weights.   

In the case of a lattice based neuron, lattice operators V 
(maximum) and Λ (minimum) are used. These operators and 
the addition (+) form the rings ( )+∨−∞∪ℜ ,,  and 

( )+∧∞∪ℜ ,, . The computation performed by a neuron is 
given by the formula  
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where τj(x) is the total input to the jth neuron, xi are the 
values of the input neurons connected with the jth neuron, 
and wij are their weights. Parameters rij take +1 or -1 value if 
the ith input neuron causes excitation or inhibition to the jth 
neuron. Pj takes also +1 or -1 value if the type of the output 
response is excitatory or inhibitory.  A more detailed 
presentation of the theory of lattice based morphological 
neurons and how their networks work can be found in 
[5,17]. 

Using the above computational framework, a lattice 
neural network can be constructed using layers of lattice 
based neurons which are connected to neurons of other 
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layers. Each lattice based neuron consists of dendrites which 
connect the neuron with the previous layer’s neurons. Figure 
1 shows a lattice neural network with an input layer and a 
lattice based neuron layer. Each lattice neuron Mj consists of 
dendrites Dij. The neurons of the input layer are connected to 
the next layer via the dendrites. The black and white circles 
denote excitatory and inhibitory connection respectively. 
Each dendrite can be connected with an input neuron at most 
twice (with one inhibitory and one excitatory connection).  

 
The computation performed by a single (the kth) dendrite 

can be expressed using lattice operators by the formula: 
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where I is a subset of {1,..,n} which corresponds to the set of 
all input neurons Ni with terminal fibers that synapse on the 
kth dendrite of the current lattice based neuron. L is a subset 
of {1,0} and the other parameters are the same with those 
used in (2) and (3). 

The geometrical interpretation of the computation 
performed by a dendrite is that every single dendrite defines 
a hyperbox. The borders of this hyperbox form the decision 
boundaries in a particular location of the input space. The 
left part of figure 2 shows a hyperbox that separates data 
points of two different classes. Here the input space is the 
plane of real numbers ( 2ℜ ) and the hyperbox is a rectangle. 
This hyperbox can be defined by a single dendrite via its 
weight values wij.  

Decision boundaries with more complex shapes, can be 
formed by using more dendrites. Furthermore boundaries 
which separate more than two classes can be formed, if more 
lattice based neurons are employed.  The left part of figure 3 
shows an example of decision boundaries with more 
complex shape, forming the letters ABC. In the middle of 
the same figure we can see how a group of hyperboxes (2-
dimensional boxes in this case) can approximate the decision 
boundaries. Each box can be defined by a dendrite. 
Complicated figures require a large number of dendrites, in 
order to achieve satisfactory approximation of the decision 
boundaries. 

Note that here the word “hyperbox” has a more general 
meaning, since some of the edges of the hyperboxes may 
have infinite length. For example in the 2ℜ  domain, a 
straight line can be considered as a hyperbox, whose one of 
the edges is identical to this line, and the rest of the edges 
are located at ±∞. Following similar reasoning, two parallel 
lines can be also considered as a hyperbox, etc. 

An algorithm for training a lattice neural network with 
dendritic structure can be found in [17] and method for 
learning LNNs can be found in [4]. A comparison of various 
training methods for LNNs that employ dendritic computing 
is presented in [18]. The next section is divided into two 
parts. In the first part the model of Orthonormal Basis lattice 
neural network is presented. This is followed by an 
algorithm for training such a neural network.    

III. ORTHONORMAL BASIS LATTICE NNS 

A. The OB-LNN Model 
As it was discussed earlier, the geometrical interpretation 

of the computation performed by a dendrite is that every 
single dendrite defines a hyperbox in the space of input 
values. These hyperboxes are oriented parallel to the 
Cartesian axis of the space of input values. The left part of 
figure 2 presents a decision hyperbox defined by a dendrite. 
Its edges are parallel to the x and y axis of the input space 
( 2ℜ ). Due to this constraint about the orientation of the 
hyperboxes, the decision boundaries formed by lattice neural 
networks are not smooth and box patterns are annoyingly 
visible along the boundaries (fig.3 middle). 

To overcome these disadvantages, a new type of dendrite 
can be defined, which is able to form a hyperbox parallel to 
an arbitrary orthonormal system. The right part of figure 2 
presents such a hyperbox, whose orientation is no longer 
parallel to the Cartesian axis of the input space. A neural 
network consisting of lattice based neurons with such 
dendrites would be able to produce smoother decision 
boundaries (fig. 3 right). In figure 3 the decision boundaries 
formed by such an Orthonormal Basis Lattice Neural 
Network are compared with these formed by a Standard 
Basis LNN. Notice that the number of hyperboxes (thus the 
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Fig. 1. An artificial neural network model which employs lattice 
based dendritic computations 

 
Fig. 2.  Decision boundaries of a SB-LNN dendrite (left) and a OB-
LNN dendrite (right). 

Fig. 3.  This is an illustration of the decision boundaries that can be 
formed by a SB-LNN (middle) and an OB-LNN (right). The desired 
decision boundaries form the ABC letters (left).   
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number of dendrites as well) required by the OB-LNN is 
much smaller than the number of those required by a SB-
LNN.  

Another advantage of the Orthonormal Basis LNNs is that 
they store information about the local orientation of the 
classes. This is demonstrated with an example in figure 4. 
Suppose that the samples of a class form the shape of the 
letter “A”. A neural network with Orthonormal Basis 
Dendtrites can approximate this shape forming mainly 3 
hyperboxes. The orientation of each hyperbox contains 
information about the local orientation of this class (fig.4 
right). This useful information cannot be obtained by the 
standard basis LNN that was trained for the same purpose 
(fig. 4 left). This property is better illustrated in section 4 

(fig. 6), where training results of standard and orthonormal 
basis LNNs are presented.  

The computation performed by the kth Orthonormal Basis 
dendrite can be expressed using lattice operators, changing 
slightly equation (4) as follows 
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where X is the input value vector (x1, x2, …, xI)T, Rk is a 
square matrix whose columns are unit vectors forming an 
orhonormal basis, and (RkX)i is the ith element of the vector 
RkX. Each dendrite now works in its own orthonormal basis 
defined by the matrix Rk. The weights of the dendrite act on 
the elements of vector RkX, hence the weights act on the 
rotated by the orthonormal basis Rk space.  

Note that Standard Basis Lattice Neural Networks are a 
sub group of the Orthonormal Basis Lattice Neural 
Networks where the matrix Rk is the identity matrix. In this 
case it is obvious that (RkX)i=xi , thus equation (5) becomes 
equal to equation (4). 

 

B. Training OB-LNNs 
The training of an Orthonormal Basis Lattice Neural 

Network is based on finding the best possible values for the 
weights and Rk matrices. In other words, in order to train an 
OB-LNN, one must train its dendrites.  

The training methods which can be used for training SB-
LNNs can also be used for training OB-LNNs with an 
appropriate modification in order to adopt the fact that each 
dendrite works on its own orthonormal basis. The training 
procedure of an orthonormal basis dendrite can be treated as 
a maximization problem. The quantity that we are trying to 
maximize is the volume of the hyperbox which is defined by 
the dendrite. 

By fixing the matrix Rk, the weights of the dendrite can be 

estimated by the training procedure described in [17]. The 
weights define the hyperbox; therefore its volume can be 
directly calculated from the weights. We can repeat the 
process by varying appropriately the matrix Rk, until the 
volume of the hyperbox reaches a maximum. 

The matrix Rk is a rotation matrix, i.e. it rotates the vector 
X. A variation of this matrix dR is also a rotation matrix. A 
new matrix Rk´ can be obtained by multiplying Rk with 
matrix dR. (Rk´= RkdR). A variation matrix dR can be 
easily constructed by using the following equation: 

tSedR =  (6) 
where S is a randomly generated skew symmetric matrix, 
and t is a scalar value. Note that the exponential is the matrix 
exponential. Note also that the matrix exponential of a skew 
symmetric matrix is always a rotation matrix. The smaller 
the absolute value of t is, the smaller the variation, which is 
caused by the matrix dR, is. 

By using the above, any cost minimization method can be 
used in order to minimize the negative of the hyperboxe’s 
volume (or to maximize its volume) in steps 1 and 3 of 
algorithm 1. Simulated annealing [19] and greedy searching 
for experiments in 2D are the methods used in the 
experiments presented in section 4, in order to find the 
matrix Rk that gives the maximum hyperboxes’ volume. 

The training algorithm of an OB-LNN morphological 
perceptron is summarized below. This algorithm is an 
extension, in the space of OB-LNN, of the training algorithm 
for morphological perceptron proposed in [17]. The 
algorithm is presented for the case of 2 classes only, but it 
can be easily extended to problems with a larger number of 
classes. A more detailed description of the training algorithm 
in the case of SB-LNN is presented in [17]. 

The time complexity of this algorithm can be easily 

proved that is equal to MinSBLNNOBLNN OOO ⋅=  where 
OSBLNN  is the time complexity of the training algorithm in 
the case of SB-LNN and OMin is the time complexity of the 

 
Fig. 4.  Another advantage of OB-LBNN (right) is that they also store 
information about the local orientation of the classes. 

ALGORITHM  I 
Input: N training samples Xi, and N outputs di = 0 or 1 
for class C1 or C2 respectively. i=1,…,N 
 
Output: The number of generated dendrites L, their 
weights Wj and their orthonormal basis Rj. j=1,…,L 
 
 
Step 1: Find the smallest possible hyperbox containing 
all the samples of C1, and assign the appropriate values 
W1 and R1 to the first dendrite. Set L=1. 
 
Step 2: If there are misclassified points of C2, pick 
arbitrarily a misclassified point ξ and go to step 3. 
 
Step 3: Find the biggest hyperbox that contains ξ, but it 
does not contain any point of C1. Set L=L+1. Assign 
the appropriate values to WL and RL. Go to step 2. 
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minimization process used in steps 1 and 3.  Therefore, in 
order to obtain improved learning capability we loose in 
speed performance. The improvement in speed performance 
will be one of the research topics in our future work.  

IV. EXPERIMENTAL RESULTS 
In this section, validation experimental results are 

presented which demonstrate superior learning performance 
of OB-LNNs over SB-LNNs. The experiments were 
performed using synthetic 2-dimentional datasets and the 
well known Iris flower dataset.  

The first dataset was synthetically generated and it forms 
two 2D spirals. The points of the two spirals obey the 
equations 

( ) ( )[ ] ( ) ( )[ ]πϑϑπθϑϑϑ /2sin,/2cos, 11 =yx  and 
( ) ( )[ ] ( ) ( )[ ]ϑϑϑϑ 1122 ,, yxyx −−=  (7) 

respectively. Several versions of this datasets were generated 
with a) 130, b) 258, c) 514, d) 770, e) 1026, f) 1538 samples. 
The largest dataset (2538 samples) was used for the testing 
dataset. The samples of the smallest dataset (130 samples) 
are presented in figure 5. Small circles denote the samples of 
the one spiral, and small crosses denote the samples of the 
other one.  

Two neural networks were trained in the previously 
described datasets: a) a Standard Basis Lattice Neural 
Network and b) the proposed Orthonormal Basis Lattice 
Neural Network. Both networks were lattice based 
morphological perceptrons with dendritic structure [17] so 
that their performance could be compared directly.  In the 
case of the OB-LNN perceptron, the dendrites were 
Orthonormal Basis dendrites, which were trained in order to 
maximize the volume of the hyperboxes that they formed. 

Table 1 presents the classification errors of the trained 
neural networks for different sizes of the training datasets 
(column 1). The size of the testing dataset for all the 
experiments was 1538 samples. In all cases, the 
classification errors made by the OB-LNN are significantly 

smaller than these made by the SB-LNN. This conclusively 
demonstrates superior training performance of the proposed 
neural network over the standard basis lattice neural 

networks. 
Furthermore, the number of the dendrites, which are 

required to form the decision boundaries between some 
populations, measures the learning ability of a neural 
network. Table 1 also presents the final number of dendrites 
required by the lattice neural networks in order to classify 
correctly all the training samples (columns 2 and 4). In all 
cases, the number of dendrites trained by the OB-LNN is 
smaller than the number of dendrites trained by a standard 
basis LNN. This means that the OB-LNN compresses 

automatically its size. 
Figure 5 shows most of the hyperboxes formed by the 

dendrites of the Standard basis (top) and the Orthonormal 
basis LNNs (bottom). These hyperboxes were formed by the 
training process using 130 training samples. By observing 

 

 
Fig. 5.  This figure shows some of the hyperboxes formed by a SB-
LNN (top) and a OB-LNN(bottom). The 130 training samples are 
denoted by circles and crosses and they are forming two spirals. The 
hyperboxes presented here for comparison, are the 9 smallest of each 
case.

TABLE I 
CLASSIFICATION ERRORS AND NUMBER OF DENDRITES NEEDED 

TRAINING 
SAMPLES 

OB-LNN 
DNDR         ERR 

SB-LNN 
DNDR          ERR 

(1 – RATIO) 
OF ERRORS 

130 12 14.0% 14 18.34% 23.45% 
258 14 6.5% 17 9.69% 32.20% 
514 15 3.2% 19 4.55% 28.57% 
770 16 2.3% 19 3.20% 26.88% 
1026 15 1.5% 20 2.54% 40.94% 

This table presents classification errors and number of dendrites 
needed for the training of an OB-LNN and a SB-LNN, using different 
sizes of training samples (see column 1). The 2nd and 4th columns 
present the number of dendrites needed for the correct classification of 
the training samples. The 3rd and 5th columns show the percentage of 
misclassified samples using always 1538 testing samples. The last 
column shows the quantity equals to one minus the ratio of the 3rd 
column over the 5th column. 
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this figure we can see the differences between the decision 
boundaries formed by the OB-LNN and those formed by the 
SB-LNN. The hyperboxes generated by the Orthonormal 
basis LNN have bigger volume (area in the 2D domain) than 
those generated by the standard basis LNN. In the case of 
OB-LNN each hyperbox is rotated appropriately because of 
the fact that it is working on a different orthonormal basis 
than the other dendrites.  

As it was discussed earlier in section 3, each hyperbox 
contains information about the local orientation of the 
classes. This property is illustrated in figure 6. In this figure 
the decision boundaries between the two spirals generated 
by a SB-LNN (top) and an OB-LNN (bottom) are presented. 
On each hyperbox several ellipses are plotted. The sizes of 
the principal axes of each ellipse are proportional to the size 
(length and width) of the relative hyperbox. The dominant 
axis of each ellipse is also plotted, forming a vector field.  

Observing the vector field generated by the SB-LNN (top) 
and this generated by the OB-LNN (bottom), one can 
conclude that the hyperboxes of the OB-LNN contain 
information about the local orientation of the classes. In the 
case of SB-LNN this property cannot be generally observed. 

Another set of experiments was held by using the Iris 

flower dataset. The Iris Flower Dataset is a popular 
multivariate dataset that was introduced by R.A. Fisher as an 
example for discriminant analysis. The data reports on four 

characteristics of the three species of the Iris Flower, sepal 
length, sepal width, petal length, and petal width. The goal 
of a discriminant analysis is to produce a simple function 
that, given the four measurements, will classify a flower 
correctly. 

Several experiments were performed by using randomly 
different amounts of the Iris flower samples as testing 
samples (1st column of Table 2). The following three neural 
networks were trained: a) an OB-LNN perceptron, b) a SB-
LNN perceptron and c) a multilayer perceptron (MLP) with 
one hidden layer. Several different architectures were used 
for the MLP with 1 hidden layer, and the results of table 2 
are the best obtained. The whole Iris data set were used as 
the testing data set. The classification errors of the three 
neural networks are presented in table 2. In all cases, the 
classification errors made by the OB-LNN are significantly 
smaller.  

Finally, another experiment was also held in order to 
compare the sizes of the trained neural networks.  A 
synthetic dataset was generated forming two classes; one 
within an ellipse (fig. 7 left) and the other one outside of it.  
The sample points of the two classes were picked up 
randomly using uniform distribution. 

The same two lattice neural networks with dendritic 
structure were used: a) an OB-LNN perceptron and b) a SB-
LNN perceptron. The right plate of figure 7 shows the plot 
of the number of misclassified sample points over the 
number of dendrites generated by the two neural networks 
during the training process. The final number of dendrites 
required by the OB-LNN in order to classify correctly all the 
training samples is significantly smaller than the number of 
dendrites trained by a standard basis LNN. This also 
conclusively demonstrates superior learning performance of 
OB-LNNs over SB-LNNs. 
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Fig. 7. Left: This dataset forms an ellipse. Right: Plot of the 
misclassified points over the number of dendrites required by a OB-
LNN and a SB-LNN during the training process.  

TABLE II 
COMPARISON OF CLASSIFICATION ERRORS IN IRIS FLOWER DATA 

TRAINING 
SAMPLES OB-LNN SB-LNN PERCEPTRON 

50% 8.33% 10.67% 13.33% 
60% 6.41% 10.00% 12.21% 
70% 4.20% 6.33% 7.34% 
80% 3.12% 3.67% 6.54% 
90% 2.01% 3.33% 6.38% 
100% 0% 0% 3.67% 

This table presents classification errors of the three neural networks 
for different amounts of training samples. 

 

 
 

Fig. 6.  Decision boundaries formed by a SB-LNN (top) and a OB-
LNN (bottom). On each hyperbox several ellipses are plotted. The 
sizes of the principal axes of each ellipse are proportional to the sizes 
(length and width) of the relative hyperbox. 
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V. CONCLUSION 
In this paper, a novel model of Lattice Neural Networks, 

called Orthonormal Basis Lattice Neural Network, was 
presented. Comparisons of the proposed model of neural 
networks with the standard basis model of Lattice neural 
networks were presented. Validation experimental results 
were also presented demonstrating the advantages of the 
proposed model. Our future work will be focused on 
applying this model in applications for face and object 
localization, Auto-Associative memories and color images 
retrieval and restoration, in which areas the standard basis 
lattice neural networks have been applied [6-12]. Extension 
of the proposed model in the area of Fuzzy Lattice 
Neurocomputing [13, 14] and improvement in speed 
performance will also be some of our future research topics.    
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