

Abstract—Lattice based neural networks are capable of
resolving some difficult non-linear problems and have been
successfully employed to solve real-world problems. In this
paper a novel model of a lattice neural network (LNN) is
presented. This new model generalizes the standard basis
lattice neural network (SB-LNN) based on dendritic
computing. In particular, we show how each neural dendrite
can work on a different orthonormal basis than the other
dendrites. We present experimental results that demonstrate
superior learning performance of the new Orthonormal Basis
Lattice Neural Network (OB-LNN) over SB-LNNs.

I. INTRODUCTION
he artificial neural model which employs lattice based
dendritic computation has been motivated by the fact

that several researchers have proposed that dendrites, and
not neurons, are the elementary computing devices of the
brain, capable of implementing logical functions. [1, 2].
Inspired by the neurons of the biological brain, a lattice
based neuron that possesses dendritic structures was
developed and is discussed in detail in [3, 4, 5].

Several applications of LNNs have been proposed, due to
their high capability of resolving some difficult non-linear
problems. LNNs were employed in applications for face and
object localization [6, 7], Auto-Associative memories [8, 9,
10], color images retrieval and restoration [11, 12] etc.
Furthermore, various models of fuzzy lattice neural
networks (FLNN) were studied in [13, 14] and some of their
applications in the area of text classification and
classification of structured data domains were presented in
[15, 16].

Despite the high capabilities of LNNs, training dendritic
networks such as Lattice Based Morphological Perceptrons
with Dendritic Structure [3], results in creating huge neural
networks with a large number of neurons; the size of the
trained network sometimes is comparable to the size of the
training data.

In this work a new model of LNNs is proposed. In this
model each neural dendrite can work on a different
orthonormal basis than the other dendrites. The orthonormal
basis of each dendrite is chosen appropriately in order to
optimize the performance of the Orthonormal Basis Lattice
Neural Network (OB-LNN). OB-LNNs have some useful
properties such as automatic compression of the size of the
neural network and they show significantly better learning
capabilities than the standard basis LNNs. Validation

A. Barmpoutis is with the CISE Department, University of Florida,

Gainesville, FL 32611 USA (e-mail: abarmpou@cise.ufl.edu).
G. X. Ritter is with the CISE Department, University of Florida,

Gainesville, FL 32611 USA (e-mail: ritter@cise.ufl.edu).

experimental results in synthetic and real datasets are
presented and demonstrate superior learning performance of
OB-LNNs over SB-LNNs.

The rest of the paper is organized into the following
sections: In section 2, we make a brief review of the LNN
model. In section 3, the Orthonormal Basis Lattice Neural
Network is presented. This section is divided in two parts. In
the first part the model of OB-LNNs is presented. This is
followed by an algorithm for training such a neural network.
Finally, in section 4, validation experimental results are
presented which demonstrate superior learning performance
of OB-LNNs over standard basis LNNs.

II. LATTICE NEURAL NETWORKS
The primary distinction between traditional neural

networks and LNNs is the computation performed by the
individual neuron. Traditional neural networks use a
multiply accumulate neuron with thresholding over the ring
()×+ℜ ,, given by the formula

∑
=

−=
n

i
jijij wxx

1
)(θτ (1)

where τj(x) is the total input to the jth neuron, xi are the
values of the input neurons connected with the jth neuron,
and wij are their weights. Finally θj are bias weights.

In the case of a lattice based neuron, lattice operators V
(maximum) and Λ (minimum) are used. These operators and
the addition (+) form the rings ()+∨−∞∪ℜ ,, and

()+∧∞∪ℜ ,, . The computation performed by a neuron is
given by the formula

)()(
1 ijiij

n

ijj wxrpx +∨=
=

τ (2)

or

)()(
1 ijiij

n

ijj wxrpx +∧=
=

τ (3)

where τj(x) is the total input to the jth neuron, xi are the
values of the input neurons connected with the jth neuron,
and wij are their weights. Parameters rij take +1 or -1 value if
the ith input neuron causes excitation or inhibition to the jth
neuron. Pj takes also +1 or -1 value if the type of the output
response is excitatory or inhibitory. A more detailed
presentation of the theory of lattice based morphological
neurons and how their networks work can be found in
[5,17].

Using the above computational framework, a lattice
neural network can be constructed using layers of lattice
based neurons which are connected to neurons of other

Orthonormal Basis Lattice Neural Networks
Angelos Barmpoutis, and Gerhard X. Ritter, Senior Member, IEEE

T

0-7803-9489-5/06/$20.00/©2006 IEEE

2006 IEEE International Conference on Fuzzy Systems
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

331

layers. Each lattice based neuron consists of dendrites which
connect the neuron with the previous layer’s neurons. Figure
1 shows a lattice neural network with an input layer and a
lattice based neuron layer. Each lattice neuron Mj consists of
dendrites Dij. The neurons of the input layer are connected to
the next layer via the dendrites. The black and white circles
denote excitatory and inhibitory connection respectively.
Each dendrite can be connected with an input neuron at most
twice (with one inhibitory and one excitatory connection).

The computation performed by a single (the kth) dendrite

can be expressed using lattice operators by the formula:
)()1(1 l

iki
l

LlIikk wxp +−∧∧= −

∈∈
τ (4)

where I is a subset of {1,..,n} which corresponds to the set of
all input neurons Ni with terminal fibers that synapse on the
kth dendrite of the current lattice based neuron. L is a subset
of {1,0} and the other parameters are the same with those
used in (2) and (3).

The geometrical interpretation of the computation
performed by a dendrite is that every single dendrite defines
a hyperbox. The borders of this hyperbox form the decision
boundaries in a particular location of the input space. The
left part of figure 2 shows a hyperbox that separates data
points of two different classes. Here the input space is the
plane of real numbers (2ℜ) and the hyperbox is a rectangle.
This hyperbox can be defined by a single dendrite via its
weight values wij.

Decision boundaries with more complex shapes, can be
formed by using more dendrites. Furthermore boundaries
which separate more than two classes can be formed, if more
lattice based neurons are employed. The left part of figure 3
shows an example of decision boundaries with more
complex shape, forming the letters ABC. In the middle of
the same figure we can see how a group of hyperboxes (2-
dimensional boxes in this case) can approximate the decision
boundaries. Each box can be defined by a dendrite.
Complicated figures require a large number of dendrites, in
order to achieve satisfactory approximation of the decision
boundaries.

Note that here the word “hyperbox” has a more general
meaning, since some of the edges of the hyperboxes may
have infinite length. For example in the 2ℜ domain, a
straight line can be considered as a hyperbox, whose one of
the edges is identical to this line, and the rest of the edges
are located at ±∞. Following similar reasoning, two parallel
lines can be also considered as a hyperbox, etc.

An algorithm for training a lattice neural network with
dendritic structure can be found in [17] and method for
learning LNNs can be found in [4]. A comparison of various
training methods for LNNs that employ dendritic computing
is presented in [18]. The next section is divided into two
parts. In the first part the model of Orthonormal Basis lattice
neural network is presented. This is followed by an
algorithm for training such a neural network.

III. ORTHONORMAL BASIS LATTICE NNS

A. The OB-LNN Model
As it was discussed earlier, the geometrical interpretation

of the computation performed by a dendrite is that every
single dendrite defines a hyperbox in the space of input
values. These hyperboxes are oriented parallel to the
Cartesian axis of the space of input values. The left part of
figure 2 presents a decision hyperbox defined by a dendrite.
Its edges are parallel to the x and y axis of the input space
(2ℜ). Due to this constraint about the orientation of the
hyperboxes, the decision boundaries formed by lattice neural
networks are not smooth and box patterns are annoyingly
visible along the boundaries (fig.3 middle).

To overcome these disadvantages, a new type of dendrite
can be defined, which is able to form a hyperbox parallel to
an arbitrary orthonormal system. The right part of figure 2
presents such a hyperbox, whose orientation is no longer
parallel to the Cartesian axis of the input space. A neural
network consisting of lattice based neurons with such
dendrites would be able to produce smoother decision
boundaries (fig. 3 right). In figure 3 the decision boundaries
formed by such an Orthonormal Basis Lattice Neural
Network are compared with these formed by a Standard
Basis LNN. Notice that the number of hyperboxes (thus the

X1

Xj

Xn

N1

Nj

Nn

M1

Mi

Mm

D11

D1k

Di1

Dik

Dmk

Fig. 1. An artificial neural network model which employs lattice
based dendritic computations

Fig. 2. Decision boundaries of a SB-LNN dendrite (left) and a OB-
LNN dendrite (right).

Fig. 3. This is an illustration of the decision boundaries that can be
formed by a SB-LNN (middle) and an OB-LNN (right). The desired
decision boundaries form the ABC letters (left).

332

number of dendrites as well) required by the OB-LNN is
much smaller than the number of those required by a SB-
LNN.

Another advantage of the Orthonormal Basis LNNs is that
they store information about the local orientation of the
classes. This is demonstrated with an example in figure 4.
Suppose that the samples of a class form the shape of the
letter “A”. A neural network with Orthonormal Basis
Dendtrites can approximate this shape forming mainly 3
hyperboxes. The orientation of each hyperbox contains
information about the local orientation of this class (fig.4
right). This useful information cannot be obtained by the
standard basis LNN that was trained for the same purpose
(fig. 4 left). This property is better illustrated in section 4

(fig. 6), where training results of standard and orthonormal
basis LNNs are presented.

The computation performed by the kth Orthonormal Basis
dendrite can be expressed using lattice operators, changing
slightly equation (4) as follows

])[()1(1 l
ikik

l

LlIikk wXRp +−∧∧= −

∈∈
τ (5)

where X is the input value vector (x1, x2, …, xI)T, Rk is a
square matrix whose columns are unit vectors forming an
orhonormal basis, and (RkX)i is the ith element of the vector
RkX. Each dendrite now works in its own orthonormal basis
defined by the matrix Rk. The weights of the dendrite act on
the elements of vector RkX, hence the weights act on the
rotated by the orthonormal basis Rk space.

Note that Standard Basis Lattice Neural Networks are a
sub group of the Orthonormal Basis Lattice Neural
Networks where the matrix Rk is the identity matrix. In this
case it is obvious that (RkX)i=xi , thus equation (5) becomes
equal to equation (4).

B. Training OB-LNNs
The training of an Orthonormal Basis Lattice Neural

Network is based on finding the best possible values for the
weights and Rk matrices. In other words, in order to train an
OB-LNN, one must train its dendrites.

The training methods which can be used for training SB-
LNNs can also be used for training OB-LNNs with an
appropriate modification in order to adopt the fact that each
dendrite works on its own orthonormal basis. The training
procedure of an orthonormal basis dendrite can be treated as
a maximization problem. The quantity that we are trying to
maximize is the volume of the hyperbox which is defined by
the dendrite.

By fixing the matrix Rk, the weights of the dendrite can be

estimated by the training procedure described in [17]. The
weights define the hyperbox; therefore its volume can be
directly calculated from the weights. We can repeat the
process by varying appropriately the matrix Rk, until the
volume of the hyperbox reaches a maximum.

The matrix Rk is a rotation matrix, i.e. it rotates the vector
X. A variation of this matrix dR is also a rotation matrix. A
new matrix Rk´ can be obtained by multiplying Rk with
matrix dR. (Rk´= RkdR). A variation matrix dR can be
easily constructed by using the following equation:

tSedR = (6)
where S is a randomly generated skew symmetric matrix,
and t is a scalar value. Note that the exponential is the matrix
exponential. Note also that the matrix exponential of a skew
symmetric matrix is always a rotation matrix. The smaller
the absolute value of t is, the smaller the variation, which is
caused by the matrix dR, is.

By using the above, any cost minimization method can be
used in order to minimize the negative of the hyperboxe’s
volume (or to maximize its volume) in steps 1 and 3 of
algorithm 1. Simulated annealing [19] and greedy searching
for experiments in 2D are the methods used in the
experiments presented in section 4, in order to find the
matrix Rk that gives the maximum hyperboxes’ volume.

The training algorithm of an OB-LNN morphological
perceptron is summarized below. This algorithm is an
extension, in the space of OB-LNN, of the training algorithm
for morphological perceptron proposed in [17]. The
algorithm is presented for the case of 2 classes only, but it
can be easily extended to problems with a larger number of
classes. A more detailed description of the training algorithm
in the case of SB-LNN is presented in [17].

The time complexity of this algorithm can be easily

proved that is equal to MinSBLNNOBLNN OOO ⋅= where
OSBLNN is the time complexity of the training algorithm in
the case of SB-LNN and OMin is the time complexity of the

Fig. 4. Another advantage of OB-LBNN (right) is that they also store
information about the local orientation of the classes.

ALGORITHM I
Input: N training samples Xi, and N outputs di = 0 or 1
for class C1 or C2 respectively. i=1,…,N

Output: The number of generated dendrites L, their
weights Wj and their orthonormal basis Rj. j=1,…,L

Step 1: Find the smallest possible hyperbox containing
all the samples of C1, and assign the appropriate values
W1 and R1 to the first dendrite. Set L=1.

Step 2: If there are misclassified points of C2, pick
arbitrarily a misclassified point ξ and go to step 3.

Step 3: Find the biggest hyperbox that contains ξ, but it
does not contain any point of C1. Set L=L+1. Assign
the appropriate values to WL and RL. Go to step 2.

333

minimization process used in steps 1 and 3. Therefore, in
order to obtain improved learning capability we loose in
speed performance. The improvement in speed performance
will be one of the research topics in our future work.

IV. EXPERIMENTAL RESULTS
In this section, validation experimental results are

presented which demonstrate superior learning performance
of OB-LNNs over SB-LNNs. The experiments were
performed using synthetic 2-dimentional datasets and the
well known Iris flower dataset.

The first dataset was synthetically generated and it forms
two 2D spirals. The points of the two spirals obey the
equations

() ()[] () ()[]πϑϑπθϑϑϑ /2sin,/2cos, 11 =yx and
() ()[] () ()[]ϑϑϑϑ 1122 ,, yxyx −−= (7)

respectively. Several versions of this datasets were generated
with a) 130, b) 258, c) 514, d) 770, e) 1026, f) 1538 samples.
The largest dataset (2538 samples) was used for the testing
dataset. The samples of the smallest dataset (130 samples)
are presented in figure 5. Small circles denote the samples of
the one spiral, and small crosses denote the samples of the
other one.

Two neural networks were trained in the previously
described datasets: a) a Standard Basis Lattice Neural
Network and b) the proposed Orthonormal Basis Lattice
Neural Network. Both networks were lattice based
morphological perceptrons with dendritic structure [17] so
that their performance could be compared directly. In the
case of the OB-LNN perceptron, the dendrites were
Orthonormal Basis dendrites, which were trained in order to
maximize the volume of the hyperboxes that they formed.

Table 1 presents the classification errors of the trained
neural networks for different sizes of the training datasets
(column 1). The size of the testing dataset for all the
experiments was 1538 samples. In all cases, the
classification errors made by the OB-LNN are significantly

smaller than these made by the SB-LNN. This conclusively
demonstrates superior training performance of the proposed
neural network over the standard basis lattice neural

networks.
Furthermore, the number of the dendrites, which are

required to form the decision boundaries between some
populations, measures the learning ability of a neural
network. Table 1 also presents the final number of dendrites
required by the lattice neural networks in order to classify
correctly all the training samples (columns 2 and 4). In all
cases, the number of dendrites trained by the OB-LNN is
smaller than the number of dendrites trained by a standard
basis LNN. This means that the OB-LNN compresses

automatically its size.
Figure 5 shows most of the hyperboxes formed by the

dendrites of the Standard basis (top) and the Orthonormal
basis LNNs (bottom). These hyperboxes were formed by the
training process using 130 training samples. By observing

Fig. 5. This figure shows some of the hyperboxes formed by a SB-
LNN (top) and a OB-LNN(bottom). The 130 training samples are
denoted by circles and crosses and they are forming two spirals. The
hyperboxes presented here for comparison, are the 9 smallest of each
case.

TABLE I
CLASSIFICATION ERRORS AND NUMBER OF DENDRITES NEEDED

TRAINING
SAMPLES

OB-LNN
DNDR ERR

SB-LNN
DNDR ERR

(1 – RATIO)
OF ERRORS

130 12 14.0% 14 18.34% 23.45%
258 14 6.5% 17 9.69% 32.20%
514 15 3.2% 19 4.55% 28.57%
770 16 2.3% 19 3.20% 26.88%
1026 15 1.5% 20 2.54% 40.94%

This table presents classification errors and number of dendrites
needed for the training of an OB-LNN and a SB-LNN, using different
sizes of training samples (see column 1). The 2nd and 4th columns
present the number of dendrites needed for the correct classification of
the training samples. The 3rd and 5th columns show the percentage of
misclassified samples using always 1538 testing samples. The last
column shows the quantity equals to one minus the ratio of the 3rd
column over the 5th column.

334

this figure we can see the differences between the decision
boundaries formed by the OB-LNN and those formed by the
SB-LNN. The hyperboxes generated by the Orthonormal
basis LNN have bigger volume (area in the 2D domain) than
those generated by the standard basis LNN. In the case of
OB-LNN each hyperbox is rotated appropriately because of
the fact that it is working on a different orthonormal basis
than the other dendrites.

As it was discussed earlier in section 3, each hyperbox
contains information about the local orientation of the
classes. This property is illustrated in figure 6. In this figure
the decision boundaries between the two spirals generated
by a SB-LNN (top) and an OB-LNN (bottom) are presented.
On each hyperbox several ellipses are plotted. The sizes of
the principal axes of each ellipse are proportional to the size
(length and width) of the relative hyperbox. The dominant
axis of each ellipse is also plotted, forming a vector field.

Observing the vector field generated by the SB-LNN (top)
and this generated by the OB-LNN (bottom), one can
conclude that the hyperboxes of the OB-LNN contain
information about the local orientation of the classes. In the
case of SB-LNN this property cannot be generally observed.

Another set of experiments was held by using the Iris

flower dataset. The Iris Flower Dataset is a popular
multivariate dataset that was introduced by R.A. Fisher as an
example for discriminant analysis. The data reports on four

characteristics of the three species of the Iris Flower, sepal
length, sepal width, petal length, and petal width. The goal
of a discriminant analysis is to produce a simple function
that, given the four measurements, will classify a flower
correctly.

Several experiments were performed by using randomly
different amounts of the Iris flower samples as testing
samples (1st column of Table 2). The following three neural
networks were trained: a) an OB-LNN perceptron, b) a SB-
LNN perceptron and c) a multilayer perceptron (MLP) with
one hidden layer. Several different architectures were used
for the MLP with 1 hidden layer, and the results of table 2
are the best obtained. The whole Iris data set were used as
the testing data set. The classification errors of the three
neural networks are presented in table 2. In all cases, the
classification errors made by the OB-LNN are significantly
smaller.

Finally, another experiment was also held in order to
compare the sizes of the trained neural networks. A
synthetic dataset was generated forming two classes; one
within an ellipse (fig. 7 left) and the other one outside of it.
The sample points of the two classes were picked up
randomly using uniform distribution.

The same two lattice neural networks with dendritic
structure were used: a) an OB-LNN perceptron and b) a SB-
LNN perceptron. The right plate of figure 7 shows the plot
of the number of misclassified sample points over the
number of dendrites generated by the two neural networks
during the training process. The final number of dendrites
required by the OB-LNN in order to classify correctly all the
training samples is significantly smaller than the number of
dendrites trained by a standard basis LNN. This also
conclusively demonstrates superior learning performance of
OB-LNNs over SB-LNNs.

0 10 20 30 40 50
0

100

200

300

400
 SB - L NN

 OB - L NN

Fig. 7. Left: This dataset forms an ellipse. Right: Plot of the
misclassified points over the number of dendrites required by a OB-
LNN and a SB-LNN during the training process.

TABLE II
COMPARISON OF CLASSIFICATION ERRORS IN IRIS FLOWER DATA

TRAINING
SAMPLES OB-LNN SB-LNN PERCEPTRON

50% 8.33% 10.67% 13.33%
60% 6.41% 10.00% 12.21%
70% 4.20% 6.33% 7.34%
80% 3.12% 3.67% 6.54%
90% 2.01% 3.33% 6.38%
100% 0% 0% 3.67%

This table presents classification errors of the three neural networks
for different amounts of training samples.

Fig. 6. Decision boundaries formed by a SB-LNN (top) and a OB-
LNN (bottom). On each hyperbox several ellipses are plotted. The
sizes of the principal axes of each ellipse are proportional to the sizes
(length and width) of the relative hyperbox.

335

V. CONCLUSION
In this paper, a novel model of Lattice Neural Networks,

called Orthonormal Basis Lattice Neural Network, was
presented. Comparisons of the proposed model of neural
networks with the standard basis model of Lattice neural
networks were presented. Validation experimental results
were also presented demonstrating the advantages of the
proposed model. Our future work will be focused on
applying this model in applications for face and object
localization, Auto-Associative memories and color images
retrieval and restoration, in which areas the standard basis
lattice neural networks have been applied [6-12]. Extension
of the proposed model in the area of Fuzzy Lattice
Neurocomputing [13, 14] and improvement in speed
performance will also be some of our future research topics.

REFERENCES
[1] Eccles, J. The Understanding of the Brain, McGraw-Hill, New York,

1977.

[2] Segev, I., Dendritic Processing, In The Handbook of Brain Theory and
Neural Networks, M.A. Arbib, Ed., MIT Press, Boston, 1988, pp. 282-
289

[3] Ritter, G. and Sussner P. “An Introduction to Morphological Neural
Networks”. In Proceedings of the 13th International Conference on
Pattern Recognition, (25-29 August, 1996), vol. 4, pp. 709-717.

[4] Sussner, P. “Morphological Perceptron Learning”. In Proceedings of
the IEEE ISIC/CIRA/ISAS Joint Conference (Gaithersburg, MD, 14-17
September, 1998), pp. 477-482

[5] Ritter, G., and Urcid, G. "Lattice algebra approach to single-neuron
computation”. In IEEE Transactions on Neural Networks, vol. 14, no.
2, pp. 282 – 295, March 2003.

[6] Grana, M., and Raducanu, B. “Some applications of morphological
neural networks”. In Proceedings of the International Joint
Conference on Neural Networks, (15-19 July 2001). vol. 4, pp. 2518-
2523.

[7] Raducanu, B., and Grana, M. “Morphological Neural Networks for
Vision Based Self-Localization”. In Proceedings of the IEEE
International Conference on Robotics and Automation, (2001 ICRA),
vol. 2, pp. 2059-2064.

[8] Ritter, G. X., and Iancu, L. “A Morphological Auto-Associative
Memory based on Dendritic Computing”. In Proceedings of IEEE
International Joint Conference on Neural Network. (25-29 July 2004),
vol. 2, pp. 915-920.

[9] Sussner, P. “Binary Autoassociative Morphological Memories
Derived from the Kernel Method and the Dual Kernel Method”. In
Proceedings of th eInternational Joint Conference on Neural
Networks, (20-24 July 2004), vol. 1, pp. 236-241.

[10] Sussner, P. “A Fuzzy Autoassociative Morphological Memory”. In
Proceedings of the International Joint Conference on Neural
Networks, (20-24 July 2004), vol. 1, pp. 326-331.

[11] Yun, Z., Ling, Z., and Yimin, Y. “Using Multi-Layer Morphological
Neural Network for color images retrieval”. In Proceedings of the 5th
World Congress on Intelligent Control and Automation, (Hangzhou,
P.R. China, June 15-19, 2004), ,vol. 5, pp. 4117-4119.

[12] Zhang, L., Zhang, Y. and Yang, Y. “Color images restoration with
Multi-Layer Morphological (MLM) Neural Network”. In Proceedings
of the Second International Conference on Machine Learning and
Cybernetics, (2-5 November 2003) pp. 2831-2834

[13] Petridis, V. and Kaburlasos, V. “Fuzzy lattice neural network
(FLNN): a hybrid model for learning”, In IEEE Transactions on
Neural Networks, vol. 9, no. 5, pp. 877-890 Sept. 1998.

[14] Kaburlasos V, and Petridis V. “Fuzzy Lattice Neurocomputing (FLN)
models”, Neural Networks, vol. 13, no. 10, pp. 1145-1170.

[15] Petridis, V., and Kaburlasos, V. “Clustering and classification in
structured data domains using Fuzzy Lattice Neurocomputing (FLN)”,
In IEEE Transactions on Knowledge and Data Engineering, vol. 13,
no. 2, pp. 245 – 260, March-April 2001

[16] Petridis, V., Kaburlasos, V., Fragkou, P., and Kehagias, A. “Text
classification using the σ-FLNMAP neural network”, In Proceedings
of International Joint Conference on Neural Networks, (15-19 July
2001), vol. 2, pp. 1362 – 1367

[17] Ritter, G. X., Iancu, L., and Urcid, G. “Morphological Perceptrons
with Dendritic Structure”. In Proceedings of the IEEE International
Conference on Fuzzy Systems. (25-28 May 2003) vol. 2, pp. 1296-
1301.

[18] Ritter G., and Schmalz M. “Learning in lattice neural networks that
employ dendritic computing”, In Proceedings of IEEE World
Congress on Computational Intelligence, (16-21 July 2006), vol. ,pp.

[19] Saul A. Teukolsky, S., Flannery, B., Press, W., and Vetterling, W.,
Numerical Recipes Example Book (C++), Cambridge University
Press, 2003.

336

