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Tensor Body: Real-time Reconstruction of the
Human Body and Avatar Synthesis from RGB-D

Angelos Barmpoutis, Member, IEEE

Abstract—Real-time 3D reconstruction of the human body
has many applications in anthropometry, telecommunications,
gaming, fashion, and other areas of human-computer interaction.
In this paper a novel framework is presented for reconstructing
the 3D model of the human body from a sequence of RGB-
D frames. The reconstruction is performed in real time while
the human subject moves arbitrarily in front of the camera.
The method employs a novel parameterization of cylindrical-type
objects using Cartesian tensor and b-spline bases along the radial
and longitudinal dimension respectively. The proposed model,
dubbed tensor body, is fitted to the input data using a multi-
step framework that involves segmentation of the different body
regions, robust filtering of the data via a dynamic histogram,
and energy-based optimization with positive-definite constraints.
A Riemannian metric on the space of positive-definite tensor
splines is analytically defined and employed in this framework.
The efficacy of the presented methods is demonstrated in several
real-data experiments using the Microsoft Kinect sensor.

Index Terms—3D reconstruction, Avatar, Kinect, Tensor Basis,
Positive-Definite constraints, B-Spline.

I. INTRODUCTION

INFRARED depth cameras in conjunction with regular
RGB video cameras have been widely used as low-cost

peripheral devices for various applications related to virtual
reality interaction using natural user interfaces. The informa-
tion captured on a daily basis by these devices can also be
used to extract useful information related to the tridimensional
shape of the users’ body, as well as track changes on its size,
range of motion, and physical condition.

There are several examples in literature that present appli-
cations of RGB-D cameras [1]. A controller-free exploration
of medical image data for avoiding the spreading of germs
was proposed in [2]. A game-based rehabilitation system was
presented in [3] using body tracking from RGB-D. Other
applications include human detection [4], interactive video
morphing [5], model-based 3d tracking of hand articulations
[6], and real-time human pose recognition and tracking of
body parts [7]. A detailed review of RGB-D applications that
utilize Microsoft Kinect sensor is presented in [1].

Several of the aforementioned applications employ various
well studied principles from 2D image-based computer vision
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in novel human computer interaction applications. It has been
shown that many traditional computer vision problems can
be solved more efficiently and/or accurately using RGB-D
cameras. For example, there are several popular computer-
vision approaches for reconstructing the 3D shape of a human
face, namely shape-from-shading, shape-from-stereo, shape-
from-video, and others [8], [9], [10]. However, a more efficient
solution is offered in the framework presented in [11] by fitting
a morphable face model to RGB-D data.

Similarly, human avatars can be reconstructed in 3D using
image- or video-based approaches [12], [13], [14], [15], [16].
These methods perform various intermediate steps, such as
image processing to label object pixels, calculating the volume
intersection, and rendering the visual hull. However, several
of these techniques require prior environmental setup and the
avatars are reconstructed as non-articulated rigid objects, hence
they cannot be re-rendered in new arbitrary postures.

The human bodies as articulated models have been recently
studied in [17], [18]. Both techniques use RGB-D frames
to reconstruct the body in 3D with [18] or without [17] an
underlying parametric model of the human body; however both
methods require long running times and hence are not suitable
for real-time reconstruction. Real-time reconstruction of the
3D model of the human body is necessary in many applications
such as gaming and teleconferencing. Furthermore, real-time
measurements of the human body such as circumference and
volume are useful in many medical [19], anthropological, or
even fashion-related applications.

In this paper, a framework is presented for reconstructing
the human body as an articulated generative 3D model that
can be re-rendered in arbitrary novel postures by overcoming
the aforementioned limitations of the existing techniques. The
proposed method fits in real-time a novel parametric model
to the data captured from a single RGB-D camera. One of
the advantages of the proposed technique is that the human
subjects can be reconstructed in 3D while they naturally move
and interact with the system, without requiring from the users
to stand in a particular posture.

The proposed parametric model employs the Cartesian
tensor basis and b-spline basis, which are both well stud-
ied mathematical tools, and can be used for approximat-
ing smoothly varying fields of spherical functions [20]. The
proposed body tensor model is an extension of the tensor
spline framework that was used in other applications, such
as for modeling diffusivity functions in MRI data [20] and
bidirectional reflectance distribution functions [21]. In this
paper, the proposed parameterization uses intrinsic positive-
definite constraints in order to approximate cylindrical-type
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3D objects with positive volume. This positive-definite tensor
spline model is employed to approximate the arms, forearms,
thighs, legs, and human torso using an energy-driven data
fitting process. Several experimental results are presented that
demonstrate the efficacy of the proposed framework showing
a significant improvement compared to other existing tech-
niques, specifically ×103 improvement in running time for
achieving results with similar fitting errors.

The contributions in this paper are four-fold: A) A novel
framework for synthesizing avatars from RGB-D is presented
with various intermediate steps that include body segmentation
and dynamic robust data filtering. B) A novel parameterization
of the human body, dubbed tensor body, is presented using
tensor splines. C) Positive-definite constraints are imposed
to the estimated tensor splines using a Riemannian metric
defined on the space of positive-definite tensor splines and is
also employed for interpolation/extrapolation between avatars.
D) Notable improvement of 3 orders of magnitude (powers
of 10) in running time is shown compared to other existing
techniques.

II. TENSOR SPLINE FRAMEWORK

In this section a novel parameterization of cylindrical-type
3D shapes with positive volume is presented by employing
Cartesian tensor basis with positive-definite constraints.

A. Tensors as spherical functions

There are several different known parameterizations of
real-valued functions defined on the n-sphere (dubbed here
spherical functions), f(x) : Sn → R, where Sn denotes
the space of the n-dimensional sphere that lies in the n + 1
Euclidean space. Most of the parameterizations use a set of
basis functions such as finite elements, spherical harmonics,
or their Cartesian equivalent. The finite element bases have
local support, which allows for local fitting to data samples,
while the spherical harmonic or Cartesian tensor bases provide
a global support, which allows for robust global fitting to
data samples, and for this reason are employed in this work.
The reader is referred to [22] for an in-depth presentation of
Cartesian tensors and their use as a basis for approximating
continuous real-valued spherical functions.

Spherical functions can be parameterized using a Cartesian
tensor of degree d in the form of the following homogeneous
polynomial:

Td(x) =
∑

i1+i2+···+in+1=d

ci1,i2,··· ,in+1x
i1
1 x

i2
2 · · ·x

in+1

n+1 (1)

where xi is the ith component of the (n+1)-dimensional unit
vector x ∈ Sn, and ci1,i2,··· ,in+1

are the tensor coefficients
((n+d)!/n!d! in total), and the indices i1, i2, · · · , in+1 ∈ N0.

In the case of n = 1, Eq. 1 can be written as

Td(φ) =
∑

i1+i2=d

ci1,i2cos
i1φsini2φ (2)

by substituting x1 and x2 with cosφ and sinφ respectively,
where φ is the angular parameter of S1. The number of
coefficients in Eq. 2 is d+ 1.

Let T nd denote the space of functions f : Sn → R
parameterized using tensors of degree d given by Eq. 1. It can
be easily shown that T nd ⊂ T nd+2 ∀d ≥ 0, since ∃ Td+2 ∈ T nd+2

: Td+2(x) = xxTTd(x) ∀ given Td(x) ∈ T nd . Based on the
above, it can be easily shown that any spherical function can
be approximated by parameterizing its symmetric and anti-
symmetric component as the sum of an even and an odd degree
tensor:

fd(x) = Td(x) + Td+1(x). (3)

In the case of n = 1, the number of coefficients in Eq. 3 is
2d+ 3.

B. Positive-definite tensors

In several applications there is the need to approximate non-
negative quantities, such as distance, magnitude, and weight.
If such quantities are given as a function of a unit vector,
this function can be approximated by fitting the model in
Eq. 3 to the data using positive-definite constraints [23], [22].
Let T nd × T nd+1 denote the space of the functions given by
Eq. 3. The part of the space T nd × T nd+1 that corresponds
to positive-definite functions is clearly a convex subspace,
more precisely a hyper-cone, since any convex combination
or positive scale of the elements of that subspace is also
an element of the subspace. Therefore, any positive-definite
function in T nd × T nd+1 can be approximated by a positive-
weighted sum of the elements of the boundary of the hyper-
cone. Given a dense linearly independent sampling of the
boundary, the non-negative elements of T nd × T nd+1 can be
approximated by

fd(x) =

m∑
i=1

wif
∗
d,i(x) (4)

where f∗d,i(x) is a set of linearly independent elements of
the boundary of the space of positive-definite functions in
T nd × T nd+1, and wi > 0 ∀ i ∈ [1,m]. The accuracy of the
approximation of the hyper-cone space T nd × T nd+1 by the
hyper-polygon in Eq. 4 can be expressed as a function of m
and d [22]. The sum

∑m
i=1 wi is positive, but not necessarily

equal to one, since wi also captures the scale of the modeled
function fd(x), which is factored out of the boundary elements
f∗d,i(x) due to their linear independence.

In our application we used the set of positive semi-definite
functions in T 1

d × T 1
d+1 given by

f∗d,i(x) =
2π

m
∫ 2π

0
cosdωdω

[yi(x)
d + yi(x)

d+1] (5)

where yi(x) = x1cosθi + x2 sin θi, θi = 2πi/m, and
x ∈ S1. Note that Eq. 5 is non-negative for even d, and∑m
i=1 f

∗
d,i(x) = 1 ∀x ∈ S1. Besides these useful properties,

this particular function behaves as a sampling kernel since
limd→∞ f∗2d,i(x) = δ(x1 − cos θi)δ(x2 − sin θi), where δ is
the Dirac delta function (see Fig. 1). This natural property of
sampling kernels associates the sampling frequency with the
degree d of the tensor in our parameterization (i.e. the higher
the degree of the tensor, the higher the frequencies that can
be captured by this model).
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Fig. 1. Plots of Eq. 5 for various degrees d, and orientations defined by
i = 1 · · · 10, m = 20.

In the case of d = 2, the 7 coefficients of f∗2,i(x) are
cos2θi/m, sin2θi/m, 2cosθisinθi/m, cos3θi/m, sin3θi/m,
3cos2θisinθi/m, 3cosθisin

2θi/m and correspond to the
monomials x21, x22, x1x2, x31, x32, x21x2, and x1x22 respectively.
Similarly, the coefficients of fd(x) in Eq. 4 are given by the
weighted sum of the coefficients in f∗2,i(x). For example, the
coefficient

∑m
i=1 wicos

2θi/m corresponds to the monomial
x21.

The degrees of freedom of the model in Eq. 4 are given by
the number of the tensor coefficients (2d + 3 in Eq. 5) and
not by the number m of unknown weights wi. This can be
easily shown by rewriting Eq. 4 as v(x)TFw, where v(x)
is a vector with all the monomials of x in f∗d,i(x), F is a
2D matrix with all the polynomial coefficients in f∗d,i(x), and
w is an m-dimensional vector that consists of the values wi.
Similarly, the size of F in Eq. 5 is (2d+3)×m, and its rank
(that corresponds to the degrees of freedom in Eq. 4) is at
most 2d+3, assuming that m > 2d+3, since m was defined
as the size of a dense set of linearly independent elements
on the boundary of the space of positive-definite functions in
T nd × T nd+1.

C. Positive-Definite Tensor Splines

A continuous and smoothly varying 1-dimensional field of
positive-definite spherical functions in the form of Eq. 4 can
be modeled by using the B-spline basis [24], [20], [21] of
degree k, denoted by Nj,k+1(s), where j corresponds to a
discretization sj (commonly known as knots) of the domain
s as follows:

fd(x, s) =

m∑
i=1

n∑
j=0

wi,jNj,k+1(s)f
∗
d,i(x). (6)

In Eq. 6 the weights wi,j are the so-called control points,
which are blended across j using the B-spline basis. Further-
more, the positive-definite tensors given by

∑m
i=1 wi,jf

∗
d,i(x)

∀j ∈ [0, n] play the role of control tensors along an 1-
dimensional field.

The mathematical model in Eq. 6 can be used for param-
eterizing cylindrical type of objects with one radial and one
longitudinal dimension. The 3D coordinates of the points on
the parameterized surface are given by [x1fd(x, s), x2fd(x, s),

TABLE I
LIST OF TENSOR COEFFICIENTS IN EQ. 7 FOR d = 2

i1 + i2 ci1,i2,j

2 c2,0,j =
∑m

i=1 wi,jcos
2(2πi/m)/m

2 c0,2,j =
∑m

i=1 wi,jsin
2(2πi/m)/m

2 c1,1,j =
∑m

i=1 wi,j2cos(2πi/m)sin(2πi/m)/m

3 c3,0,j =
∑m

i=1 wi,jcos
3(2πi/m)/m

3 c0,3,j =
∑m

i=1 wi,jsin
3(2πi/m)/m

3 c2,1,j =
∑m

i=1 wi,j3cos
2(2πi/m)sin(2πi/m)/m

3 c1,2,j =
∑m

i=1 wi,j3cos(2πi/m)sin2(2πi/m)/m

s], where the third dimension corresponds to the longitudinal
axis s, and x = [cosφ, sinφ]. A typical symmetric cylinder of
radius ρ and height h can be parameterized using a uniform
tensor spline by setting wi,j = ρ ∀i, j and sj+1 − sj =
h/(n+ 1− k) ∀j in Eq. 6.

By substituting Eqs. 2 and 5 into Eq. 6 the following
positive-definite tensor spline model can be derived for S1:

fd(φ, s) =

n∑
j=0

∑
i1,i2

ci1,i2,jNj,k+1(s)cos
i1φsini2φ (7)

where the second sum is over all pairs of indices (i1, i2) :
i1 + i2 ∈ {d, d + 1}, i1, i2 ∈ N0. In the case of d = 2, there
are 7 tensor coefficients ci1,i2,j , which are listed in table I.

Eq. 7 is positive-definite fd(φ, s) > 0 ∀φ ∈ [0, 2π], and
s ∈ [s0, sn+1−k]. Note that there are no additional constraints
imposed on the range of the values of the tensor coefficients
ci1,i2,j , besides the fact that wi,j > 0. The degrees of freedom
of the models in Eqs. 6 and 7 are given by the number of
tensor coefficients ci1,i2,j . In the particular case of Eq. 7 the
number of coefficients is (2d + 3) × (n + 1), i.e. it depends
linearly on the degree of the tensor, as well as the number of
control points of the B-spline.

D. Tensor Spline Distance Measure

Let ad(x, s) and bd(x, s) be two positive-definite ten-
sor splines (defined as in Eq. 7), with coefficients ai1,i2,j
and bi1,i2,j respectively. There are several possible met-
rics that can be used to define the distance between ad
and bd, such as the Euclidean distance dist(ad, bd) =√∑n

j=0

∑
i1,i2

(ai1,i2,j − bi1,i2,j)2, or the L2 norm given by

dist(ad, bd) =
√∑n

j=0

∫
S1
(ad(x, s)− bd(x, s))2dx. In the

latter case, the integrals can be analytically computed as pow-
ers of trigonometric functions by parameterizing the vectors
in S1 as x = [cosφ sinφ]. Such metrics are useful not only
for computing the distances between tensor splines, but also
for atlas construction, as well as for interpolation and extrap-
olation, and for defining energy functionals in optimization
methods.

In the case of the two aforementioned metrics, the tensor
splines ad(x, s) and bd(x, s) can be treated as elements of a
Euclidean space, and be represented in this space by vectors
a, b ∈ R(2d+3)×(n+1) that consist of the coefficients ai1,i2,j
and bi1,i2,j respectively. However, tensor splines that are not
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necessarily positive-definite can also be mapped to the same
Euclidean space, hence there is no guarantee that the result
of extrapolation given by a + λ(b − a) : λ ∈ (−∞, 0) ∪
(1,∞) will correspond to a positive-definite tensor spline. This
may produce shapes of negative volume that are unnatural in
many applications, including the one presented in Sec. III for
modeling the 3D shape of human body parts. To overcome
this problem the positive-definite parameterization that was
introduced in Sec. II-B will be employed.

E. Riemannian metric

Let the coefficients ai1,i2,j and bi1,i2,j be parameterized, as
in table I, using the positive weights wai,j and wbi,j respectively
(the table lists the formulas for the 2nd and 3rd degree
coefficients only, but it can be easily extended to higher
degrees by expanding the terms in Eq. 5). The corresponding
tensor splines can be treated as elements of the Rm×(n+1)

∗+ ,
and be represented in this space by stacking the weights wai,j
and wbi,j in the form of vectors wa, wb ∈ Rm×(n+1)

∗+ , where
R∗+ denotes the space of positive real numbers.

The distance measure in this space can be defined us-
ing the Riemannian metric on R∗+ that utilizes its tan-
gent space (defined by the log mapping [25], [26], [27]):
dist(ad, bd) = ||Log(wa) − Log(wb)||, where the function
Log() is the natural logarithm applied individually to every
element of the input vector. The same Riemannian metric can
be used for interpolation/extrapolation using the exp projection
from the tangent space to R∗+ as follows: Exp(Log(wa) +
λ(Log(wb) − Log(wa))), where the function Exp() is the
natural exponential applied individually to every element of
the input vector. The computed vectors are guaranteed to
correspond to positive-definite tensor splines ∀λ ∈ R. The
Riemannian metric assigns infinite distance between positive-
definite tensor splines and semi-definite tensor splines, hence
the boundary of the space of positive-definite tensor splines
can be approached by extrapolating towards the boundary
using limλ→∞. Examples of interpolation and extrapolation
of positive-definite tensor splines using the Riemannian metric
are shown in Fig. 7 in the Experimental Results section.

III. AVATARS AS TENSOR BODIES

Most parts of the human body can be modeled as a set of
positive-definite tensor splines that approximate the shape of
the arms, forearms, legs, thighs, and torso. These segments of
the human body can be approximated by rigid tridimensional
models, since there are no large deformations in their structure
during a natural human motion, unlike the hands, the head (for
3D face reconstruction from RGB-D see [11]), and the elbows
and knees, which can be easily rendered by interpolating the
adjacent tensors. The coefficient vector w of each tensor spline
can be estimated from real data captured by RGB-D cameras.
In this section, a novel method is presented for real-time
human avatar synthesis by fitting a tensor body model, i.e.
a set of positive-definite tensor-splines, to point-sets collected
from a sequence of RGB-D frames. The proposed framework
consists of several steps depicted in Fig. 2.

Fig. 2. Flow chart of the proposed framework for avatar reconstruction from
RGB-D frames.

A. RGB-D data acquisition and skeleton fitting

Depth cameras generate sequences of discrete depth frames
in the form of 2D arrays Di,j , which can be equivalently ex-
pressed as quadratic meshes given by Xi,j = (i− ic)Di,jc

−1
d ,

Yi,j = (j − jc)Di,jc
−1
d , and Zi,j = Di,j , where ic, jc denote

the coordinates of the central pixel in the depth frame, and cd
is the focal length of the depth camera.

The video frames captured by an RGB camera can be
associated with the 3D quadratic meshes by using a UV texture
mapping given by the coordinates Ui,j = X ′i,jZ

′
i,j
−1
cv ,

Vi,j = Y ′i,jZ
′
i,j
−1
cv , where the coordinates of the vector [X ′

Y ′ Z ′]T are related to [X Y Z]T via a known rigid trans-
formation (rotation and translation), and cv is the focal length
of the video camera [8]. The aforementioned transformation
corresponds to the mapping between the locations of the focal
points and orientations of the two cameras (RGB and D).

Each frame of the RGB-D sequence can be considered a
set of arrays {Xi,j , Yi,j , Zi,j , Ri,j , Gi,j , Bi,j}, where R,G,B
correspond to the red, green, and blue color channels of the
video frame at the image coordinates Ui,j , Vi,j . This sequence
of data frames can be used to detect the presence of a particular
skeletal geometry, such as human skeletal geometry, and fit to
each frame a skeletal model that consists of the following set
of parameters:

S = {al ∈ R3,bl ∈ R3,Rl ∈ SO(3) : l ∈ L} (8)

where L is a set of indices of line segments defined by the end-
points al and bl, and its orientation in the 3D space is given
by the rotation matrix Rl. There are several algorithms that
compute S from RGB-D, or just D, such as those implemented
in the Microsoft Kinect SDK [28], in OpenNI library [29] (see
detailed discussions in [30], [31] and comparison of these two
libraries in [1]), and others [4], [7], any of which could be
used as a module in the proposed framework (Fig. 2).

B. RGB-D Segmentation

The parameters in the skeletal model S can be used in
order to segment the quadratic mesh that corresponds to a
frame of the RGB-D sequence into different body regions. For
every vertex p = [Xi,j Yi,j Di,j ]

T in the quadratic mesh we
compute the index l of the closest line segment in the skeletal
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Fig. 3. Examples of the quadratic mesh segmentation results obtained from different RGB-D frames depicting various orientations of the body. The fitted
skeleton is shown on the fifth plate.

model as follows:

l(p) = argminl∈L||al + sl(p)(bl − al)− p|| (9)

where al,bl ∈ R3 are vertices/joints that define a particular
line segment in the skeletal model (Eq. 8), and sl(p) is the
projection of p onto the lth line segment given by:

sl(p) = max{min{ (bl − al)
T (p− al)

||bl − al||2
, 1}, 0} (10)

The max and min functions in Eq. 10 guarantee that, if the
projection falls outside the line segment, the distance given
as the argument of argmin in Eq. 9 will be equal to the
Euclidean distance between p and the closest end-point of
the line segment (i.e min{||al − p||, ||bl − p||}). Using Eq.
9 every vertex p in the quadratic mesh is assigned to the
closest body segment. This process segments the quadratic
mesh into several body regions and is performed for every
frame of the RGB-D sequence. The points of the deformable
areas around the elbows and knees, whose projections fall
outside the line segment will be intentionally mapped to the
boundary of the closest body part, and consequently will be
ignored by the robust data fitting algorithm (see Sec. III-D).
This useful property of Eq. 10 guarantees that the deformable
areas around joints will not be explicitly reconstructed by the
proposed tensor body parameterization as it was discussed
in the beginning of Sec. III. Instead, elbows and knees are
rendered by interpolating the adjacent tensors in the tensor
body model (Fig. 10). Note that the points that do not belong
to the depicted human subject can be easily thresholded across
Zi,j , since the background objects usually have larger Di,j

values. This is an implicit assumption of many skeletal fitting
algorithms including the one employed in our experiments
(provided by Microsoft Kinect SDK).

The points that belong to a particular body region form the
point-set Pl = {p ∈ R3 : l(p) = l, 0 < sl(p)(p) < 1}, which
will be used as our data source in the positive-definite tensor
spline fitting algorithm described in the next sections. Results
from the quadratic mesh segmentation are shown in Fig. 3 and
are discussed in detail in Sec. IV.

C. Tensor Spline Estimation

In order to fit a positive-definite tensor spline (Eq. 6) to a
pointset Pl that consists of points on the surface of the lth

body region, we first need to map each point in Pl to the
domain of the function in Eq. 6. In our particular application,
the domain is S1×R and corresponds to the relative orientation
and location of each point with respect to the central axis of
the tensor spline.

Every point p ∈ Pl can be uniquely mapped to R2 (i.e. the
2D plane of the unit circle S1) by

xp =

[
1 0 0
0 0 1

]
R−1l (p− al + bl

2
) (11)

where al, bl, and Rl are the parameters of the lth segment of
the skeleton modeled by Eq. 8. The role of the matrix on the
left is to project the result to a 2D plane that is perpendicular to
the central axis of the tensor spline. Without loss of generality,
the central axis is assumed here to be parallel to the y-axis
of the Cartesian space hence the first (x) and the third (z)
components of the rotated vector are used as the elements of
xp.

The positive-definite tensor spline model (Eq. 6) can be
fitted to the magnitude ||xp|| by minimizing the following
energy function with respect to the coefficient vector wl:

E(wl) =
∑
p∈Pl

(fl(xp/||xp||, sl(p)(p))− ||xp||)2. (12)

The data value ||xp|| in Eq. 12 corresponds to the unit vector
xp/||xp|| in the angular domain of the tensor spline model
and the point sl(p)(p) along the longitudinal dimension. The
unknown vector wl can be estimated by any gradient-based
optimization method [32] using the analytically computed
gradients of Eq. 12. Additionally, positive-definite constraints
can be applied to the elements of wl by updating their values
using gradients computed in the Riemannian space discussed
in Sec. II-E.

Finally, the fitting process can be easily extended to ac-
commodate multiple point-sets Pl that correspond to several
RGB-D frames.
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D. Robust data fitting

The least-squares fitting process described in Sec. III-C
performs averaging over the data values ||xp|| that correspond
to the same angular and longitudinal coordinates (x, s) of
the tensor spline domain in Eq. 6. If the corresponding data
values vary across multiple frames due to misfit of the skeletal
model, or due to deformations in the areas around joints, then
the result of the least-square fit is equivalent to the result
obtained by fitting the tensor spline model to the mean of
the corresponding data values. The average value, or L2-norm
statistical quantities in general, are significantly affected by the
presence of outliers in the data, causing in our case erroneous
tensor spline estimates.

This problem can be solved by introducing a robust energy
function based on the distribution of the data values computed
in the form of a histogram as follows:

h(f,x, s;P) =∑
p∈P

N(f ; ||xp||, σ2
f )N(s; sl(p)(p), σ

2
s)V (x;

xp
||xp||

, κ)

where f ∈ R, x ∈ S1, s ∈ R, and the functions N() and V ()
denote the Normal and von Mises probability density functions
respectively. The parameters σ2

f , σ2
s , and κ are the variances

and concentration of the probability functions.
For a given pair (x, s) the histogram h(f,x, s;P) shows

the distribution of the data values ||xp|| in the space of real
numbers, parameterized here by f . The peak of the histogram
corresponds to the most dominant data value for a given (x, s)
and it is robust to outliers. The robust data estimate is given
by

d(x, s) = argmaxf∈Rh(f,x, s;P), (13)

and can be used for robust positive-definite tensor fitting in
the following energy function

E(wl) =

∫
S1

∫ 1

0

(fl(x, s)− d(x, s))2dsdx. (14)

The integrals in Eq. 14 are over the unit circle S1 and the [0, 1]
interval of the longitudinal axis of the tensor spline. Note that
s = 0 and s = 1 correspond to two 2D sections of the tensor
spline that are perpendicular to the line segment (al,bl) and
pass through al and bl respectively. The energy function in
Eq. 14 can be optimized with respect to the unknown vector
wl using any gradient-based method.

E. Implementation details

For real-time (∼ 25 frames/second) 3D body reconstruction,
the histogram h(f,x, s;P) discussed in Sec. III-D can be
implemented by discretizing the domains of f , x, and s.
The unit circle can be divided into M sections represented
by xi = [cos(2πi/M) sin(2πi/M)], i = 1 · · ·M and the
longitudinal axis can be similarly divided into N line segments
represented by sj = (j − 1)/(N − 1), j = 1 · · ·N . For every
new data pair (xp/||xp||, sl(p)(p)) the closest bin (xi, sj) in
the discretized histogram will be used.

The domain of f is dynamically discretized in the form of
an on-line K-means clustering algorithm. For each of the K

clusters the mean value of the cluster fk is stored, as well as
the number of data points assigned to this cluster hk, k =
1 · · ·K, without explicitly storing the individual data points.
For every new data value ||xp|| in the bin (xi, sj), the closest
cluster is found (i.e. argmink=1···K |fi,j,k − ||xp|||), and if
the distance from this cluster is smaller than σ2

f , the cluster is
properly updated (i.e. fi,j,k ← (fi,j,khi,j,k+||xp||)/(hi,j,k+1)
and hi,j,k ← hi,j,k+1). Otherwise, the cluster with the smaller
population is found (i.e. argmink=1···Khi,j,k) and is updated
as follows: fi,j,k ← ||xp||, and hi,j,k ← 1.

The discretized version of Eq. 13 is given by

di,j = fi,j,argmaxk=1:Khi,j,k
(15)

and can be used for robust positive-definite tensor fitting in
the following energy function

E(wl) =

M∑
i=1

N∑
j=1

(fl(xi, sj)− di,j)2. (16)

In our experiments we used N = 64, M = 64, K = 21, and
σ2
f = 10−2. Note that the histogram in Eq. 15 does not use

a point-set P as one of its arguments, because the histogram
hi,j,k is updated on-line by one data point at a time, in contrast
to Eq. 13. Finally, Eq. 16 is a polynomial and its derivatives
with respect to wl can be easily computed analytically.

After estimating the coefficient vectors wl ∀l ∈ L, the
human avatar can be rendered in any arbitrary posture given
in the form of a skeleton structure S. For the purpose of
rendering, each tensor-spline model is scaled by the magnitude
of ||al−bl|| along the longitudinal axis, its center is translated
to the point (al + bl)/2 and rotated by Rl. In the next
section, the proposed method is demonstrated through several
experiments using real RGB-D datasets.

Finally, the areas around the knees and elbows are rendered
by smoothly interpolating between the two boundary tensors
of the adjacent body parts using the Riemannian framework
discussed in Sec. II-E. Figure 10 shows an example of a fitted
tensor body model with and without filling the gap between
the reconstructed tensor-spline segments of the legs.

IV. EXPERIMENTAL RESULTS

The results presented in this section were obtained by apply-
ing the proposed framework to real-time data acquired using
the PrimeSenseTMdepth sensor as well as the video camera of
Microsoft KinectTMdevice. The device was connected (via a
USB 2.0 port) to a 64-bit computer with Intel Core i5 (quad
core) CPU at 2.53GHz and 4GB RAM. The resolution of the
depth camera was 320×240 pixels with a viewing range from
0.8m to 4.0m and horizontal field-of-view angle (FoV) angle of
57o. The resolution of the video camera was 640×480 pixels
with horizontal FoV of 62o. The proposed framework was
implemented solely in Java using custom bindings to OpenGL
and Kinect SDK libraries, and the implementation is available
at http://www.digitalworlds.ufl.edu/angelos/lab/kinect.

In every iteration of the proposed framework cycle (illus-
trated in Fig. 2) the most recent pair of frames is used as
input data. The data are converted to a colored quadratic mesh
{X,Y, Z,R,G,B}i,j , which is then segmented into several

http://www.digitalworlds.ufl.edu/angelos/lab/kinect
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Fig. 4. Left: An intermediate state of the 3D reconstructed model before
convergence. Right: The rectangular grid made of the current peaks of the
data histograms superimposed on the current input frame in 3D.

body regions using the parameters of the skeletal model S
computed from the input data. In our implementation we used
a skeletal model with 13 joints connected via 13 line segments
(L = 1 · · · 13 in Eq. 8) shown on the fifth plate of Fig. 3.
Each line segment corresponds to a different body region with
the only exception of the torso, which is made out of 4 line
segments. The proposed method divides the data into 11 point-
sets Pl in total (background, head, torso, 2 arms, 2 forearms,
2 thighs, and 2 legs) as discussed in Sec. III-B.

Figure 3 shows the obtained quadratic mesh segments
in different colors. Each plate shows the results produced
in real time from various frames during a natural body
motion corresponding to body orientations in [0o − 180o].
The presented results show that even in extreme angles the
segmentation is visually accurate. As shown in Fig. 2, the
fitted skeleton S is one of the two input sources of the body
segmentation module, hence the quality of the segmentation
depends on the skeletal tracking method. In the case of an
erroneous skeletal fitting, the quality of the segmentation drops
without though compromising the results of the overall 3D
body reconstruction, because such outliers are rejected by the
proposed robust data filtering method.

The proposed method uses the obtained point-sets to fit
9 positive-definite tensor-spline models to the torso, arms,
forearms, thighs, and legs. A discussion regarding the head,
hands and joints can be found in the beginning of Sec. III. The
data flow diagram in Fig. 2 shows that the data histograms are
updated in every frame using the incoming point-sets and then
the robust data computed from the peaks of the histograms
are fed to the proposed tensor fitting method (Sec. III-D).
The tensor fitting is performed by minimizing the energy
function in Eq. 16 in an on-line fashion, i.e. one iteration
of the minimization algorithm is executed per frame. The
cycle of the proposed framework (shown in Fig. 2) has linear
computational complexity with respect to the size of the input
data (O(n)) and runs in real time (∼ 25 frames/second) using
the computer configuration described earlier.

Figure 4 shows an example of an intermediate state of the
real-time process, i.e. before the fitting algorithm converges.

Fig. 5. Example of an estimated tensor body. The fitted tensor-splines are
shown as quadratic meshes on the left. An image of the corresponding human
subject is shown on the right.

Fig. 6. Another example of a tensor body computed from a female human
subject.

The right plate shows a frame of the input data with the current
peaks of the data histograms (di,j in Eq. 15) superimposed as
a quadratic grid. The left plate shows an intermediate state of
the 3D reconstructed body model.

Figures 5 and 6 show the computed positive-definite tensor-
spline models after convergence. The tensor spline models are
visualized as quadratic meshes obtained by evaluating Eq. 7 at
a predefined discrete set of points in the input domain (φ, s).
A picture of the corresponding person is also shown on the
right for visual comparison. In both cases all tensor-splines
use tensor bases of degrees d = 2, 3 with cubic B-splines, i.e.
the number of unknown tensor coefficients are 7 per control
point. This configuration produces realistic approximation of
the shape of the body segments, based on visual comparison
with the images of the depicted human subjects.

The use of the Riemannian metric on positive-definite
tensor splines (Sec. II-E) is demonstrated in Fig. 7. The third
avatar from the left (A) and from the right (B) correspond
to the positive-definite tensor-spline models in Figs. 5 and
6 respectively. The 9 avatars in Fig. 7 lie on the geodesic
defined in the Riemannian space of positive-definite tensor-
splines that passes through the two aforementioned avatars at
λ = 0 and λ = 1 respectively. Other avatars on this geodesic
are shown for various values of λ in the range [−0.5, 1.5] and
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Fig. 7. Avatars on a geodesic defined in the Riemannian space of positive-definite tensor splines. The results of extrapolation and interpolation between the
two data points show natural transitions in the appearance of the body, such as the body fat added in the extrapolant on the left (λ = −0.5).

correspond to results of interpolation or extrapolation using the
Riemannian metric presented in Sec. II-E. By observing the
avatar on the left (λ = −0.5), one can see that the shape of the
body shows natural-looking body fat in the torso and thighs.
It should be emphasized that, although the proposed algorithm
does not model special parameters of the body, such as body
fat, the result of the extrapolation follows a natural increment
of the body fat while transitioning from the right (thinner body
type) to the left (bulkier body type).

Another useful application of the proposed tensor body
reconstruction is shown in Fig. 8. The body of a female subject
was scanned using the proposed method two times between a
3-month period during pregnancy. The difference between the
two models can be computed by subtracting the corresponding
tensor splines (Eq. 7) for every point in the (φ,s) domain.

After having reconstructed the 3D shape of a human body
using positive-definite tensor-splines, it can be rendered in any
arbitrary posture given in the form of a parametric skeleton
S. The avatars shown in Figs. 7, 9, 8 and 10 are examples
of tensor-spline models rendered in various postures. The 3D
models are colored using the R,G,B values at the correspond-
ing projection of the points in the video frames. Although
texture reconstruction was not discussed in this paper, it can
be simply done by collecting R,G,B values in the K-mean
clusters along with the data values in the dynamic histogram
method discussed in Sec. III-E.

The proposed technique was validated using anthropometric
measurements from a group of four male volunteers. Standard
protocols for anthropometry were followed as described in the
ISAK guide [33], in order to measure the circumference of
the legs of the participants in five distinct zones identified by
their distance from the maximum girths of the calfs and thighs.
The results were compared with those computed from the 3D
models using the proposed method, and the absolute errors
are reported in Fig. 11. According to the results, the median
errors are in the range of 1.5-2cm, which are similar to the
errors reported in [18]. This observation, although it cannot
lead to precise scientific comparisons between the proposed
method and the one presented in [18] due to differences in
the pool of participants and potential errors introduced by
the anthropometry procedures, it shows a clear indication of
similarities between the reported results, in terms of the overall
order of magnitude of the reported errors. A comparison
between the running time of these two techniques shows

Fig. 8. Example of 3D body reconstruction of a female pregnant model.
Visualization of body changes measured by the proposed method in a 3-month
period during pregnancy.

a notable difference of 3 orders of magnitude (i.e. 103).
Specifically the method in [18] requires more than 60 minutes
for a single body reconstruction, while the proposed technique
converges in about 2 seconds (∼ 50 frames @25fps) using
computer configurations with similar computational power.
This conclusively demonstrates the efficiency of the presented
method.

Finally, the same validation procedure was followed to
compare the 3D models computed from the proposed method
and those obtained using the Kinect Fusion algorithm included
in the Microsoft Kinect SDK [28]. The latter algorithm does
not work when the body moves in front of the camera, unlike
the proposed method. Furthermore, the camera collected RGB-
D images from a close distance from the subjects (partially
depicted in the images), which resulted to ∼ 10 times more
precise data compare to those collected using the Tensor Body
reconstructions, in which case the camera was placed far from
the subjects so that they are fully depicted in the recorded
images. Due to this significant difference in the quality of
the input data the results from the Kinect Fusion algorithm
was treated as the ground truth and was compared with the
estimated Tensor Bodies (Fig. 12) using the same metric and
format as in Fig. 11. The reported errors were around 1.5cm,
which is within the range of errors reported in Fig. 11.
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Fig. 9. A reconstructed Tensor-Body avatar rendered in two different natural
postures.

Fig. 10. Example of tensor interpolation in the deformable area around the
knee.

V. DISCUSSION AND CONCLUSION

In this paper a novel framework for real-time 3D reconstruc-
tion of the human body was presented, dubbed Tensor Body. A
novel algorithm for estimating positive-definite tensor-splines
from RGB-D data was introduced. The proposed algorithm
uses a mathematical model for parametrizing the space of
positive-definite tensors using a convex approximation of the
space, which guarantees that the estimated tensors lie within
the positive-definite side of the space. Furthermore, a Rieman-
nian metric on the space of positive-definite tensor-splines was
presented and employed for interpolation, extrapolation, and
for computing geodesics between 3D reconstructed avatars.

One of the benefits of the proposed method is that it runs in
real-time and it does not require the human subjects to be on
a specific posture. The 3D reconstruction can be performed
while the user plays a game or in general interacts with a
natural user interface environment, and hence is depicted in
the RGB-D frames on a variety of postures.

The presented framework has a robust mechanism that filters
the incoming 3D points (input depth measurements). It should
be noted that the magnitude of errors reported in Figs. 11
and 12 is very close to the resolution of the depth camera,
which recorded 1 pixel per ∼ 1cm on the bodies of the
human subjects. More specifically, when the subject is fully
depicted in the acquired pictures, ∼ 200 depth measurements

Fig. 11. Absolute errors between manual anthropometric measurements and
those computed using the proposed tensor body method.

Fig. 12. Absolute errors between anthropometric measurements using the
Kinect Fusion algorithm [28] and those computed using the proposed tensor
body method.

are recorded along the subject’s height (assuming that 40 out
of the 240 pixels are not utilized due to natural motion of the
subject in front of the camera). Therefore, the camera records
1 depth measurement per ∼ (h/200)cm, where h is the height
of the human subject in centimeters (i.e. ∼ 0.95cm sampling
frequency for h = 190cm). Hence, it is natural to expect
anthropometric errors in the magnitude reported in Figs. 11
and 12 due to the resolution limit of the depth sensor.

The proposed method for real-time 3D reconstruction of
the human body has the potential to be employed in several
applications in the areas of anthropometry, communications,
psychology, tele-medicine, and other areas of human-computer
interaction. Furthermore, it can be used as a module for
frequency-based shape compression of human bodies depicted
in holographic videos. Future improvements on the resolution
of the depth sensor will also allow the proposed method to be
used in other areas that require higher quality graphics such
as motion pictures.

In the future, the author plans to apply the proposed
framework to monitor changes in the shape of human bodies
and perform quantitative analysis of body shapes in specific
age/gender groups, which could potentially be proven to be a
significant tool against obesity, or other related diseases, such
as heart disease [19]. Furthermore, the Tensor Body framework
can be used as a tool for indirect anthropometry in order to
compute body shape atlases from healthy subjects of various
ages, genders, and ethnicities. Such an atlas could be used for
analyzing quantitatively the shape differences of the bodies
across population groups and derive various useful statistical
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results.
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