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Abstract—A significant amount of research has been involved
with the development of advanced driver-assistance systenSuch
systems typically include radars, laser or video sensors #t detect
the vehicle trajectory and warn for an imminent lane departure,
or sense the front vehicle's speed and apply the brakes of the
following vehicle to maintain safe distance headways (i.ecollision
avoidance system). However, most of these systems rely oreth
subject vehicle and surrounding vehicles’ position and do ot
explicitly consider the driver's actions during the driving task.
In addition, safety research has focused on eye tracking as a
means of capturing driver's attention, fatigue, or drowsiness;
however, the body posture has not been investigated in depth
This paper presents a novel approach for studying the actual
movements of drivers inside the vehicle, when performing sgific
maneuver types such as lane changing and merging. A pilot
study was conducted along a freeway and arterial segment,
where the 3D shapes of selected participants were constriact
with the use of Microsoft Kinect range camera while merging
and changing lanes. A 7-point human skeletal model was fit
to the captured range data (depth frame sequences) using the
proposed framework. The analysis of the captured 3D data
showed that there are important differences between partipants
when performing similar driving maneuvers. The preliminary
results of this pilot research set the basis for implementig
the proposed methodological framework for conducting fult
scale experiments with a variety of participants, and expldng
differences due to driver behavior attributes, such as agegender
and driving experience.

I. INTRODUCTION

speed, acceleration, heading angle, etc.) over wireldsgone

that provide information on surrounding vehicles statud an
allows for performing calculations and issue driver wagsin

to avoid crashes. The communication option is based on
Dedicated Short Range Communications (DSRC). Although
the development of the communication component of this
program is not complete to date, a number of crash avoidance
systems (e.g., blind spot and lane changing warning, fatwar
collision warning, etc.) have been established so far.

Additional advanced driver assistance systems (ADAS) de-
signed to provide added traffic safety are already in plate [4
These systems are designed to provide assistance or warning
to drivers by considering the longitudinal position of thehix
cle or other vehicle-related components. Examples of ADAS
applications include automatic parking, adaptive lighttcol,
night vision, lane change assistance, traffic sign rectmmit
collision avoidance system, lane departure warning sy,steuh
hill descent control. Apart from these systems that focus on
the vehicle, there are limited systems already in place that
are designed to monitor the driver’'s condition. These moni-
toring systems for example, are capable of tracking digver’
inattention and drowsiness using LED sensors to monitor eye
movement.

In vision-based systems that involve understanding driver
intentions and actions (e.g., inattention or distractitates),
research studies focus primarily on tracking of the head and
the face of the driver e.gl.[[5].][6] and constructing 3D spac
images using the geometry of the face [[7], [8], [9]. In adxiti
several researchers, e.d.,[10],1[11],1[12],][13] analyhedd

Despite the advances in vehicle manufacturing technologpose and gaze for identifying and predicting driver’s imttn
and roadway construction and design, a large proportion ofhange lanes and perform a maneuver. Apart from tracking
traffic crashes are still due to driver errar] [1]. According head and facial poses, research has also studied the hand
to the World Health Organization (WHO), annually there position and grasp in conjunction with head monitoring for
are over 1.2 million fatalities and over 20 million serious lane change intent analysis and prediction| [14] or for drive

injuries worldwide. In the US, the 100-car naturalisticdstu

distraction monitoring[[15]. Another study [16] presentad

sponsored by the National Highway Traffic Safety Admin-system for tracking the 3D body movement combined with
istration (NHTSA) concluded that driver inattention is the head pose tracking system. The authors tested their system
cause of about 80 percent of crashes and 65 percent @i a simulation environment and obtained preliminary resul
near crashes [2]; and therefore, these can be avoidable. welated to body posture and lane changing activity. Althoug
lot of attention has been drawn lately to US Department othe experimental platform is promising, their results tdeda

Transportation (USDOT) connected-vehicle research arogr

are limited. Researchers in [17] expanded their work tosave

which uses a mixture of technologies such as advanced wirdigating drivers’ foot behavior using video-based analyisi
less communications, on-board computer processing, addan conjunction with pedal sensor measurements. They pratente

vehicle-sensors, GPS navigation, and smart infrastrector

a prediction model for braking and acceleration modes and

identify and warn the drivers on imminent road hazardsconcluded that the foot behavior depends greatly on thedriv

[3]. The program includes vehicle-to-vehicle and vehicle-
infrastructure communication research activities. Thiicle-

to-vehicle communication refers to the exchange of dat,(e.

type. However, several limitations were identified, partely

with respect to the computational effort of foot trackindyieh

may result in delayed predictions that can be critical.
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the field of view. As we also demonstrate in Set. Il, the same
limitations apply to the case of vehicle’s cabin[28]. Ingthi
paper, we overcome these issues by proposing a novel special
purpose body-tracking framework that focuses on detecting
and tracking joints of the upper-body of the driver in a tygbic
vehicle environment.

The main objective of this paper is to investigate how
driver's posture and activity during the driving task can be
obtained and analyzed in real-time using a low-cost range
camera. The findings of this research will assist in idemtdy
. _ the necessary tools for exploring in the future the coriatat
Fig. 1. Two 3D views of the same frame from the recorded datadee between potentially unsafe driving conditions as a furmctd
V|de0‘ and de_pth frames are presenteq as a sequence of dbSllDr&_ames. ific dri bod t d ti h talki t
The field of view of the depth camera is also shown as a tragezoi Speciiic driver body posiures and actions, such as falking 1o

phone, texting while driving, or engaging in other non driy
related activities. These findings could lead to enhancihg a

In summary, although a significant amount of research\gli[;\(/:i%(,j ;jsrlsvoecri:tses&sﬁtnhcinsggftg Tgnké)i/tilc()jnesrrtlfylng spectiyb
has been involved with the development of advanced driver- the' contributions in this paper are three-fold: A) A new
assistance systems, most of these systems rely on the aufpymework is proposed for studying research questions re-
mobile position and do not consider the drivers actions.rApa garding the driver's body posture and actions while driving
from that, the lane trajectory and position of the vehiclaldo B) We introduce the use of range cameras as an embedded
potentially differ from the driver's intent to change lanés jnie|ligent sensoi [29] for monitoring the driver’s bodytiaity.
addition, recent research has focused on eye/facial Ig@S ¢y A pasic framework is presented for acquiring, segmenting
a means of capturing driver's attention, fatigue, or dro@ss.  anaiyzing, and visualizing the recorded sequences of depth
To date, limited research focused on investigating the Bppegames, Furthermore, we present a novel method for tracking
body posture of drivers when performing a maneuver as WelEhe driver's motion in real time by fitting a 7-point upper lyod
as different postures between different drivers, which @ia9  gegeltal model to the depth frames. Finally, we demonsthate
reveal behaviors that contribute to unsafe driving coodgi efficacy of the proposed methods using several experimental

Furthermore, several of the aforementioned problems relagesults from a pilot study.
to the fact that the existing vision-based techniques eynplo
2D image computer vision algorithms that may lead to inac- II. METHODS

.CuraCieS. When Computing 3D data due to |aCk Of.t.he depicted Each data frame Captured by a d|g|ta| range camera is a
information. It has been shown that many traditional com+two dimensional array of depth values (i.e., distance betwe
puter vision problems can be solved more efficiently and/oghe plane of the sensor and the depicted objects). Similarly
accurately using range cameras in conjunction with regulag collection of frames is a three dimensional array that can
video [18]. When it comes to pose estimation|[19] or 3Dpe represented aB € RWXHXN \where N denotes the
reconstruction of the human body [20], [21], it has beentotal number of recorded frames, afii and H denote the
shown that depth sensors can estimate the shape chatézserisnymber of pixels across the width and height of the depth
of the human body in real-time_[22], which has numerousframe respectively. The depth value in a particular pixehwi
applications in various research areas from human-comput@oordinates(i’j) on framet is denoted byD; ;, € R*. In
interaction to rehabilitatior [23] and monitoring obesiBAl.  practice, each depth camera has a specific range of operation
One popular area of application of human body trackingwhich restricts accordingly the range of the recorded \alue
algorithms is electronic games. There are several examples (see depicted field of view in Fif] 1).
literature that report novel uses of body tracking techgiae The depth frames can be equivalently expressed as quadratic
in games [[25], or the development of novel algorithms formeshes given byX; ;+ = (i — ic)Dijef ", Yije = (5 —
custom-made interaction using special-purpose partialy bo jC)Diyj,tffl, and Z, ;» = D, ;., where (i.,j.) denote the
tracking [26]. An interactive game-based rehabilitatigatem  coordinates of the central pixel in the depth frame, gni$
using Kinect was presented in_[25]. For a comprehensivéhe focal length of the depth camera. One of the advantages
literature review regarding the use of virtual reality antei-  of the quadratic mesh representation of the depth frames
active games for rehabilitation the reader is referred @. [ is that they can be easily visualized using virtual lighting
most of these applications it has been shown that the egistinshading, perspective and point of view using standard ceenpu
body-tracking algorithms pose significant limitations Isuas  graphics techniques. For example, Hig. 2 (left plate) shows
constraints on the environmental setup, requirementsdaga the quadratic mesh of a captured depth frame from our pilot
the pose of the users, the number of users being recogriired, tstudy. The 3D shape of the body of the driver and part of the
number of 3D points tracked, etc. For examplelin| [23] it hasvehicles’ cabin have been clearly captured in the depthdram
been shown that generic game-based depth-camera tracki@ptionally, the color information from a video frame can be
algorithms fail in complex environments, when the humanapplied as a texture to the quadratic mesh of the depth frame.
body is in close proximity with other objects or subjects in Two examples of such visualization are shown in Eig. 1.




Fig. 2. Left: visualization of a depth frame. Right: The emponding mask

with enhanced boundaries between objects, computed usinffaomework. Fig. 3. Example of the skeleton model that was erroneouslytofiin

arbitrary frame of the depth sequence by the skeleton trgmiavided with
the Microsoft Kinect SDK.

The segmentation of the depth frames is a necessary pre-
processing step for analyzing the activities of the humar
body. The process of image segmentation is a well-studie:
computer vision problenm [30], which may be inaccurate when
adjacent regions have similar color patterns, and thereis n
clear boundary between them. For an in-depth presentatio
and comparison of image segmentation algorithms the read:s
is referred to [[30], which dedicates a chapter in mid-vision
problems including segmentation. In our proposed framkwor
the information captured in the depth frames is enough fo
estimating accurately the outlines or boundaries betweien ¢
ical regions in the field of view, such as the driver’s arms, as
follows: For each depth frame, a binary mask is computed by
evaluating the following two conditions for every pixely
and framet

® MaTy yen(ij) | Dijt — Doyt < thresholdg.
b mZnSEN(t)Di,j,S > floaterri

where N(t) and N (¢, ;) denote 1D and 2D sets of integers
in the neighbor of the input, and ¢,j respectively, and
tf_zresholddz,_andfloatew are two predeflngd ConSt.antS' Each Fig. 4. lllustration of the skeleton tracking algorithm. éipixels of the
plxel for Wh'Ch bOt_h co_nd|t|ons are true is considered .partmasked depth frames are scanned diagonally and the mewdialdf the body
of the depicted object in contrast to the rest of the pixelgegions are traced (shown in red) using a graph-based tilgoriThe medial
that belong to the boundary between regions or to an emptsgurves are then filtered in order to form the driver's skeleto
space. The role of the first condition is to segment together
pixels with similar depth values, while the second conditio
ignores pixels with: a) depth values in the range of a computethe skeleton tracking algorithm included in the Microsoft
precision error and/or b) inconsistent depth estimatiossc ~ Kinect Software Development Kit (SDK) fails in detectingeth
neighboring frames. Fig] 2 shows an example of a computedlriver’s body (see Fid.13), which motivates the development
mask with clear outlines around the depicted objects. and use of a special-purpose tracking algorithm for in{tabi
The masked depth frames are feeded as input to a grapRovironments.
based skeleton fitting algorithm that traces key body festur ~ In order to overcome the aforementioned skeleton fitting
which is the primary goal of our data processing method. Thehallenges we developed a novel graph-based algorithm that
body features of our interest include the X, Y, Z coordinatesvas designed to fit a 7-point skeletal model to the body of
of the wrists, elbows, and shoulders as well as the ori@mtati the driver using a sequence of depth frames. Our skeletal
of the driver's torso. The values of these quantities can bé&nodel included the line segments between the followingoin
estimated by fitting a human skeletal model to each of theight wrist, right elbow, right shoulder, neck, left shoeid
depth frames in our datasets. The main challenge in thetakele left elbow, and left wrist. The skeletal model is visualized
fitting process is that the human body in our particular fieldin the Experimental Results section in Figs] 12 13. In
of view is very close to other objects such as the driversour visualization we also show the triangle formed by the lef
seat, the steering wheel and the driver’s door. Any generishoulder, the right shoulder and the neck, whose normabwect
skeletal fitting algorithm performs better when the humadybo was used as an indicator of the torso orientation.
is clearly visible and at a distance from nearby object$,[23] The proposed skeleton fitting algorithm scans the depth
and therefore will fail in our in-cabin setting. For instanc frames in a diagonal fashion from upper right to lower left

----- Scanning direction =~ —®— Traced medial line



(see illustration in Figl14), pixel strip by pixel strip uhthe
entire image is covered and segmented into line strips tleat a
smoothly-varing 1-pixel-wide regions defined as

ﬁz{(ismj_is)a"' a(ieaj_ie):is<iea (1)
8D1 i—q 82Dz | —1, . . .
let €1, leét < €9 \V/Z S (ZS,Ze)}

where i, and i, denote the start and end pixel coordinates

of the line segment, which lies on the line stripj — i).

The length of a line segment can be easily computed byig. 5. Two examples of the proposed arm segmentation. Botts @an

length(L) = /2(ie —is + 1). be clearly segmented from the rest of the depth frame evem whe arm is
The computed line segments are organized in the form of gccluded or partially visible from the depth camera (right)

directed graph, which is constructed simultaneously with t

segmentation of the line segments. In such graph each line

segment can be connected with line segments in the previou§h°“|d be noted that the medial curves are calculated in 8D an
row of pixels that form the set giarents(£) defined as not in the 2D coordinates of the frames. After that, the detic

medial curves are filtered with an 1-dimensional Gaussian
L' € parents(L) < 3(i,j—i) € £,3(i,j —i—1) € L (2) filter so that potential noise caused by the depth sensor is
OD; i+ removed. Finally, the points that correspond to the elbows,
Tj < €1. wrists, and shoulders are estimated using spatial conttras
' well as geometrical constraints regarding the size, catén
Equivalently, each line segment can be connected with 8ge s and curvature of the arms. More specifically, the elbows are
ments in the next row of pixels by defining the skiidren(L)  estimated as the points that belong to the medial lines avel ha
as the inverse of EqJ 2 as follows: the largest distance from the line segment formed by the end
, ) , points of each medial line. Similarly, the location of theists
L' € children(L) < L € parents(L’). (3 and shoulders are estimated in relationship to the locaifon
The graph produced by Edsl 2 3 may contain cycleghe corresponding elbow.
To enforce the creation of non-cyclic graphs we define the This process fits our 7-point skeletal model to the best
set father(L) as the subset gfarents(L£) that contains the matching medial curves. This graph-based algorithm hasitin

largest line segment: complexity, which allow us to perform the fitting of the
, skeleton in real time in less than 15 milliseconds per depth
father(£) = argmax length(L'). (4)  frame in the computer configuration described in sedfidn Il

£reparents(L) After fitting the skeletal model to each depth frame, we

The above process segments a given depth frame into sevetiged the location of the traced joints in order to segment
regions that are computed as independent disconnecteldsgraghe original mask into regions that correspond to the arms,
and typically correspond to different objects in the field offorearms, head, and torso using the algorithm described in
view. In most applications the subject of interest corregiso  [22], and the average X, Y, Z coordinates were computed from
to the graph with the largest number of pixels, and in generdhe pixels of each region. Figl 5 shows two examples of arm
can be easily isolated from the rest of the objects in theescensegmentation. By observing the images, it is evident that th

Each graph can be further segmented into smoothly varyingrms were accurately segmented independently of thewelati
regions by constructing sets of connected line segments witposition of the two arms.

coherent structural characteristics as follows: To track the body movements we estimal%% ~ Dt —
D, ;+—1 for everyi,j,t and then computed the average of
S={L1,--- ,Lyn: L; = father(Liy1), (5)  the negative values and the average of the positive values
|children(L;)| =1 Vi € [i,n — 1]}. within each region. The magnitude of these two average salue

correspond to the directional magnitude of inward and otdwa
motion with respect to the z-axis. The directional magretud
bf motion is shown in several of our examples (FIGS171.18, 9).
Finally, global statistics were computed accross several
depth frames in order to study the variations of such global
; guantities between different drivers. More specificallge t
respectively.

In our application, the regions of the arms of the depictedﬂean depth frarr?e_was computed 86; = 5 Diji. a_md
subjects can be found by performing simple graph searche#e standard deviatiof; ; = \/% >(Dije — M; )2, which
More specifically, the arms can be detected by searchingpéor t can both be considered depth frames and therefore can be
two longest ancestor-child paths in the constucted gragihavi visualized similarly (see Fid.] 7).
common ancestor. The medial line curves of the correspgndin  The following sections present a description of a pilot gtud
segments along these two paths are shown in red ifFig. 4. iindertaken to collect field observations of drivers’ 3D body

The line segment<; in Eg.[3 form a sequence of de-
scendants without siblings, which corresponds to a linea
graph. The set of segment$ can also be organized into
a graph by defining thefather(S) and children(S) using
the connections defined ifather(L£y) and children(L,)




shapes and several experimental results obtained using tl
proposed methods. z

IIl. DRIVER BEHAVIOR DATA COLLECTION

The field data obtained for this study were collected along
a 2.6 mi stretch of Interstate 75 (I-75) in the southbound
(SB) and northbound (NB) directions, and a 0.7 mile long
arterial segment (Newberry Road eastbound and westbour
approaches) in Gainesville, FL. The freeway segment hasg thr
lanes per direction. A schematic of the study site is present
in Fig.[d. The arterial segment has three through lanes pe
direction, several median openings, and includes a total o
six signalized intersections. The data collection effabk
place on Sunday, September 1st 2013, between 10 am ai
noon. Traffic conditions were generally uncongested arel fre
flowing, especially on the freeway segment. Traffic on the
arterial segment was light, although towards the end of the
data collection effort the flows were considerably increlase swefomds e
For the purposes of this pilot study, four participants iafd z
with the research team were asked to complete one route along ) o
the freeway and arterial segment. The participants pegdrm Fig. 6. Map of the route on the interstate I-75 followed irsthilot study.
two mandatory lane changes (i.e., merging onto the freeway)
and several discretionary lane changes on the freeway &nd th
arterial street. The entire duration of the experiment fache
participant was approximately 20 minutes.

Fig.[d shows the average and standard deviation of the depth
sequence during merging (left) and exiting (right) a highwa
The real-time driver behavior data were acquired usin yhe average depth value in each pixel forms a surface, which
the PrimeSens¥depth sensor contained in the Microsoft%an be plotted |n.3D using photoreal!sUc shading to wsuall.
KinecfMdevice. The device was connected (via a USB 2 e_nhance the depicted depth !nformatlon. The standard -devia
port) to a 64-bit computer with Intel Core i5 (quad Core')otlon of the depth values can either be presented as a sunf.ace.o
CPU at 2.53GHz and 4GB RAM. The computer and th as a color map adc_ied to_the average surfac;e as shoyvn in Fig.
sensor We;e both powered using a .75 Watt car power inverter, In our plots, th_e Intensity of the red coIo_r IS proportlbrm
The resolution of the depth camera wag0 x 240 pixels he standard deviation of t_he.depth valugs in the cprrespgnd
with horizontal field-of-view angle (FoV) angle af7°. The plxe_l. Large standard dev_latlon values !nd|cate wide raoige
resolution of the video camera wag0 x 480 pixels. with motion at the corres_pondlng p|>§els during the data sequence
As expected, an exit from a highway through a loop ramp

horizontal FoV of62°. . ) . ; X .
The range of the camera was calibrated so that it records typically accompanied by a wide turn, which caused in the

depth values in the range from 0.4m to 3.0m, which is suitabl(ﬁght image of FiglY significant motion in the area of the arms

o . X : During the merging maneuver, it can be observed that the
for the limited space of the cabin of a typical passengerolehi motion of the arms and head, although significantly less, is

The sensor was fixed on the front passenger’'s door, so th%E. - . S . .
o TR ' . i ill distinguishable and can provide important inforroatiof
the driver is within the field of view of the depth and video the participant's body posture while merging. For instarice

cameras. Fid.]1 shows the field of view of the depth Carmaraa\nalysis of the mean and standard deviation might indicate

The green rectangle depicts the closest plane of sensirighwh hat the specific participant made use of the side mirrors for

. - - t
is located 0.4m in front of the sensor (shown as the tip of the . . . .
yellow pyramid in Fig[l). completing the merging maneuver, instead of turning thor-

oughly the head and investigate potentially unsafe camuti
Fig.[4 also shows that even incremental variations of theybod
IV. DISCUSSION OFEXPERIMENTAL RESULTS posture can be captured, which validates the proposed ohetho
The video and depth sequences captured during our pildkhis type of variations may be significant when evaluatirgy th
study were manually segmented into several fragments thagriability of body movement across different driver tyesl
correspond to the merging and exiting from the highway asinder different driving situations.
well as changing lanes, right, and left turning in arteriedats. Apart from the mean and standard deviation of the depth se-
Each of the fragments was analyzed independently using thguence, we can identify the exact direction of each movement
framework that was presented in SEd. Il, and a comparativand associated magnitude, as a function of the increase-or de
study was performed across the corresponding datasets frocnease of the depth values. For example, Eibs. 8 and 9 show the
different participating drivers. The proposed frameworisw directional magnitude of the head motion and the arms motion
implemented in Java using the J4K open source Java libramespectively, for two of the subjects participated in thktpi
for Kinect that was originally presented in |22] and is aable  study. The investigation of the magnitude of each movement
at|http://research.dwi.ufl.edu/ufdw/j4k. may reveal interesting trends for each individual partaip
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Fig. 8. An example of a video frame detecting intense headomo©n the
right the corresponding computed directional magnitudenofion is shown
in red or blue for increase or decrease of the depth values.

Fig. 7. Global statistics (mean and standard deviationsactime) computed
during merging (left) and exiting (right) from a highway fowo different
drivers (upper and lower row respectively). The mean is shaw the depth
value within each pixel, and the st. dev. is shown as the sitierof red.

Fig. 9. Another example with intense motion of the arms. Tolrs and
First of all, it is possible to consider both movements of theimages are presented using the same format as i Fig. 8.
arms and head in conjunction and not in isolation, contrary
to previous studies that treat these two separately. Then, w Plots of head activity during merging
can associate both movements with a specific maneuver (i.€ ' ' ' ' ' ' ' '
merging, lane changing, etc.) and construct a profile foheac s
individual participant based on their typical behavior and&
movement activity. Such analysis will quantify differesde . . . . . " . " @
body postures between different driver types and couldtpoin
out towards behaviors that may lead to potentially unsate an
even accident-prone driving conditions. =

An example of such analysis is illustrated in Figs] 10 and®
[17 that show the directional magnitudes of the head and arir  ###He
while merging for all four participants. The differencestime
magnitude as well as duration of head and arms directione
changes are apparent in these figures. We further note tt#
variability observed due to driver behavioral attributed also ~ *
due to traffic conditions. For instance, Drivers SB#2 and £B# et . s 5 .
appear to have increased arm and head movement compar
to Drivers SB#1 and SB#3. In addition, Driver SB#2 appears
to have increased head activity at several instances (@tg, =
the three peaks in the graph of Fig] 10), which may indicate”
increased alertness while merging, possibly due to theepoes
of a vehicle in the right-most lane. In addition, these two
flgures show that for some drivers, the head and arm moveme.Eitg. 10. Plot of the directional magnitude of the head motiaring merging
IS so_mewhat synchronlzed, although the arm movement IRr 4 different drivers. The red and blue colors represeateiase and decrease
considerably more intense, as expected. of the depth values respectively.
Furthermore, using the fitted skeletal model we examined

differences in the body posture during a lane change maneuve
for two of the four participants. Fi§. 12 shows the seven poinDriver SB#1 and Driver SB#4. The differences in the body
skeleton model before and after a lane change maneuver fposture between the two drivers are apparent from this figure

0 sec. 20 sec. 40 sec.



Plots of arm activity during merging

SB#

SB#2

SB#3

Fig. 11. Plot of the directional magnitude of the arm motiamicg merging.
The format of the plots is the same as in Figl 10.

Driver SB#1

Before changing lane

After changing lane

Fig. 12.

Change in body posture due to a lane change maneneen sy
the fitted skeletons in the depth frames.

The torso of Driver SB#1 remains practically unaltered wlgri

Torso orientation (degrees) versus Time (sec)
T T

anA / ‘ -
AR ¥ -

= 0 § 10 1% 2 % £
Frame C

Side view

Corner view

Fig. 13. Change in body posture due to a merging maneuverrfoeDSB#4.
The plot shows the torso orientation during the merging maee The depth
frames and fitted skeletons of 3 frames are shown from two 3Bppetives.

time-series of the torso orientation. In this graph the dors
orientation represents the rotation in degrees from thsotor
position perpendicular to the steering wheel. The origortat

is positive for left-turn rotation and negative for righirb
torso rotation. Frames A, B and C are taken as before, during,
and after the execution of the merging maneuver. From these
graphs it is clear that the torso rotation of Driver SB#4 is
considerably increased during the merging task. Driver &5B#
torso orientation during this merging maneuver is constste
with the lane changing example shown in Higl 12.

Similarly to the torso orientation, a comparative analydis
other parts of the participants body motion can be performed
Fig.[14 shows the time-series of the X, Y, Z coordinates of the
wrists, elbows, shoulders for Driver SB#4, during the entir
duration of the driving task. Using the data shown in Eig. 14
it is easy to obtain instances where there is significant body
activity by identifying spikes in the respective graphsdan
further analyze the underlying conditions for these inst@n

By observing Fig[[I4 it is evident that there is a more
frequent arm motion detected during the arterial segments
compared to the freeway segments as we anticipated. For
example in this dataset the driver started merging onto the
freeway at 100 sec. and exited at 300 sec. which correspond
to intense arm activity as indicated by a significant change
to the coordinates of the wrists and the elbows. During the
freeway segment (between 100 sec. and 300 sec.) there was
no significant change of posture detected and the coordinate

the maneuver, whereas Driver SB#4 clearly shifts her bodyf the traced joints changed only occasionally as it was
to the left in order to have a better visual of the traffic at thealso anticipated. This smooth driving pattern is signiftan
next lane. On the other hand, Driver SB#1 shifts only the headifferent compared to the one observed during the arterial
to identify potential conflict at the next lane through tharre segments which corresponds to 0 sec. - 100 sec., 300 sec. - 480

mirror.

sec., and 650 sec. - 700 sec. During these segments the driver

In addition to the lane change maneuver, a comparativetopped at red traffic lights and followed a path that inctude
analysis of the body posture during a merging maneuver wasmany 90-degree turns. All of these instances were naturally
performed. Fig 13 presents the frame sequence during a mergssociated with arm activity, which corresponds to chamges
ing maneuver for Driver SB#4, along with the correspondingthe coordinates of the wrists slightly as it is shown in Ei§. 1



part of the preliminary analysis of the pilot study. Global

1 statistics such as the mean and standard deviation as well
as the directional movement of motion, and the proposed
7-point skeleton tracking revealed significant differender
different maneuver types and among the participants. @ontr

to earlier research, the proposed methodology may be used
for studying the upper body posture and motion as a whole,
instead of focusing on individual parts of the body in isola-

r 1 tion, overcoming the limitations of general purpose tragki
algorithms. However, the main strength of our method can be
also cosidered a limitation since our algorithm is optirdize
for tracking human activities in a vehicle’s cabin enviraamh

and is not suitable for general use such as in gaming.

A future direction is to expand the implementation of the
proposed methodological framework to additional driverd a
investigate the relationship between potentially unsaiférdy
events and the actual driver body posture and movements

i when performing a driving maneuver (e.g., lane changing,
Finally, the segment from 480 sec. - 650 sec. corresponds tl’?lerging) under different traffic and geometric configunasio

the northbound freeway segment, which was associated withq \when engaging with a secondary task. We will also idgntif
occasional body motion according to the plots in Eig. 14. té/pical behaviors of specific driver groups (e.g., younger v
I

It should be noted that the proposed analysis provideg|ger drivers, aggressive vs. conservative drivers, men vs
significant insights related to the body posture and movésnen,yomen), in naturalistic settings. Such information can sedu

during various driving tasks, such as merging, changingdan o enhancing current driver training methods for targeted
as well as while undertaking secondary tasks such as textingjyer groups such as novice or elderly drivers. Lastly,sit i
talking on the cell phone, eating, tuning the ratio, etc. INyecommended to develop a framework for constructing an in-
addition, the methodological framework described in thipgr  yepjcle driver-assistance system that takes into accct t

is capable of capturing variations across drivers, by eRai  yriver's body posture and movements rather than consigerin
differences of the mean and standard deviation of the deptgo|e|y the vehicle position.

sequence, the directional magnitude of motion, and the po-
sition of the traced joints in our skeletal model for diffete
driving maneuvers. These findings are useful for developing
advanced drivers’ assistance system that is able to defeet d
motion and predict potentially unsafe conditions, andefare,

400
Time (sec)

Fig. 14. Skeleton activity versus time for Driver SB#4.
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