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Abstract—A significant amount of research has been involved
with the development of advanced driver-assistance systems. Such
systems typically include radars, laser or video sensors that detect
the vehicle trajectory and warn for an imminent lane departure,
or sense the front vehicle’s speed and apply the brakes of the
following vehicle to maintain safe distance headways (i.e., collision
avoidance system). However, most of these systems rely on the
subject vehicle and surrounding vehicles’ position and do not
explicitly consider the driver’s actions during the drivin g task.
In addition, safety research has focused on eye tracking as a
means of capturing driver’s attention, fatigue, or drowsiness;
however, the body posture has not been investigated in depth.
This paper presents a novel approach for studying the actual
movements of drivers inside the vehicle, when performing specific
maneuver types such as lane changing and merging. A pilot
study was conducted along a freeway and arterial segment,
where the 3D shapes of selected participants were constructed
with the use of Microsoft Kinect range camera while merging
and changing lanes. A 7-point human skeletal model was fit
to the captured range data (depth frame sequences) using the
proposed framework. The analysis of the captured 3D data
showed that there are important differences between participants
when performing similar driving maneuvers. The preliminary
results of this pilot research set the basis for implementing
the proposed methodological framework for conducting full-
scale experiments with a variety of participants, and exploring
differences due to driver behavior attributes, such as age,gender
and driving experience.

I. I NTRODUCTION

Despite the advances in vehicle manufacturing technology
and roadway construction and design, a large proportion of
traffic crashes are still due to driver error [1]. According
to the World Health Organization (WHO), annually there
are over 1.2 million fatalities and over 20 million serious
injuries worldwide. In the US, the 100-car naturalistic study
sponsored by the National Highway Traffic Safety Admin-
istration (NHTSA) concluded that driver inattention is the
cause of about 80 percent of crashes and 65 percent of
near crashes [2]; and therefore, these can be avoidable. A
lot of attention has been drawn lately to US Department of
Transportation (USDOT) connected-vehicle research program,
which uses a mixture of technologies such as advanced wire-
less communications, on-board computer processing, advanced
vehicle-sensors, GPS navigation, and smart infrastructure, to
identify and warn the drivers on imminent road hazards
[3]. The program includes vehicle-to-vehicle and vehicle-to-
infrastructure communication research activities. The vehicle-
to-vehicle communication refers to the exchange of data (e.g.,

speed, acceleration, heading angle, etc.) over wireless network
that provide information on surrounding vehicles status and
allows for performing calculations and issue driver warnings
to avoid crashes. The communication option is based on
Dedicated Short Range Communications (DSRC). Although
the development of the communication component of this
program is not complete to date, a number of crash avoidance
systems (e.g., blind spot and lane changing warning, forward
collision warning, etc.) have been established so far.

Additional advanced driver assistance systems (ADAS) de-
signed to provide added traffic safety are already in place [4].
These systems are designed to provide assistance or warning
to drivers by considering the longitudinal position of the vehi-
cle or other vehicle-related components. Examples of ADAS
applications include automatic parking, adaptive light control,
night vision, lane change assistance, traffic sign recognition,
collision avoidance system, lane departure warning system, and
hill descent control. Apart from these systems that focus on
the vehicle, there are limited systems already in place that
are designed to monitor the driver’s condition. These moni-
toring systems for example, are capable of tracking driver’s
inattention and drowsiness using LED sensors to monitor eye
movement.

In vision-based systems that involve understanding driver
intentions and actions (e.g., inattention or distraction states),
research studies focus primarily on tracking of the head and
the face of the driver e.g., [5], [6] and constructing 3D space
images using the geometry of the face [7], [8], [9]. In addition,
several researchers, e.g., [10], [11], [12], [13] analyzedhead
pose and gaze for identifying and predicting driver’s intent to
change lanes and perform a maneuver. Apart from tracking
head and facial poses, research has also studied the hand
position and grasp in conjunction with head monitoring for
lane change intent analysis and prediction [14] or for driver
distraction monitoring [15]. Another study [16] presenteda
system for tracking the 3D body movement combined with
head pose tracking system. The authors tested their system
in a simulation environment and obtained preliminary results
related to body posture and lane changing activity. Although
the experimental platform is promising, their results to date
are limited. Researchers in [17] expanded their work to inves-
tigating drivers’ foot behavior using video-based analysis in
conjunction with pedal sensor measurements. They presented
a prediction model for braking and acceleration modes and
concluded that the foot behavior depends greatly on the driver
type. However, several limitations were identified, particularly
with respect to the computational effort of foot tracking, which
may result in delayed predictions that can be critical.
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Fig. 1. Two 3D views of the same frame from the recorded dataset. The
video and depth frames are presented as a sequence of textured 3D frames.
The field of view of the depth camera is also shown as a trapezoid.

In summary, although a significant amount of research
has been involved with the development of advanced driver-
assistance systems, most of these systems rely on the auto-
mobile position and do not consider the drivers actions. Apart
from that, the lane trajectory and position of the vehicle could
potentially differ from the driver’s intent to change lanes. In
addition, recent research has focused on eye/facial tracking as
a means of capturing driver’s attention, fatigue, or drowsiness.
To date, limited research focused on investigating the upper-
body posture of drivers when performing a maneuver as well
as different postures between different drivers, which mayalso
reveal behaviors that contribute to unsafe driving conditions.

Furthermore, several of the aforementioned problems relay
to the fact that the existing vision-based techniques employ
2D image computer vision algorithms that may lead to inac-
curacies when computing 3D data due to lack of the depicted
information. It has been shown that many traditional com-
puter vision problems can be solved more efficiently and/or
accurately using range cameras in conjunction with regular
video [18]. When it comes to pose estimation [19] or 3D
reconstruction of the human body [20], [21], it has been
shown that depth sensors can estimate the shape characteristics
of the human body in real-time [22], which has numerous
applications in various research areas from human-computer
interaction to rehabilitation [23] and monitoring obesity[24].

One popular area of application of human body tracking
algorithms is electronic games. There are several examplesin
literature that report novel uses of body tracking technologies
in games [25], or the development of novel algorithms for
custom-made interaction using special-purpose partial body
tracking [26]. An interactive game-based rehabilitation system
using Kinect was presented in [25]. For a comprehensive
literature review regarding the use of virtual reality and inter-
active games for rehabilitation the reader is referred to [27]. In
most of these applications it has been shown that the existing
body-tracking algorithms pose significant limitations such as
constraints on the environmental setup, requirements regarding
the pose of the users, the number of users being recognized, the
number of 3D points tracked, etc. For example in [23] it has
been shown that generic game-based depth-camera tracking
algorithms fail in complex environments, when the human
body is in close proximity with other objects or subjects in

the field of view. As we also demonstrate in Sec. II, the same
limitations apply to the case of vehicle’s cabin [28]. In this
paper, we overcome these issues by proposing a novel special-
purpose body-tracking framework that focuses on detecting
and tracking joints of the upper-body of the driver in a typical
vehicle environment.

The main objective of this paper is to investigate how
driver’s posture and activity during the driving task can be
obtained and analyzed in real-time using a low-cost range
camera. The findings of this research will assist in identifying
the necessary tools for exploring in the future the correlation
between potentially unsafe driving conditions as a function of
specific driver body postures and actions, such as talking to
phone, texting while driving, or engaging in other non driving-
related activities. These findings could lead to enhancing ad-
vanced driver-assistance systems by identifying specific body
activity associated with unsafe conditions.

The contributions in this paper are three-fold: A) A new
framework is proposed for studying research questions re-
garding the driver’s body posture and actions while driving.
B) We introduce the use of range cameras as an embedded
intelligent sensor [29] for monitoring the driver’s body activity.
C) A basic framework is presented for acquiring, segmenting,
analyzing, and visualizing the recorded sequences of depth
frames. Furthermore, we present a novel method for tracking
the driver’s motion in real time by fitting a 7-point upper body
sekeltal model to the depth frames. Finally, we demonstratethe
efficacy of the proposed methods using several experimental
results from a pilot study.

II. M ETHODS

Each data frame captured by a digital range camera is a
two dimensional array of depth values (i.e., distance between
the plane of the sensor and the depicted objects). Similarly,
a collection of frames is a three dimensional array that can
be represented asD ∈ R

W×H×N , where N denotes the
total number of recorded frames, andW and H denote the
number of pixels across the width and height of the depth
frame respectively. The depth value in a particular pixel with
coordinates(i, j) on framet is denoted byDi,j,t ∈ R

+. In
practice, each depth camera has a specific range of operation,
which restricts accordingly the range of the recorded values
(see depicted field of view in Fig. 1).

The depth frames can be equivalently expressed as quadratic
meshes given byXi,j,t = (i − ic)Di,j,tf

−1, Yi,j,t = (j −
jc)Di,j,tf

−1, and Zi,j,t = Di,j,t, where (ic, jc) denote the
coordinates of the central pixel in the depth frame, andf is
the focal length of the depth camera. One of the advantages
of the quadratic mesh representation of the depth frames
is that they can be easily visualized using virtual lighting,
shading, perspective and point of view using standard computer
graphics techniques. For example, Fig. 2 (left plate) shows
the quadratic mesh of a captured depth frame from our pilot
study. The 3D shape of the body of the driver and part of the
vehicles’ cabin have been clearly captured in the depth frame.
Optionally, the color information from a video frame can be
applied as a texture to the quadratic mesh of the depth frame.
Two examples of such visualization are shown in Fig. 1.
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Fig. 2. Left: visualization of a depth frame. Right: The corresponding mask
with enhanced boundaries between objects, computed using our framework.

The segmentation of the depth frames is a necessary pre-
processing step for analyzing the activities of the human
body. The process of image segmentation is a well-studied
computer vision problem [30], which may be inaccurate when
adjacent regions have similar color patterns, and there is no
clear boundary between them. For an in-depth presentation
and comparison of image segmentation algorithms the reader
is referred to [30], which dedicates a chapter in mid-vision
problems including segmentation. In our proposed framework,
the information captured in the depth frames is enough for
estimating accurately the outlines or boundaries between crit-
ical regions in the field of view, such as the driver’s arms, as
follows: For each depth frame, a binary mask is computed by
evaluating the following two conditions for every pixelx, y
and framet

• maxx,y∈N(i,j) |Di,j,t −Dx,y,t| < thresholddz
• mins∈N(t)Di,j,s > floaterr,

whereN(t) and N(i, j) denote 1D and 2D sets of integers
in the neighbor of the inputt, and i, j respectively, and
thresholddz, andfloaterr are two predefined constants. Each
pixel for which both conditions are true is considered part
of the depicted object in contrast to the rest of the pixels
that belong to the boundary between regions or to an empty
space. The role of the first condition is to segment together
pixels with similar depth values, while the second condition
ignores pixels with: a) depth values in the range of a computer
precision error and/or b) inconsistent depth estimation across
neighboring frames. Fig. 2 shows an example of a computed
mask with clear outlines around the depicted objects.

The masked depth frames are feeded as input to a graph-
based skeleton fitting algorithm that traces key body features,
which is the primary goal of our data processing method. The
body features of our interest include the X, Y, Z coordinates
of the wrists, elbows, and shoulders as well as the orientation
of the driver’s torso. The values of these quantities can be
estimated by fitting a human skeletal model to each of the
depth frames in our datasets. The main challenge in the skeletal
fitting process is that the human body in our particular field
of view is very close to other objects such as the driver’s
seat, the steering wheel and the driver’s door. Any generic
skeletal fitting algorithm performs better when the human body
is clearly visible and at a distance from nearby objects [23],
and therefore will fail in our in-cabin setting. For instance,

Fig. 3. Example of the skeleton model that was erroneously fitto an
arbitrary frame of the depth sequence by the skeleton tracker provided with
the Microsoft Kinect SDK.

Fig. 4. Illustration of the skeleton tracking algorithm. The pixels of the
masked depth frames are scanned diagonally and the medial lines of the body
regions are traced (shown in red) using a graph-based algorithm. The medial
curves are then filtered in order to form the driver’s skeleton.

the skeleton tracking algorithm included in the Microsoft
Kinect Software Development Kit (SDK) fails in detecting the
driver’s body (see Fig. 3), which motivates the development
and use of a special-purpose tracking algorithm for in-cabin
environments.

In order to overcome the aforementioned skeleton fitting
challenges we developed a novel graph-based algorithm that
was designed to fit a 7-point skeletal model to the body of
the driver using a sequence of depth frames. Our skeletal
model included the line segments between the following joints:
right wrist, right elbow, right shoulder, neck, left shoulder,
left elbow, and left wrist. The skeletal model is visualized
in the Experimental Results section in Figs. 12 and 13. In
our visualization we also show the triangle formed by the left
shoulder, the right shoulder and the neck, whose normal vector
was used as an indicator of the torso orientation.

The proposed skeleton fitting algorithm scans the depth
frames in a diagonal fashion from upper right to lower left
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(see illustration in Fig. 4), pixel strip by pixel strip until the
entire image is covered and segmented into line strips that are
smoothly-varing 1-pixel-wide regions defined as

L = {(is, j − is), · · · , (ie, j − ie) : is < ie, (1)
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where is and ie denote the start and end pixel coordinates
of the line segment, which lies on the line strip(i, j − i).
The length of a line segment can be easily computed by
length(L) =

√
2(ie − is + 1).

The computed line segments are organized in the form of a
directed graph, which is constructed simultaneously with the
segmentation of the line segments. In such graph each line
segmentL can be connected with line segments in the previous
row of pixels that form the set ofparents(L) defined as

L′ ∈ parents(L) ⇔ ∃(i, j − i) ∈ L, ∃(i, j − i− 1) ∈ L′ (2)

:

∣

∣

∣

∣

∂Di,j−i,t

∂j

∣

∣

∣

∣
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Equivalently, each line segment can be connected with line seg-
ments in the next row of pixels by defining the setchildren(L)
as the inverse of Eq. 2 as follows:

L′ ∈ children(L) ⇔ L ∈ parents(L′). (3)

The graph produced by Eqs. 2 and 3 may contain cycles.
To enforce the creation of non-cyclic graphs we define the
set father(L) as the subset ofparents(L) that contains the
largest line segment:

father(L) = argmax
L′∈parents(L)

length(L′). (4)

The above process segments a given depth frame into several
regions that are computed as independent disconnected graphs
and typically correspond to different objects in the field of
view. In most applications the subject of interest corresponds
to the graph with the largest number of pixels, and in general
can be easily isolated from the rest of the objects in the scene.

Each graph can be further segmented into smoothly varying
regions by constructing sets of connected line segments with
coherent structural characteristics as follows:

S = {L1, · · · ,Ln : Li = father(Li+1), (5)
|children(Li)| = 1 ∀i ∈ [i, n− 1]}.

The line segmentsLi in Eq. 5 form a sequence of de-
scendants without siblings, which corresponds to a linear
graph. The set of segmentsS can also be organized into
a graph by defining thefather(S) and children(S) using
the connections defined infather(L1) and children(Ln)
respectively.

In our application, the regions of the arms of the depicted
subjects can be found by performing simple graph searches.
More specifically, the arms can be detected by searching for the
two longest ancestor-child paths in the constucted graph with a
common ancestor. The medial line curves of the corresponding
segments along these two paths are shown in red in Fig. 4. It

Fig. 5. Two examples of the proposed arm segmentation. Both arms can
be clearly segmented from the rest of the depth frame even when one arm is
occluded or partially visible from the depth camera (right).

should be noted that the medial curves are calculated in 3D and
not in the 2D coordinates of the frames. After that, the detected
medial curves are filtered with an 1-dimensional Gaussian
filter so that potential noise caused by the depth sensor is
removed. Finally, the points that correspond to the elbows,
wrists, and shoulders are estimated using spatial constraints as
well as geometrical constraints regarding the size, orientation
and curvature of the arms. More specifically, the elbows are
estimated as the points that belong to the medial lines and have
the largest distance from the line segment formed by the end
points of each medial line. Similarly, the location of the wrists
and shoulders are estimated in relationship to the locationof
the corresponding elbow.

This process fits our 7-point skeletal model to the best
matching medial curves. This graph-based algorithm has linear
complexity, which allow us to perform the fitting of the
skeleton in real time in less than 15 milliseconds per depth
frame in the computer configuration described in section III.

After fitting the skeletal model to each depth frame, we
used the location of the traced joints in order to segment
the original mask into regions that correspond to the arms,
forearms, head, and torso using the algorithm described in
[22], and the average X, Y, Z coordinates were computed from
the pixels of each region. Fig. 5 shows two examples of arm
segmentation. By observing the images, it is evident that the
arms were accurately segmented independently of the relative
position of the two arms.

To track the body movements we estimated∂D
∂t

∼ Di,j,t −
Di,j,t−1 for every i, j, t and then computed the average of
the negative values and the average of the positive values
within each region. The magnitude of these two average values
correspond to the directional magnitude of inward and outward
motion with respect to the z-axis. The directional magnitude
of motion is shown in several of our examples (Figs. 7, 8, 9).

Finally, global statistics were computed accross several
depth frames in order to study the variations of such global
quantities between different drivers. More specifically, the
mean depth frame was computed asMi,j =

∑

t Di,j,t, and

the standard deviationSi,j =
√

1
N

∑

t(Di,j,t −Mi,j)2, which
can both be considered depth frames and therefore can be
visualized similarly (see Fig. 7).

The following sections present a description of a pilot study
undertaken to collect field observations of drivers’ 3D body
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shapes and several experimental results obtained using the
proposed methods.

III. D RIVER BEHAVIOR DATA COLLECTION

The field data obtained for this study were collected along
a 2.6 mi stretch of Interstate 75 (I-75) in the southbound
(SB) and northbound (NB) directions, and a 0.7 mile long
arterial segment (Newberry Road eastbound and westbound
approaches) in Gainesville, FL. The freeway segment has three
lanes per direction. A schematic of the study site is presented
in Fig. 6. The arterial segment has three through lanes per
direction, several median openings, and includes a total of
six signalized intersections. The data collection effort took
place on Sunday, September 1st 2013, between 10 am and
noon. Traffic conditions were generally uncongested and free-
flowing, especially on the freeway segment. Traffic on the
arterial segment was light, although towards the end of the
data collection effort the flows were considerably increased.
For the purposes of this pilot study, four participants affiliated
with the research team were asked to complete one route along
the freeway and arterial segment. The participants performed
two mandatory lane changes (i.e., merging onto the freeway)
and several discretionary lane changes on the freeway and the
arterial street. The entire duration of the experiment for each
participant was approximately 20 minutes.

The real-time driver behavior data were acquired using
the PrimeSenseTMdepth sensor contained in the Microsoft
KinectTMdevice. The device was connected (via a USB 2.0
port) to a 64-bit computer with Intel Core i5 (quad core)
CPU at 2.53GHz and 4GB RAM. The computer and the
sensor were both powered using a 75 Watt car power inverter.
The resolution of the depth camera was320 × 240 pixels
with horizontal field-of-view angle (FoV) angle of57o. The
resolution of the video camera was640 × 480 pixels with
horizontal FoV of62o.

The range of the camera was calibrated so that it records
depth values in the range from 0.4m to 3.0m, which is suitable
for the limited space of the cabin of a typical passenger vehicle.
The sensor was fixed on the front passenger’s door, so that
the driver is within the field of view of the depth and video
cameras. Fig. 1 shows the field of view of the depth camera.
The green rectangle depicts the closest plane of sensing, which
is located 0.4m in front of the sensor (shown as the tip of the
yellow pyramid in Fig. 1).

IV. D ISCUSSION OFEXPERIMENTAL RESULTS

The video and depth sequences captured during our pilot
study were manually segmented into several fragments that
correspond to the merging and exiting from the highway as
well as changing lanes, right, and left turning in arterial streets.
Each of the fragments was analyzed independently using the
framework that was presented in Sec. II, and a comparative
study was performed across the corresponding datasets from
different participating drivers. The proposed framework was
implemented in Java using the J4K open source Java library
for Kinect that was originally presented in [22] and is available
at http://research.dwi.ufl.edu/ufdw/j4k.

Fig. 6. Map of the route on the interstate I-75 followed in this pilot study.

Fig. 7 shows the average and standard deviation of the depth
sequence during merging (left) and exiting (right) a highway.
The average depth value in each pixel forms a surface, which
can be plotted in 3D using photorealistic shading to visually
enhance the depicted depth information. The standard devia-
tion of the depth values can either be presented as a surface or
as a color map added to the average surface as shown in Fig.
7. In our plots, the intensity of the red color is proportional to
the standard deviation of the depth values in the corresponding
pixel. Large standard deviation values indicate wide rangeof
motion at the corresponding pixels during the data sequence.
As expected, an exit from a highway through a loop ramp
is typically accompanied by a wide turn, which caused in the
right image of Fig. 7 significant motion in the area of the arms.

During the merging maneuver, it can be observed that the
motion of the arms and head, although significantly less, is
still distinguishable and can provide important information of
the participant’s body posture while merging. For instance, the
analysis of the mean and standard deviation might indicate
that the specific participant made use of the side mirrors for
completing the merging maneuver, instead of turning thor-
oughly the head and investigate potentially unsafe conditions.
Fig. 7 also shows that even incremental variations of the body
posture can be captured, which validates the proposed method.
This type of variations may be significant when evaluating the
variability of body movement across different driver typesand
under different driving situations.

Apart from the mean and standard deviation of the depth se-
quence, we can identify the exact direction of each movement
and associated magnitude, as a function of the increase or de-
crease of the depth values. For example, Figs. 8 and 9 show the
directional magnitude of the head motion and the arms motion
respectively, for two of the subjects participated in the pilot
study. The investigation of the magnitude of each movement
may reveal interesting trends for each individual participant.

http://research.dwi.ufl.edu/ufdw/j4k
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Fig. 7. Global statistics (mean and standard deviation across time) computed
during merging (left) and exiting (right) from a highway fortwo different
drivers (upper and lower row respectively). The mean is shown as the depth
value within each pixel, and the st. dev. is shown as the intensity of red.

First of all, it is possible to consider both movements of the
arms and head in conjunction and not in isolation, contrary
to previous studies that treat these two separately. Then, we
can associate both movements with a specific maneuver (i.e.,
merging, lane changing, etc.) and construct a profile for each
individual participant based on their typical behavior and
movement activity. Such analysis will quantify differences in
body postures between different driver types and could point
out towards behaviors that may lead to potentially unsafe and
even accident-prone driving conditions.

An example of such analysis is illustrated in Figs. 10 and
11 that show the directional magnitudes of the head and arms
while merging for all four participants. The differences inthe
magnitude as well as duration of head and arms directional
changes are apparent in these figures. We further note the
variability observed due to driver behavioral attributes and also
due to traffic conditions. For instance, Drivers SB#2 and SB#4
appear to have increased arm and head movement compared
to Drivers SB#1 and SB#3. In addition, Driver SB#2 appears
to have increased head activity at several instances (e.g.,note
the three peaks in the graph of Fig. 10), which may indicate
increased alertness while merging, possibly due to the presence
of a vehicle in the right-most lane. In addition, these two
figures show that for some drivers, the head and arm movement
is somewhat synchronized, although the arm movement is
considerably more intense, as expected.

Furthermore, using the fitted skeletal model we examined
differences in the body posture during a lane change maneuver
for two of the four participants. Fig. 12 shows the seven point
skeleton model before and after a lane change maneuver for

Fig. 8. An example of a video frame detecting intense head motion. On the
right the corresponding computed directional magnitude ofmotion is shown
in red or blue for increase or decrease of the depth values.

Fig. 9. Another example with intense motion of the arms. The colors and
images are presented using the same format as in Fig. 8.

Fig. 10. Plot of the directional magnitude of the head motionduring merging
for 4 different drivers. The red and blue colors represent increase and decrease
of the depth values respectively.

Driver SB#1 and Driver SB#4. The differences in the body
posture between the two drivers are apparent from this figure.
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Fig. 11. Plot of the directional magnitude of the arm motion during merging.
The format of the plots is the same as in Fig. 10.

Fig. 12. Change in body posture due to a lane change maneuver shown by
the fitted skeletons in the depth frames.

The torso of Driver SB#1 remains practically unaltered during
the maneuver, whereas Driver SB#4 clearly shifts her body
to the left in order to have a better visual of the traffic at the
next lane. On the other hand, Driver SB#1 shifts only the head
to identify potential conflict at the next lane through the rear
mirror.

In addition to the lane change maneuver, a comparative
analysis of the body posture during a merging maneuver was
performed. Fig. 13 presents the frame sequence during a merg-
ing maneuver for Driver SB#4, along with the corresponding

Fig. 13. Change in body posture due to a merging maneuver for Driver SB#4.
The plot shows the torso orientation during the merging maneuver. The depth
frames and fitted skeletons of 3 frames are shown from two 3D perspectives.

time-series of the torso orientation. In this graph the torso
orientation represents the rotation in degrees from the torso
position perpendicular to the steering wheel. The orientation
is positive for left-turn rotation and negative for right-turn
torso rotation. Frames A, B and C are taken as before, during,
and after the execution of the merging maneuver. From these
graphs it is clear that the torso rotation of Driver SB#4 is
considerably increased during the merging task. Driver SB#4
torso orientation during this merging maneuver is consistent
with the lane changing example shown in Fig. 12.

Similarly to the torso orientation, a comparative analysisof
other parts of the participants body motion can be performed.
Fig. 14 shows the time-series of the X, Y, Z coordinates of the
wrists, elbows, shoulders for Driver SB#4, during the entire
duration of the driving task. Using the data shown in Fig. 14
it is easy to obtain instances where there is significant body
activity by identifying spikes in the respective graphs, and
further analyze the underlying conditions for these instances.

By observing Fig. 14 it is evident that there is a more
frequent arm motion detected during the arterial segments
compared to the freeway segments as we anticipated. For
example in this dataset the driver started merging onto the
freeway at 100 sec. and exited at 300 sec. which correspond
to intense arm activity as indicated by a significant change
to the coordinates of the wrists and the elbows. During the
freeway segment (between 100 sec. and 300 sec.) there was
no significant change of posture detected and the coordinates
of the traced joints changed only occasionally as it was
also anticipated. This smooth driving pattern is significantly
different compared to the one observed during the arterial
segments which corresponds to 0 sec. - 100 sec., 300 sec. - 480
sec., and 650 sec. - 700 sec. During these segments the driver
stopped at red traffic lights and followed a path that included
many 90-degree turns. All of these instances were naturally
associated with arm activity, which corresponds to changesin
the coordinates of the wrists slightly as it is shown in Fig. 14.
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Fig. 14. Skeleton activity versus time for Driver SB#4.

Finally, the segment from 480 sec. - 650 sec. corresponds to
the northbound freeway segment, which was associated with
occasional body motion according to the plots in Fig. 14.

It should be noted that the proposed analysis provides
significant insights related to the body posture and movements
during various driving tasks, such as merging, changing lanes,
as well as while undertaking secondary tasks such as texting,
talking on the cell phone, eating, tuning the ratio, etc. In
addition, the methodological framework described in this paper
is capable of capturing variations across drivers, by examining
differences of the mean and standard deviation of the depth
sequence, the directional magnitude of motion, and the po-
sition of the traced joints in our skeletal model for different
driving maneuvers. These findings are useful for developingan
advanced drivers’ assistance system that is able to detect driver
motion and predict potentially unsafe conditions, and therefore,
provide warning to the driver. This type of warning would
complement existing surveillance systems typically installed
to warn the driver for the surrounding traffic and the vehicle
position.

V. CONCLUSION: L IMITATIONS AND FUTURE DIRECTIONS

A novel approach for assessing drivers’ body movements
inside a vehicle was introduced in this paper. The proposed
method can be used in the future for investigating how
different driver types perform various maneuvers and which
specific movements are associated with safe or unsafe driving
conditions. This framework intends to fill a gap in literature as
discussed in Sec. I and offers a tool for studying unexplored
research questions regarding the correlation of drivers’ body
motion with potentially unsafe driving conditions.

Such research questions were intentionally not explored
in this paper due to the limited number of participants in
our pilot study, which is an obvious limitation of this work.
The pilot study was conducted as a proof of concept, where
four participants drove along a freeway and arterial route and
performed a number of merging and lane changing maneuvers.
The 3D shapes of the participants were constructed with the
use of a low-cost infrared depth sensor for each maneuver
performed. Several quantitative measures were evaluated as

part of the preliminary analysis of the pilot study. Global
statistics such as the mean and standard deviation as well
as the directional movement of motion, and the proposed
7-point skeleton tracking revealed significant differences for
different maneuver types and among the participants. Contrary
to earlier research, the proposed methodology may be used
for studying the upper body posture and motion as a whole,
instead of focusing on individual parts of the body in isola-
tion, overcoming the limitations of general purpose tracking
algorithms. However, the main strength of our method can be
also cosidered a limitation since our algorithm is optimized
for tracking human activities in a vehicle’s cabin environment
and is not suitable for general use such as in gaming.

A future direction is to expand the implementation of the
proposed methodological framework to additional drivers and
investigate the relationship between potentially unsafe driving
events and the actual driver body posture and movements
when performing a driving maneuver (e.g., lane changing,
merging) under different traffic and geometric configurations
and when engaging with a secondary task. We will also identify
typical behaviors of specific driver groups (e.g., younger vs.
older drivers, aggressive vs. conservative drivers, men vs.
women), in naturalistic settings. Such information can be used
for enhancing current driver training methods for targeted
driver groups such as novice or elderly drivers. Lastly, it is
recommended to develop a framework for constructing an in-
vehicle driver-assistance system that takes into account the
driver’s body posture and movements rather than considering
solely the vehicle position.
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