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Abstract—A significant amount of research has been involved
with the development of advanced driver-assistance systems. Such
systems typically include radars, laser or video sensors that
detect the vehicle trajectory and warn for an imminent lane
departure, or sense the front vehicle’s speed and apply the
brakes of the following vehicle to maintain safe distance headways
(i.e., collision avoidance system). However, most of thesesystems
rely on the subject vehicle and surrounding vehicles’ position
and do not explicitly consider the driver’s actions during the
driving task. In addition safety research has focused on eye
tracking as a means of capturing driver’s attention, fatigue, or
drowsiness; however, the body posture has not been investigated
in depth. This paper presents a novel approach for studying the
actual movements of drivers inside the vehicle, when performing
specific maneuver types such as lane changing and merging. This
information can be useful for identifying specific body movements
that may hide potentially unsafe situations. A pilot study was
conducted along a freeway and arterial segment, where the 3D
shapes of selected participants were constructed with the use
of a low-cost infrared depth sensor (Microsoft Kinect) while
merging and changing lanes. The analysis of the 3D shapes shows
that there are important differences between participantswhen
performing similar driving maneuvers. The preliminary results
of this pilot research set the basis for implementing the proposed
methodological framework for conducting full-scale experiments
with a variety of participants, and exploring differences due
to driver behavior attributes, such as age, gender and driving
experience.

I. I NTRODUCTION

Despite the advances in vehicle manufacturing technology
and roadway construction and design, a large proportion of
traffic crashes are still due to driver error [1]. According to
the World Health Organization (WHO), annually there are over
1.2 million fatalities and over 20 million serious injuriesworld-
wide. In the US, the 100-car naturalistic study sponsored by
the National Highway Traffic Safety Administration (NHTSA)
concluded that driver inattention is the cause of about 80
percent of crashes and 65 percent of near crashes [2]; and
therefore, these can be avoidable. A lot of attention has been
drawn lately to US Department of Transportation (USDOT)
connected-vehicle research program, which uses a mixture of
technologies such as advanced wireless communications, on-
board computer processing, advanced vehicle-sensors, GPS
navigation, and smart infrastructure, to identify and warnthe
drivers on imminent road hazards [3]. The program includes
vehicle-to-vehicle and vehicle-to-infrastructure communication

research activities. The vehicle-to-vehicle communication is re-
lated to the exchange of data (e.g., speed, acceleration, heading
angle, etc.) over wireless network that provide information
on surrounding vehicles status and allows for performing
calculations and issue driver warnings to avoid crashes. The
communication option is based on the Dedicated Short Range
Communications (DSRC). Although the development of the
communication component of this program is not complete to
date, a number of crash avoidance systems (e.g., blind spot
and lane changing warning, forward collision warning, etc.)
has been established so far.

Additional advanced (or intelligent) driver assistance sys-
tems (ADAS) designed to provide added traffic safety are
already in place [4]. These systems typically do not involve
inter-vehicle communication, and are designed to provide
assistance or warning to drivers by considering the longitudinal
position of the vehicle or other vehicle-related components.
Examples of ADAS applications include automatic parking,
adaptive light control, night vision, lane change assistance,
traffic sign recognition, collision avoidance system, lanedepar-
ture warning system, and hill descent control. Apart from these
systems that focus on the vehicle, there are limited systems
already in place that are designed to monitor the driver. These
monitoring systems are capable of tracking driver’s inattention
and drowsiness using LED sensors to monitor eye movement.

In vision-based systems that involve understanding driver
intentions and actions (e.g., inattention or distraction states),
research studies focus primarily on tracking of the head and
the face of the driver e.g., [5], [6] and constructing 3D space
images using the geometry of the face [7], [8], [9]. In addition,
several researchers, e.g., [10], [11], [12], [13] analyzedhead
pose and gaze for identifying and predicting driver’s intent to
change lanes and perform a maneuver. Apart from tracking
head and facial poses, research has also studied the hand
position and grasp in conjunction with head monitoring for
lane change intent analysis and prediction [14] or for driver
distraction monitoring [15]. Another study [16] presenteda
system for tracking the 3D body movement combined with
head pose tracking system. The authors tested their system
in a simulation environment and obtained preliminary results
related to body posture and lane changing activity. Although
the experimental platform is promising, their results to date
are limited. [17] expanded their work to investigating drivers’
foot behavior using video-based analysis in conjunction with



Fig. 1. Two 3D views of the same frame from the recorded dataset. The
video and depth frames are presented as a sequence of textured 3D frames.
The field of view of the depth camera is also shown as a trapezoid.

pedal sensor measurements. They presented a prediction model
for braking and acceleration modes and concluded that the
foot behavior depends greatly on the driver type. However,
several limitations were identified, particularly with respect to
the computational effort of foot tracking, which may resultin
delayed predictions that can be critical.

In summary, although a significant amount of research
has been involved with the development of advanced driver-
assistance systems, most of these systems rely on the auto-
mobile position and do not necessarily consider the drivers
actions. Apart from that, the lane trajectory and position of
the vehicle could potentially differ from the driver’s intent
to change lanes. In addition, recent research has focused on
eye/facial tracking as a means of capturing driver’s attention,
fatigue, or drowsiness. To date, limited research has been
involved with investigating the upper-body posture of drivers
when performing a maneuver as well as different postures
between different drivers, which may also reveal behaviorsthat
contribute to unsafe driving conditions.

Furthermore, several of the aforementioned problems lie on
the fact that the existing vision-based techniques employ 2D
image computer vision algorithms that may lead to inaccu-
racies when computing 3D data due to lack of the depicted
information [18]. It has been shown that many traditional
computer vision problems can be solved more efficiently
and/or accurately using depth cameras in conjunction with
regular video [19]. When it comes to pose estimation [20]
or 3D reconstruction of the human body [21], [22], it has
been shown that infrared depth sensors can estimate the shape
characteristics of the human body in real-time [23], which has
numerous applications in various research areas ranging from
human-computer interaction to monitoring obesity [24].

The main objective of this paper is to investigate how driver
posture and activity during the driving task can be obtained
and analyzed in real-time using a low-cost infrared depth
sensor. The findings of this research will assist in identifying
the necessary tools for exploring the correlation between
potentially unsafe driving conditions and body posture as a
function of specific driver characteristics and attributes. These
findings could lead to enhancing advanced driver-assistance
systems by identifying specific body activity associated with
unsafe conditions under different maneuvers.

The contributions in this paper are threefold: 1) We in-
troduce the use of infrared depth cameras as an intelligent
sensor for monitoring the driver’s body activity. 2) We propose

Fig. 2. Left: visualization of a depth frame. Right: The corresponding mask
with enhanced boundaries between objects, computed using our framework.

a basic framework for acquiring, segmenting, analyzing, and
visualizing the recorded sequences of depth frames. 3) We
present the efficacy of the proposed methods using several
experimental results from a pilot study.

II. M ETHODS

Each data frame captured by a digital depth sensor is a two
dimensional array of depth values (i.e., distance between the
sensor and objects). Similarly, a collection of frames is a three
dimensional array that can be represented asD ∈ R

W×H×N ,
whereN denotes the total number of recorded frames, and
W andH denote the number of pixels across the width and
height of the depth frame respectively. The depth value in a
particular pixel with coordinates(i, j) on framei is denoted
by Di,j,t ∈ R

+. In practice, each depth camera has a specific
range of operation, which restricts accordingly the range of
the recorded values (see depicted field of view in Figure. 1).

The depth frames can be equivalently expressed as
quadratic meshes given byXi,j,t = (i− ic)Di,j,tf

−1, Yi,j,t =
(j−jc)Di,j,tf

−1, andZi,j,t = Di,j,t, where(ic, jc) denote the
coordinates of the central pixel in the depth frame, andf is the
focal length of the depth camera. One of the advantages of the
quadratic mesh representation of the depth frames is that they
can be easily visualized using virtual lighting, shading, per-
spective and point of view using standard computer graphics
techniques [18]. Figure 2(left plate) shows the quadratic mesh
of a captured depth frame from our pilot study. The 3D shape
of the body of the driver and part of the vehicles’ cabin have
been clearly captured in the depth frame. Optionally, the color
information from a video frame can be applied as a texture to
the quadratic mesh of the depth frame. Two examples of such
visualization is shown in Fig. 1.

The segmentation of the depth frames is a necessary pre-
processing step for analyzing the activities of the human body.
The process of image segmentation is a well-studied computer
vision problem [25], which may be inaccurate when adjacent
regions have similar color patterns, and there is no clear
boundary between them. In our proposed framework, the infor-
mation captured in the depth frames is enough for estimating
accurately the outlines or boundaries between critical regions
in the field of view, such as the driver’s arms, as follows: For
each depth frame, a binary mask is computer by evaluating the
following two conditions for every pixelx, y and framet

• maxx,y∈N(i,j) |Di,j,t −Dx,y,t| < thresholddz

• mins∈N(t)Di,j,s > floaterr,



Fig. 3. Example of the skeleton model that was fit to an arbitrary frame of the
depth sequence. The 3D coordinates of the shoulders, neck, and head, were
employed for real-time segmentation of the body activity. The lower joints
(elbows, wrists, and hands) were ignored due to inaccuracies in their fitting.
Instead we use the proposed arm segmentation method (Fig. 4).

Fig. 4. Two examples of the proposed arm segmentation. Both arms can
be clearly segmented from the rest of the depth frame even when one arm is
occluded or partially visible from the depth camera (right).

whereN(t) and N(i, j) denote 1D and 2D sets of integers
in the neighbor of the inputt, and i, j respectively, and
thresholddz, andfloaterr are two predefined constants. Each
pixel for which both conditions are true is considered part
of the depicted object in contrast to the rest of the pixels
that belong to the boundary between regions or to an empty
space. The role of the first condition is to segment together
pixels with similar depth values, and the second condition
ignores pixels with: a) depth values in the range of a computer
precision error and/or b) inconsistent depth estimation across
neighboring frames. Figure 2 shows an example of a computed
mask with clear outlines around the depicted objects.

The computed mask is then used to segment the driver’s
arms by counting and labeling all independent regions within
the volume that is defined between the driver’s torso and the
steering wheel. In our experiments, the position of the driver’s
torso was estimated using the skeleton fitting process provided
in the Microsoft’s Kinect Software Development Kit [26]. The
fitted skeletal model consists of the 3D coordinates of 10 major
joints in the upper part of the body (head, neck, shoulders,
elbows, wrists, hands). Figure 3 shows an example of the fitted
skeleton in one frame from our dataset. Based on the skeleton
fitting results from our entire dataset, only the upper joints
(head, neck, shoulders) were consistently estimated accross
frames, while the rest of the joints were misfit in the majority
of depth frames. In order to estimate the position of the driver’s
torso and more specifically the x-location of the plane whichis
parallel to the driver’s chest and is perpendicular to the camera
plane, we used the average of the x-coordinates of the head,
neck and shoulders from the estimated skeletons.

After estimating the rectangular volume between the
driver’s torso and the steering wheel, we segmented the
individual regions using the aforementioned mask, and the
average x,y,z coordinates were computed from the pixels of
each region. The regions with the highest y-value corresponded
to the driver’s arms, and the arm with the smallest z-value
was the right arm (i.e. closest to the camera). Figure. 4 shows
two examples of segmented depth frames. By observing the
images, it is evident that the arms were accurately segmented
independently of the relative position of the two arms. In our
experiments we used the segmented regions of the arms as well
as the upper joints of the tracked skeleton in order to track the
motion of the arms and head of the driver while driving.

To track the body movements we estimated∂D
∂t

∼ Di,j,t−
Di,j,t−1 for every i, j, t and then we computed the average
of the negative values and the average of the positive values
within each region. The magnitude of these two average values
correspond to the directional magnitude of inward and outward
motion with respect to the z-axis. The directional magnitude
of motion is shown in several of our examples (Figs. 6, 7, 8).

Finally, global statistics were computed accross several
depth frames in order to study the variations of such global
quantities between different drivers. More specifically, the
mean depth frame was computed asMi,j =

∑

t Di,j,t, and

the standard deviationSi,j =
√

1
N

∑

t(Di,j,t −Mi,j)2, which
can both be considered depth frames and therefore can be
visualized similarly (see Figure 6).

The following sections present a description of a pilot study
undertaken to collect field observations of drivers’ 3D body
shapes and several experimental results obtained using the
proposed methods.

III. D RIVER BEHAVIOR DATA COLLECTION

The field data obtained for this study were collected along
a 2.6 mi stretch of Interstate 75 (I-75) in the southbound
(SB) and northbound (NB) directions, and a 0.7 mile long
arterial segment (Newberry Road eastbound and westbound
approaches) in Gainesville, FL. The freeway segment has three
lanes per direction and the arterial segment has three through
lanes per direction, several median openings, and includesa
total of six signalized intersections. A schematic of the study
sites is presented in Figure 5. The data collection effort took
place on Sunday, September 1st 2013, between 10 am and
noon. Traffic conditions were generally uncongested and free-
flowing, especially on the freeway segment. Traffic on the
arterial segment was light, although towards the end of the
data collection effort the flows were considerably increased.
For the purposes of this pilot study, four participants affiliated
with the research team were asked to complete one route along
the freeway and arterial segment. The participants performed
two mandatory lane changes (i.e., merging onto the freeway)
and several discretionary lane changes on the freeway and the
arterial street. The entire duration of the experiment for each
participant was approximately 20 minutes.

The real-time driver behavior data were acquired using
the PrimeSenseTMdepth sensor contained in the Microsoft
KinectTMdevice. The device was connected (via a USB 2.0
port) to a 64-bit computer with Intel Core i5 (quad core)



Fig. 5. Map of the route on the interstate I-75 followed in this pilot study.

CPU at 2.53GHz and 4GB RAM. The computer and the
sensor were both powered using a 75 Watt car power inverter.
The resolution of the depth camera was320 × 240 pixels
with horizontal field-of-view angle (FoV) angle of57o. The
resolution of the video camera was640 × 480 pixels with
horizontal FoV of62o.

The range of the camera was calibrated so that it records
depth values in the range from 0.5m to 3.0m, which is suitable
for the limited space of the cabin of a typical passenger vehicle.
The sensor was fixed on the front passenger’s door, so that
the driver is within the field of view of the depth and video
cameras. Figure 1 shows the field of view of the depth camera.
The green rectangle depicts the closest plane of sensing, which
is located 0.5m in front of the sensor (shown as the tip of the
yellow pyramid in the same figure).

IV. D ISCUSSION OFEXPERIMENTAL RESULTS

The video and depth sequences captured during our pilot
study, were manually segmented into several fragments that
correspond to the merging and exiting from the highway as
well as changing lanes, right, and left turning in arterial streets.
Each of the fragments was analyzed independently using the
framework that was presented in Sec. II, and a comparative
study was performed across the corresponding datasets from
different participating drivers. The proposed framework was
implemented in Java using the J4K open source Java library
for Kinect that was originally presented in [23] and is available
at http://www.digitalworlds.ufl.edu/angelos/lab/kinect.

Figure 6 shows the average and standard deviation of
the depth sequence during merging (left) and exiting (right)
a highway. The average depth value in each pixel forms
a surface, which can be plotted in 3D using photorealistic
shading to visually enhance the depicted depth information.
The standard deviation of the depth values can either be
presented as a surface or as a color map added to the average
surface as shown in Fig. 6. In our plots, the intensity of the
red color is proportional to the standard deviation of the depth

values in the corresponding pixel. Large standard deviation
values indicate wide range of motion at the corresponding
pixels during the data sequence. As expected, an exit from
a highway through a loop ramp is typically accompanied by a
wide turn, which caused in the right image of Fig. 6 significant
motion in the area of the arms.

During the merging maneuver, it can be observed that the
motion of the arms and head, although significantly less, is
still distinguishable and can provide important information of
the participant’s body posture while merging. For instance, the
analysis of the mean and standard deviation might indicate
that the specific participant made use of the side mirrors for
completing the merging maneuver, instead of turning thor-
oughly the head and investigate potentially unsafe conditions.
Fig. 6 also shows that even incremental variations of the body
posture can be captured, which validates the proposed method.
This type of variations may be significant when evaluating the
variability of body movement across different driver typesand
under different driving situations.

Apart from the mean and standard deviation of the depth
sequence, we can identify the exact direction of each move-
ment and associated magnitude, as a function of the increase
or decrease of the depth values. For example, Fig. 7 and
Fig. 8 show the directional magnitude of the head motion
and the arms motion respectively, for two of the subjects
participated in the pilot study. The investigation of the magni-
tude of each movement may reveal interesting trends for each
individual participant. First of all, it is possible to consider
both movements of the arms and head in conjunction and
not in isolation, contrary to previous studies that treat these
two separately. Then, we can associate both movements with
a specific maneuver (i.e., merging, lane changing, etc.) and
construct a profile for each individual participant based ontheir
typical behavior and movement activity. Such analysis will
quantify differences in body postures between different driver
types and could point out towards behaviors that may lead to
potentially unsafe and even accident-prone driving conditions.

An example of such analysis is illustrated in Figs. 9 and
10 that show the directional magnitudes of the head and arms
while merging for all four participants. The differences inthe
magnitude as well as duration of head and arms directional
change is apparent in these figures. We further note the
variability observed due to driver behavioral attributes and
also due to traffic conditions. For instance, drivers 2 and 4
appear to have increased arm and head movement compared to
drivers 1 and 3. In addition, driver 2 appears to have increased
head activity at several instances (e.g., note the three peaks in
the graph of Fig. 9), which may indicate increased alertness
while merging, possibly due to the presence of a vehicle in
the right-most lane. In addition, these two figures show that
for some drivers, the head and arm movement is somewhat
synchronized, although the arm movement is considerably
more intense, as expected.

The depth sequence of each pixel can also be used for
constructing a skeleton model, similar to that presented in
Fig. 3. The 3D coordinates of the shoulders, neck, and head,
were employed for real-time segmentation of the body activity.
The movement of both arms was captured through the arm
segmentation method illustrated in Fig. 4. This type of analysis
is focused on a comprehensive investigation of the body

http://www.digitalworlds.ufl.edu/angelos/lab/kinect


Fig. 6. Global statistics (mean and standard deviation across time) computed
during merging (left) and exiting (right) from a highway fortwo different
drivers (upper and lower row respectively). The mean is shown as the depth
value within each pixel, and the st. dev. is shown as the intensity of red.

activity, rather than looking in isolation the various parts of
the upper body.

It should be noted that the proposed analysis of the mean
and standard deviation of the depth sequence shown in Fig.
6 as well as the directional magnitude of both head and arms
motion provides significant insights related to the body posture
and movements during various driving tasks, such as merging,
changing lanes, as well as while undertaking secondary tasks
such as texting, talking on the cell phone, eating, tuning the
ratio, etc. In addition, the methodological framework described
in this paper is capable of capturing variations across drivers,
by examining differences of the mean and standard deviation
of the depth sequence and the directional magnitude of motion
for different driving maneuvers. These findings are useful
for enhancing or developing an advanced drivers’ assistance
system that is able to detect driver motion and predict po-
tentially unsafe conditions, and therefore, provide warning to
the driver. This type of warning would complement existing
surveillance systems typically installed to warn the driver for
the surrounding traffic and the vehicle position.

V. CONCLUSION

A novel approach for assessing drivers’ body movements
inside a vehicle was introduced in this paper. The proposed
method can be used for investigating how different driver types
perform various maneuvers and which specific movements are
associated with safe or unsafe driving conditions. A pilot study
was conducted as a proof of concept, where four participants
drove along a freeway and arterial route and performed a num-
ber of merging and lane changing maneuvers. The 3D shapes
of the participants were constructed with the use of a low-cost
infrared depth sensor for each maneuver performed. Several
quantitative measures were evaluated as part of the preliminary

Fig. 7. An example of a video frame detecting intense head motion. On the
right the corresponding computed directional magnitude ofmotion is shown
in red or blue for increase or decrease of the depth values.

Fig. 8. Another example with intense motion of the arms. The colors and
images are presented using the same format as in Fig. 7.

Fig. 9. Plot of the directional magnitude of the head motion during merging
for 4 different drivers. The red and blue colors represent increase and decrease
of the depth values respectively.

analysis of the pilot study. Global statistics such as the mean
and standard deviation as well as the directional movement of
motion revealed significant differences for different maneuver
types and among the participants. Contrary to current research,
the proposed methodology may be used for studying the upper
body posture and motion as a whole, instead of focusing on



Fig. 10. Plot of the directional magnitude of the arm motion during merging.
The format of the plots is the same as in Fig. 9.

individual parts of the body in isolation.

A future direction is to expand the implementation of the
proposed methodological framework to additional drivers and
investigate the relationship between potentially unsafe driving
events and the actual driver body posture and movements when
performing a driving maneuver (e.g., lane changing, merging)
under different traffic and geometric configurations and when
engaging with a secondary task by analyzing the movement
of various drivers. We will also identify typical behaviorsof
specific driver groups (e.g., younger vs. older drivers, aggres-
sive vs. conservative drivers, men vs. women), in naturalistic
settings. Such information can be used for enhancing current
driver training methods for targeted driver groups such as
novice or elderly drivers. Lastly, it is recommended to develop
a framework for constructing an in-vehicle driver-assistance
system that takes into account the driver’s body posture and
movements rather than considering solely the vehicle position.
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