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Abstract—A significant amount of research has been involved
with the development of advanced driver-assistance systenSuch
systems typically include radars, laser or video sensors &t
detect the vehicle trajectory and warn for an imminent lane
departure, or sense the front vehicle’s speed and apply the
brakes of the following vehicle to maintain safe distance redways
(i.e., collision avoidance system). However, most of thesgstems
rely on the subject vehicle and surrounding vehicles’ posibn
and do not explicitly consider the driver's actions during the
driving task. In addition safety research has focused on eye
tracking as a means of capturing driver's attention, fatigue, or
drowsiness; however, the body posture has not been investigd
in depth. This paper presents a novel approach for studyinghe
actual movements of drivers inside the vehicle, when perfoning
specific maneuver types such as lane changing and merging. i€h
information can be useful for identifying specific body movenents
that may hide potentially unsafe situations. A pilot study was
conducted along a freeway and arterial segment, where the 3D
shapes of selected participants were constructed with the se
of a low-cost infrared depth sensor (Microsoft Kinect) while
merging and changing lanes. The analysis of the 3D shapes st®o
that there are important differences between participantswhen
performing similar driving maneuvers. The preliminary results
of this pilot research set the basis for implementing the prposed
methodological framework for conducting full-scale expeiments
with a variety of participants, and exploring differences due
to driver behavior attributes, such as age, gender and drivig
experience.
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research activities. The vehicle-to-vehicle commundaoais re-
lated to the exchange of data (e.g., speed, acceleratiadirtge
angle, etc.) over wireless network that provide infornmatio
on surrounding vehicles status and allows for performing
calculations and issue driver warnings to avoid crashes. Th
communication option is based on the Dedicated Short Range
Communications (DSRC). Although the development of the
communication component of this program is not complete to
date, a number of crash avoidance systems (e.g., blind spot
and lane changing warning, forward collision warning, )etc.
has been established so far.

Additional advanced (or intelligent) driver assistancs-sy
tems (ADAS) designed to provide added traffic safety are
already in place[][4]. These systems typically do not involve
inter-vehicle communication, and are designed to provide
assistance or warning to drivers by considering the lodgital
position of the vehicle or other vehicle-related compoaent
Examples of ADAS applications include automatic parking,
adaptive light control, night vision, lane change assistan
traffic sign recognition, collision avoidance system, |depar-
ture warning system, and hill descent control. Apart froesth
systems that focus on the vehicle, there are limited systems
already in place that are designed to monitor the drivers&€he
monitoring systems are capable of tracking driver’s indtta
and drowsiness using LED sensors to monitor eye movement.

In vision-based systems that involve understanding driver
intentions and actions (e.g., inattention or distractitates),

Despite the advances in vehicle manufacturing technologyesearch studies focus primarily on tracking of the head and
and roadway construction and design, a large proportion ahe face of the driver e.g. [[5].[6] and constructing 3D spac
traffic crashes are still due to driver errof [1]. Accordirgg t images using the geometry of the face [7], [8], [9]. In aduhti
the World Health Organization (WHO), annually there arerove several researchers, e.d.,|[10],1[11],1[12],1[13] analyhedd

1.2 million fatalities and over 20 million serious injurie®rld-

pose and gaze for identifying and predicting driver’s inten

wide. In the US, the 100-car naturalistic study sponsored bghange lanes and perform a maneuver. Apart from tracking
the National Highway Traffic Safety Administration (NHTSA) head and facial poses, research has also studied the hand
concluded that driver inattention is the cause of about 8@osition and grasp in conjunction with head monitoring for
percent of crashes and 65 percent of near crashes [2]; af@ne change intent analysis and prediction| [14] or for drive
therefore, these can be avoidable. A lot of attention has beeadistraction monitoring[[15]. Another study [16] presentad
drawn lately to US Department of Transportation (USDOT)system for tracking the 3D body movement combined with
connected-vehicle research program, which uses a mixfure fiead pose tracking system. The authors tested their system
technologies such as advanced wireless communicatiors, oim a simulation environment and obtained preliminary resul
board computer processing, advanced vehicle-sensors, GP&ated to body posture and lane changing activity. Althoug

navigation, and smart infrastructure, to identify and wtre

the experimental platform is promising, their results tdeda

drivers on imminent road hazards [3]. The program includesre limited. [17] expanded their work to investigating ens’

vehicle-to-vehicle and vehicle-to-infrastructure commaeation

foot behavior using video-based analysis in conjunctioth wi



Fig. 1. Two 3D views of the same frame from the recorded datagee  Fig. 2. Left: visualization of a depth frame. Right: The emponding mask
video and depth frames are presented as a sequence of degDrérames. ~ With enhanced boundaries between objects, computed usinframnework.
The field of view of the depth camera is also shown as a tragezoi

a basic framework for acquiring, segmenting, analyzingl an
pedal sensor measurements. They presented a predictiael mogisualizing the recorded sequences of depth frames. 3) We
for braking and acceleration modes and concluded that thgresent the efficacy of the proposed methods using several
foot behavior depends greatly on the driver type. Howeverexperimental results from a pilot study.
several limitations were identified, particularly with pest to
the computational effort of foot tracking, which may redault II. METHODS

delayed predictions that can be critical. o )
Each data frame captured by a digital depth sensor is a two

In summary, although a significant amount of researchjimensional array of depth values (i.e., distance betwhen t
has been involved with the development of advanced driversensor and objects). Similarly, a collection of frames israg
assistance systems, most of these systems rely on the autimensional array that can be representedas RV *HxN
mobile position and do not necessarily consider the drivergyhere N denotes the total number of recorded frames, and
actions. Apart from that, the lane trajectory and positién 0 117 and H denote the number of pixels across the width and
the vehicle could potentially differ from the driver's ime hejght of the depth frame respectively. The depth value in a
to change lanes. In addition, recent research has focused @articular pixel with coordinates, j) on framei is denoted
eye/facial tracking as a means of capturing driver's attent by p, ., « R*. In practice, each depth camera has a specific
fatigue, or drowsiness. To date, limited research has beemnge of operation, which restricts accordingly the range o

involved with investigating the upper-body posture of drs  the recorded values (see depicted field of view in Figure. 1).
when performing a maneuver as well as different postures

between different drivers, which may also reveal behaviuas The depth frames can be equivalently expressed as
contribute to unsafe driving conditions. quadratic meshes given by; ;. = (i —ic)Dijif ™', Yi 1 =
_  (j=Je)Dijef7t andZ; j+ = D; j+, Where(ic, j.) denote the

Furthermore, several of the aforementioned problems lie 0gordinates of the central pixel in the depth frame, #rislthe
the fact that the existing vision-based techniques empldy 2 foca| length of the depth camera. One of the advantages of the
image computer vision algorithms that may lead to inaccugyadratic mesh representation of the depth frames is thgt th
racies when computing 3D data due to lack of the depictedan pe easily visualized using virtual lighting, shadingr-p
information [18]. It has been shown that many traditionalspective and point of view using standard computer graphics
computer vision problems can be solved more efficientlyechniques/[18]. Figuri 2(left plate) shows the quadratsim
and/or accurately using depth cameras in conjunction withy 5 captured depth frame from our pilot study. The 3D shape
regular video [[19]. When it comes to pose estimationl [20]of the body of the driver and part of the vehicles’ cabin have
or 3D reconstruction of the human body [21], [22], it haspeen clearly captured in the depth frame. Optionally, tHerco
been shown that infrared depth sensors can estimate the shapformation from a video frame can be applied as a texture to

characteristics of the human body in real-timel [23], whiels h  the quadratic mesh of the depth frame. Two examples of such
numerous applications in various research areas rangimg fr jsyalization is shown in Fid.l1.

human-computer interaction to monitoring obesity| [24]. ) _
The segmentation of the depth frames is a necessary pre-

The main objective of this paper is to investigate how driveryrgcessing step for analyzing the activities of the humadybo
posture and activity during the driving task can be obtainedrhe process of image segmentation is a well-studied compute
and analyzed in real-time using a low-cost infrared deptRision problem [[25], which may be inaccurate when adjacent
sensor. The findings of this rese_arch will assist in idemtdy regions have similar color patterns, and there is no clear
the necessary tools for exploring the correlation betweeoundary between them. In our proposed framework, the-infor
potentially unsafe driving conditions and body posture as gnation captured in the depth frames is enough for estimating
function of specific driver characteristics and attribufEisese accurately the outlines or boundaries between criticabres
findings could lead to enhancing advanced driver-assistangy, the field of view, such as the driver's arms, as follows: For
systems by identifying specific body activity associatethwi each depth frame, a binary mask is computer by evaluating the
unsafe conditions under different maneuvers. following two conditions for every pixek,y and framet

The contributions in this paper are threefold: 1) We in-
troduce the use of infrared depth cameras as an intelligent
sensor for monitoring the driver’s body activity. 2) We pose o mingenw)Dijs > floaterr,

MaTq yen () |Dijt — Dyl < thresholdg,



After estimating the rectangular volume between the
driver's torso and the steering wheel, we segmented the
individual regions using the aforementioned mask, and the
average X,y,z coordinates were computed from the pixels of
each region. The regions with the highest y-value corrededn
to the driver's arms, and the arm with the smallest z-value
was the right arm (i.e. closest to the camera). Fidure. 4 show
two examples of segmented depth frames. By observing the
images, it is evident that the arms were accurately segmente
independently of the relative position of the two arms. Im ou
experiments we used the segmented regions of the arms as well
as the upper joints of the tracked skeleton in order to trhek t
motion of the arms and head of the driver while driving.

Fig. 3. Example of the skeleton model that was fit to an anlyith@me of the
depth sequence. The 3D coordinates of the shoulders, nedkhead, were
employed for real-time segmentation of the body activitheTlower joints
(elbows, wrists, and hands) were ignored due to inaccigdnigheir fitting.

Instead we use the proposed arm segmentation method {Fig. 4)

To track the body movements we estima%% ~ D —
D; ;+—1 for everyi,j,t and then we computed the average
of the negative values and the average of the positive values
within each region. The magnitude of these two average salue
correspond to the directional magnitude of inward and otdwa
motion with respect to the z-axis. The directional magretud
of motion is shown in several of our examples (FIdd.14.17, 8).

Finally, global statistics were computed accross several
depth frames in order to study the variations of such global
guantities between different drivers. More specificallge t
mean depth frame was computed &5; = >, D; ;;, and

the standard deviatio§; ; = \/% > i(Di e — M ;)2, which

Fig. 4. Two examples of the proposed arm segmentation. Botis zan ~ can both be considered depth frames and therefore can be
be clearly segmented from the rest of the depth frame evemwhe arm is  visualized similarly (see Figuig 6).
occluded or partially visible from the depth camera (right)

The following sections present a description of a pilot gtud

undertaken to collect field observations of drivers’ 3D body
where N(t) and N(4,j) denote 1D and 2D sets of integers shapes and several experimental results obtained using the
in the neighbor of the input, and i,; respectively, and proposed methods.
thresholdg,, and float.,, are two predefined constants. Each
pixel for which both conditions are true is considered part n
of the depicted object in contrast to the rest of the pixels '
that belong to the boundary between regions or to an empty The field data obtained for this study were collected along
space. The role of the first condition is to segment togethea 2.6 mi stretch of Interstate 75 (I-75) in the southbound
pixels with similar depth values, and the second conditionSB) and northbound (NB) directions, and a 0.7 mile long
ignores pixels with: a) depth values in the range of a computearterial segment (Newberry Road eastbound and westbound
precision error and/or b) inconsistent depth estimaticlssc  approaches) in Gainesville, FL. The freeway segment hag thr
neighboring frames. Figulé 2 shows an example of a computddnes per direction and the arterial segment has threeghrou
mask with clear outlines around the depicted objects. lanes per direction, several median openings, and inclades
total of six signalized intersections. A schematic of thedgt
Sites is presented in Figuré 5. The data collection effark to
lace on Sunday, September 1st 2013, between 10 am and
oon. Traffic conditions were generally uncongested ang fre

; d using the skel fitt . flowing, especially on the freeway segment. Traffic on the
torso was estimated using the skeleton fitting process @eavi 5 aria| segment was light, although towards the end of the

i_” the Microsoft's Kinect S_oftware Developmgnt KIL[26]. &h . data collection effort the flows were considerably increlase
fitted skeletal model consists of the 3D coordinates of 1®maj £, the purposes of this pilot study, four participants iaféld

jcﬁ?ts in the uphper dpar::_of l&g% bﬁdy (head, nec:<, Sp%ﬂ‘?.er%vith the research team were asked to complete one route along
elbows, wrists, han s). Fig shows an example of thelfittey, o freeway and arterial segment. The participants peddrm
skeleton in one frame from our dataset. Based on the skeletqwo mandatory lane changes (i.e., merging onto the freeway)

f|rt]t|n% resultks frr?mkcj)ur entire dataset;[ o?lly th?. uptpzr BInt 5n4 several discretionary lane changes on the freeway &nd th
g ead, neﬁ.l' Sh ou ersf) \r/]ve(e_ consisten yf.es. 'mﬁ €d SECT0,rterial street. The entire duration of the experiment fache
rames, while the rest of the joints were misfit in the majorit o ricinant was approximately 20 minutes,

of depth frames. In order to estimate the position of theatisv
torso and more specifically the x-location of the plane wich The real-time driver behavior data were acquired using
parallel to the driver’s chest and is perpendicular to theexm  the PrimeSens&depth sensor contained in the Microsoft
plane, we used the average of the x-coordinates of the healijnect’™device. The device was connected (via a USB 2.0
neck and shoulders from the estimated skeletons. port) to a 64-bit computer with Intel Core i5 (quad core)

D RIVER BEHAVIOR DATA COLLECTION

The computed mask is then used to segment the driver

steering wheel. In our experiments, the position of theeatids



values in the corresponding pixel. Large standard dewiatio
values indicate wide range of motion at the corresponding
pixels during the data sequence. As expected, an exit from
a highway through a loop ramp is typically accompanied by a
wide turn, which caused in the right image of Hif. 6 significan
motion in the area of the arms.

During the merging maneuver, it can be observed that the
motion of the arms and head, although significantly less, is
still distinguishable and can provide important inforroatiof
the participant’s body posture while merging. For instartice
analysis of the mean and standard deviation might indicate
that the specific participant made use of the side mirrors for
completing the merging maneuver, instead of turning thor-
oughly the head and investigate potentially unsafe camuti
Fig.[8 also shows that even incremental variations of theybod
posture can be captured, which validates the proposed thetho
This type of variations may be significant when evaluatirg th
variability of body movement across different driver tyesl
z Gamnesville\AS I under different driving situations.

Fig. 5. Map of the route on the interstate I-75 followed insthilot study. Apart from the mean and standard deviation of the depth
sequence, we can identify the exact direction of each move-
ment and associated magnitude, as a function of the increase

CPU at 2.53GHz and 4GB RAM. The computer and theor decrease of the depth values. For example, Eig. 7 and

sensor were both powered using a 75 Watt car power inverteFig. [ show the directional magnitude of the head motion

The resolution of the depth camera wa20 x 240 pixels and the arms motion respectively, for two of the subjects

with horizontal field-of-view angle (FoV) angle &f7°. The participated in the pilot study. The investigation of thegmia

resolution of the video camera wae0 x 480 pixels with  tude of each movement may reveal interesting trends for each
horizontal FoV of62°. individual participant. First of all, it is possible to cader
: . J%Oth movements of the arms and head in conjunction and
The range of the camera was calibrated so that it recortsot in isolation, contrary to previous studies that treagsth

for the limited fih bin of a tvpical ofehi fwo separately. Then, we can associate both movements with
orthe imited space ot ih€ cabin ot a typical passengercrent specific maneuver (i.e., merging, lane changing, etc.) and

The sensor was fixed on the front passenger’'s door, so th%nstructa : P .~ ;
CoN e . : X profile for each individual participant basedhmir

the dnverlf W&g;;_n t::e f'etlﬁ ?‘f \|/(|jevx? O.f thefotlﬁptg art]r? video typical behavior and movement activity. Such analysis will

cameras. Figu Snows ne TIElc of view of the dep Camer?1uantify differences in body postures between differeitenlr

The green rectangle depicts the closest plane of sensinghwh types and could point out towards behaviors that may lead to

is located 0.5m .in front of th? sensor (shown as the tip of th%otentially unsafe and even accident-prone driving caorat
yellow pyramid in the same figure).

An example of such analysis is illustrated in Fighk. 9 and
IV. DISCUSSION OFEXPERIMENTAL RESULTS [E_that sho_W the directional ma_gnitudes of the head and arms
while merging for all four participants. The differencestire
The video and depth sequences captured during our pilahagnitude as well as duration of head and arms directional
study, were manually segmented into several fragments thghange is apparent in these figures. We further note the
correspond to the merging and exiting from the highway assariability observed due to driver behavioral attributesd a
well as changing lanes, right, and left turning in arterie¢sts.  also due to traffic conditions. For instance, drivers 2 and 4
Each of the fragments was analyzed independently using th&ppear to have increased arm and head movement compared to
framework that was presented in SEg. Il, and a comparativerivers 1 and 3. In addition, driver 2 appears to have inaeas
study was performed across the corresponding datasets fronead activity at several instances (e.g., note the threlespna
different participating drivers. The proposed framewor&sw the graph of Fig[19), which may indicate increased alertness
implemented in Java using the J4K open source Java libranyhile merging, possibly due to the presence of a vehicle in
for Kinect that was originally presented in [23] and is aable  the right-most lane. In addition, these two figures show that
at http://www.digitalworlds.ufl.edu/angelos/lab/kitiec for some drivers, the head and arm movement is somewhat

Figure [6 shows the average and standard deviation oﬁzlgr%hirr?trgﬁgg’ ;Sltg?(;gztgge arm movement is considerably

the depth sequence during merging (left) and exiting (Jight
a highway. The average depth value in each pixel forms The depth sequence of each pixel can also be used for
a surface, which can be plotted in 3D using photorealisticonstructing a skeleton model, similar to that presented in
shading to visually enhance the depicted depth informatiorFig.[3. The 3D coordinates of the shoulders, neck, and head,
The standard deviation of the depth values can either beere employed for real-time segmentation of the body dgtivi
presented as a surface or as a color map added to the averagee movement of both arms was captured through the arm
surface as shown in Fi@] 6. In our plots, the intensity of thesegmentation method illustrated in Hig. 4. This type of psial

red color is proportional to the standard deviation of thptde is focused on a comprehensive investigation of the body


http://www.digitalworlds.ufl.edu/angelos/lab/kinect

Fig. 7. An example of a video frame detecting intense headomo©n the
right the corresponding computed directional magnitudenofion is shown
in red or blue for increase or decrease of the depth values.

Fig. 6. Global statistics (mean and standard deviationsactime) computed
during merging (left) and exiting (right) from a highway fowo different
drivers (upper and lower row respectively). The mean is shaa the depth
value within each pixel, and the st. dev. is shown as the sitterf red.

. . L . . Fig. 8. Another example with intense motion of the arms. Thlers and
activity, rather than looking in isolation the various gadf  images are presented using the same format as ifFig. 7.

the upper body.
Plots of head activity during merging

It should be noted that the proposed analysis of the mea
and standard deviation of the depth sequence shown in Fi
as well as the directional magnitude of both head and arm¥
motion provides significant insights related to the bodytpes
and movements during various driving tasks, such as merging ' ' ' ' ' = ' = =
changing lanes, as well as while undertaking secondar task
such as texting, talking on the cell phone, eating, tunirg th
ratio, etc. In addition, the methodological framework asax
in this paper is capable of capturing variations acrossedsiv
by examining differences of the mean and standard deviatio
of the depth sequence and the directional magnitude of motio . . . . . . . .
for different driving maneuvers. These findings are useful
for enhancing or developing an advanced drivers’ assistance
system that is able to detect driver motion and predict po-
tentially unsafe conditions, and therefore, provide wagnto
the driver. This type of warning would complement existing .
surveillance systems typically installed to warn the drifee g
the surrounding traffic and the vehicle position. @

V. CONCLUSION 0 sec. 20 sec. 40 sec.

A novel approach for assessing drivers bOdy movementls—ig. 9. Plot of the directional magnitude of the head motioniry merging

inside a vehicle was introduced in this paper. The propose 4 gitterent drivers. The red and blue colors represectsiase and decrease
method can be used for investigating how different driveel/  of the depth values respectively.

perform various maneuvers and which specific movements are

associated with safe or unsafe driving conditions. A pitatly

was conducted as a proof of concept, where four participantanalysis of the pilot study. Global statistics such as thame
drove along a freeway and arterial route and performed a nunand standard deviation as well as the directional movenfent o
ber of merging and lane changing maneuvers. The 3D shapesotion revealed significant differences for different mawver

of the participants were constructed with the use of a logt-co types and among the participants. Contrary to current resga
infrared depth sensor for each maneuver performed. Severtde proposed methodology may be used for studying the upper
guantitative measures were evaluated as part of the prelimi body posture and motion as a whole, instead of focusing on



Plots of arm activity during merging [4]
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Fig. 10. Plot of the directional magnitude of the arm motiamitg merging.
The format of the plots is the same as in . 9.
[12]
individual parts of the body in isolation.
A future direction is to expand the implementation of the[13]

proposed methodological framework to additional driverd a
investigate the relationship between potentially unsaiférdy
events and the actual driver body posture and movements Whm]
performing a driving maneuver (e.g., lane changing, meggin
under different traffic and geometric configurations and nvhe
engaging with a secondary task by analyzing the movementis]
of various drivers. We will also identify typical behavioo$
specific driver groups (e.g., younger vs. older driversregqg

sive vs. conservative drivers, men vs. women), in natuialis [16]
settings. Such information can be used for enhancing curren
driver training methods for targeted driver groups such ag 7]
novice or elderly drivers. Lastly, it is recommended to depe
a framework for constructing an in-vehicle driver-assis&a
system that takes into account the driver's body posture angls)
movements rather than considering solely the vehicle pposit [19]
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