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Abstract: Information on the directionality and structure of axonal fibers in neural tissue
can be obtained by analyzing Diffusion-Weighted MRI datasets. Several fiber tracking
algorithms have been presented in literature that trace the underlying field of principal
orientations of water diffusion, which correspond to the local primary eigenvectors of
the diffusion tensor field. However, the majority of the existing techniques ignore the
secondary and tertiary orientations of diffusion, which contain significant information on
the local patterns of diffusion. In this paper we introduce the idea of perpendicular fiber
tracking and we present a novel dynamic programming method that traces surfaces, which
are locally perpendicular to the axonal fibers. This is achieved by using a cost function,
with geometric and fiber orientation constraints, that is evaluated dynamically for every
voxel in the image domain starting from a given seed point. The proposed method is
tested using synthetic and real DW-MRI datasets. The results conclusively demonstrate
the accuracy and effectiveness of our method.
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1 Introduction

Diffusion Tensor Magnetic Resonance Imaging (9)
has recently gained much attention for analyzing the
diffusivity patterns in neural tissues and visualizing
the reconstructed neural fiber tracts (11). In Diffusion
Tensor Imaging (DTI), the diffusion coefficient is a 3 x
3 symmetric positive semi-definite matrix. The largest
eigenvector of the diffusion tensor is assumed to be
oriented parallel to the local fiber tracts, which can be
reconstructed in a brain dataset by following paths in the
estimated eigenvector field. The characteristic features
of the traced neural fiber networks, such as structure,
topology, and connectivity, can serve as biomarkers for
various dementias and brain diseases, and can be used
in various clinical applications.

The topic of tractography has been significantly
studied in the past decade, and several techniques have
been proposed using either deterministic or probabilistic
formulations (11; 22; 13; 29; 20; 16; 12; 14). A technical
review of the principles and strategies of fiber tracking
can be found in (23). In deterministic or streamline
tractography, there is a continuous agreement between
connected points along the fiber bundle. Tracking starts
at a seed point and follows a favored direction for a
pre-defined small step size and it continues following
the corresponding fiber directions along the path. The
fiber tracking method developed by Basser et al. (11)
is an illustrative example of deterministic tractography.
This technique was extended by Mori et al. (22)
introducing fiber assignment by continuous tracking.
The computational cost of deterministic tractography is
low and output tracts are easy to interpret. However, as
calculations are made on local scale, error is accumulated
along the tracts as one traces farther from the seed
location.

In probabilistic tractography (12), fiber tracts are
computed by using a diffusion propagation model in the
form of a field of spherical functions, instead of relying
directly on the vector field of the principal orientations
of diffusion. The fiber tracking is done repeatedly, each
time in a slightly different direction. The set of all the
different paths is then collectively analyzed to compute
the most highly probable direction. This method gives a
more detailed picture of fiber connectivity in brain and it
is more robust in complex intra-voxel fiber configuration.
Compared to deterministic tractography this approach
is computationally costly and the outcome connectivity
maps are more difficult to interpret.

In addition, other approaches have been introduced
that combine both the aforementioned tractography
strategies. In (13) the presented Split and Merge
Tractography technique tracks all the fiber tracts
inside the area of interest while minimizing the total
energy. Although using short fiber tracts improves
significantly the accuracy in fiber tracking compared
to the deterministic approaches, the computational cost
is still high. More recently, global energy minimization
algorithms have been introduced for short fiber
clustering (29; 20; 16). In these works, short fiber tracts
are randomly generated and are allowed to move, rotate,
and assemble with other fibers to minimize internal and
external energies.

However, the process of fiber tracking in general
ignores the secondary and tertiary orientations of
diffusion, which contain significant information on local
patterns of diffusion. In this paper, we introduce the
idea of perpendicular fiber tracking and we present a
novel dynamic programming method that traces surfaces
that are locally perpendicular to the axonal fibers. The
tracing of a fiber section is in general a more complex
task compared to the traditional single dimensional fiber
tracking, since the former requires simultaneous tracking
on both secondary and tertiary diffusion directions
while maintaining continuity constraints of the estimated
surface. In the proposed algorithm we achive this by
introducing two cost functions that impose geometric
and fiber constraints to the obtained solution. The
geometric cost controls the connectivity and continuity
of the traced surface, while the fiber cost enforces the
normal vectors on every point of the computed surface
to be parallel to the underlying fiber orientation.

One of the goals of this work is to apply the
proposed fiber tracking method on a practical clinical
application for fiber bundle analysis and quantitative
comparison of the differences in their structure and
topology. The proposed algorithm performs tracing of
fiber bundle sections, perpendicular to local dominant
fiber orientation, and computes their area and average
curvature along a fiber bundle. To the best of our
knowledge there is no prior literature on perpendicular
fiber tracking and thus requires a thorough validation.
As the ground truth geometry of real brain datasets is
not known, a synthetic dataset of a pre-defined structure
with known fiber geometry was constructed and used to
test the accuracy of the algorithm.
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The contributions in this paper are threefold:

e  We introduce the idea of perpendicular fiber
tracking, which is a process for computing a surface
which is perpendicular to the underlying local fiber
orientations, starting from a given seed point.

e  We present a novel and computationally efficient
algorithm for perpendicular fiber tracking using
dynamic programming.

e Furthermore, we present a novel algorithm for fiber
bundle analysis with applications in fiber bundle
segmentation and statistical analysis of its features,
such as surface area and average curvature.

The key advantage of the proposed perpendicular
fiber tracking method is that reconstructs structures
larger than the size of one voxel in typical DW-MRI
resolutions. In contrast, the traditional fiber tracking
algorithms track axonal fibers, which are structures with
diameter significantly smaller than one voxel. Therefore,
data analysis based on fiber bundles is expected to be
more robust than a corresponding analysis based on
single fibers.

The proposed algorithm for perpendicular fiber
tracking can be perceived as the extension in two
dimensions of probabilistic tractography methods. Our
technique can use any mathematical model of diffusion
for computing a cost map that assigns large penalties
to the voxels that do not belong to our solution. Such
mathematica models of diffusion may include diffusion
tensors, high-order tensors, orientation distribution
functions, fiber orientations distributions and other
models discussed in Sec. 2.

We demonstrate the proposed algorithm using
synthetic and real DW-MRI datasets from rat
hippoxampus. We test quantitatively the accuracy of
the obtained resultys and their robustness with respect
to the input parameters in simulated datasets with
known underlying fiber geometry. Several examples of
different known fiber bundles in the area of hippocampus
are presented in the form of cost maps, tridimensional
surfaces, segmented fiber bundles, and plots of features
along the traced fiber bundles.

The rest of the article is organized as follows:
In Sec. 2 we review several mathematical models for
representing the underlying distinct fiber orientations
within a single voxel of a DW-MRI dataset. In Sec. 3
we present the perpendiculat fiber tracking algorithms
and we introduce several cost functions in Sec. 3.1 (fiber
cost), 3.2 (geometric cost), and 3.3 (joint cost) that are
employed by our algorithm. In Sec. 4 we present an
application of the perpendicular fiber tracking method
for fiber bundle analysis. Sec. 5 is further organized into
two subsections that present the experimental results
obtrained by using synthetic and real dataset. Finally,
in Sec. 6 we discuss further the details of our algorithms
and we conclude.
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2 Mathematical models of diffusion patterns

A diffusion MRI dataset consists of several images
S1,52,--- Sy of the same subject acquired usually in
one scanning session (to avoid image registration steps).
Each image S; is associated with a diffusion sensitizing
gradient orientation (g; € S3) and a diffusion weighting
factor (b; € Ry). The pattern of diffusion within each
voxel of a DW-MRI dataset can be studied in the
form of a continuous function S(b,g) that is estimated
after fitting a parametric model to the aquired signals

The DW-MRI signal attenuation has been modeled
by Stejskal and Tanner (32) as follows:

S/Sy = e (1)

where Sy correspond to the signal without diffusion-
weighting, and d is the unknown average diffusion
coefficient (ADC) that is estimated after fitting the data
to Eq.1.

If the number of distinct diffusion sensitizing gradient
orientations is at least 6, it has been shown (8; 10) that
the diffusion coefficient in Eq. 1 can be extended to a
spherical function d(g):

S(b,g) = Soe™""® (2)

where d(g) is a second-order homogeneous polynomial in
three variables that can be written in the form of a 27?-
order tensor d(g) = g’ Dg. The 3 x 3 diffusion tensor
matrix D is symmetric positive definite, since negative
diffusion values do not have valid physical meaning. The
advantage of the tensor model in Eq.2 over the model in
Eq.1 is that information on the directionality of diffusion
can be estimated by calculating the eigenvectors of
D. The maximum orientation of diffusion has been
widely used in tractography and other DW-MRI signal
processing algorithms.

Following similar reasoning, the model in Eq.2
has been extended using higher-order diffusion tensors
(HOT) (25; 4) d(g) = Xy jijen 919595 Dijkes Where n
corresponds to the order of the tensor model. The
number of unknown coefficients increases by the order
of the model as follows %, which corresponds to
the minimum number of DW-MRI images required.

At this point we should note that all the
aforementioned models use a linear-exponential signal
attenuation with respect to b. This relationship can
be extended using a quadratic-exponential signal decay
by adding the kurtosis component of diffusion (DKI)
(18; 26) in Eq.2 as follows:

b2

72
6d w(g) (3)

S(b,g) = Spe &)t

where w(g) is a 4"-order homogeneous polynomial in
three variables, and d = f52 d(g)dg/4m is the average
value of the 2"-order component of the diffusion d(g).
This model requires data acquisition using at least two b

values, forming two acquisition shells. In the case that a
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single b value is employed in the acquisition scheme, the
model in Eq.3 is identical to the higher order diffusion
tensor model (order n = 4) (7).

Although the HOT and DKI models can approximate
complex patterns of diffusion, such as crossing fibers,
they cannot be used directly in tractography because the
orientations of their maxima do not correspond to the
underlying fiber orientations. Instead, the orientations
of the maxima of the diffusion propagator should
be estimated using the 3-dimensional inverse Fourier
transform:

S(q)/So = /P(r)ezmq'rdr (4)

where P(r) is the diffusion propagator and r is a
displacement vector in the 3D space. The vector q is a
3D vector with the same orientation as the gradient g
in Eq. 3 and its magnitude is proportional to diffusion-
weighting b. The unknown diffusion propagaror P(r) can
be estimated from a given model of the signal using the
Fourier transform, either by approximating numerically
the integral or by wusing Orientation Distribution
function model (ODF) that approximates the diffusion
propagator (34; 2; 17; 15; 1).

Another model that can be used in fiber tractography
is the spherical deconvolution models (33; 27; 28; 21; 19):

S(b,g) = /S w(r)B(b, g, r)dr (5)

where the unknown function w(r) is the so called Fiber
orientation distribution (FOD), B(b,g,r) is a given
model of a single fiber with orientation r. Note that the
vector r in Eq. 5 is a unit vector, compared to the vector
in Eq.4, which belongs to R3.

The models that we reviewed in this section
approximate the diffusion pattern within one voxel of
a DW-MRI dataset, and can be used by probabilistic
and deterministic fiber tracking algorithms that infer
the diffusion patterns along the major orientations
of diffusion. In the next section we propose a novel
perpendicular fiber tracking algorithm that can employ
any of the aforementioned models in order to estimate
sections of fiber bundles, which are perpendicullar to the
local fiber orientations.

3 Perpendicular Fiber Tracking

In this section we introduce the idea of perpendicular
fiber tracking and we present an algorithmic
implementation using dynamic programming. The
algorithm uses as its input a field of the distinct
orientations of diffusion that can be provided by any
of the models in Sec. 2. Perpendicular fiber tracking is
the process of estimating a 2D-surface in the 3D image
domain of a DW-MRI dataset that passes through a
given seed point and it is locally perpendicular to the
underlying fiber orientation (or one of the underlying
fiber orientations in the case of multi-fiber diffusion

profiles). This definition includes three key geometric
constraints:

e Fixed point constraint: The surface should pass
through a given seed point.

e  Connectivity constraint: The result should form a
connected surface.

e Fiber contraint: The normal vector on each point
of the surface should be parallel to the most
coherent local fiber orientation.

In addition to the above conditions, a continuity
constraint can also be added to the definition of
our problem, in order to enforce estimation of
continuous surfaces. A surface that satisfies all the above
constraints can be estimated using various algorithms,
such as optimization techniques that minimize an
energy function, which implements the aforementioned
constraints.

In order to develop an algorithmic solution with
minimal computational complexity, we solve the problem
by estimating a cost map instead of a parametric surface
using dynamic programming. The cost map represents
the probability that a point belongs to the solution
surface. A parametric surface can be easily extracted
from the cost map, if needed, using iterative contour
estimation. Dynamic programming has been used in
various applications in computer vision, including image
processing and interactive segmentation (24).

Starting from a given seed voxel with zero cost, our
dynamic programming implementation keeps a sorted
list of all the exterior neighboring voxels and expands
the solution towards that neighboring voxel with the
smallest cumulative cost. The sorting of the list of active
voxels, is obviously with respect to the cumulative cost.
The complexity of adding a new voxel to the sorted
list is known to be O(logn). The iterative algorithm
stops when all voxels in the image domain have an
assigned cost, which brings the overall complexity of
the algorithm to O(nlogn). However, it can be easily
observed that the voxels outside the solution surface
have significantly larger cost and therefore the iterative
process can be safely terminated when the smallest
cumulative cost in the active list exceeds a user-defined
threshold before assigning cost values to voxels outside
of the region of interest (i.e. solutions surface).

At this point we would like to emphasize that the
cumulative cost at a voxel is the summation of the cost
for transitioning from the seed point to that particular
voxel by following the smallest cost path. In order to
reconstruct the shortest paths between any voxel and the
given seed point, our algorithm keeps for each voxel in
the solution set, not only its cumulative cost, but also
the voxel identity of its hierarchical father. Starting from
any voxel, one can transition to its hierarchical father,
grandfather, etc. until the seed point is reached.
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3.1 Fiber Cost

The cost map estimation process is driven by a cost
function that consists of 2 terms: 1) a fiber orientation
cost and 2) a geometric cost. The fiber cost ensures
that each point on the estimated surface is perpendicular
to the local fiber orientation. It measures the degree
of perpendicularity between the fiber orientation at
the candidate voxel v and the local orientation of
the estimated surface expressed as the vector from
the candidate voxel to its hierarchical father voxel
father(v). The fiber cost can be expressed as

Costy(v) = v~ Jather(v) - fiber(v) (6)

~|||v — father(v)||

where v is the voxel location (v € N3), father(v) € N3
is the voxel location of the hierarchical father of v, and
fiber(v) is the underlying fiber orientation at voxel v,
(fiber(v) € Sa, i.e. a unit vector). The norm in Eq. 6 is
the Euclidean distance.

As it was discussed in Sec. 2, the underlying fiber
orientation at a given voxel can be estimated by various
mathematical models, some of which have the ability
to perform multi-fiber reconstruction, and hence provide
more than one fiber orientations in the case of multi-fiber
crossing within a voxel of a DW-MRI dataset. In the
case of the Diffusion Tensor model (Eq. 2), fiber(v) is
given by the primary eigen vector of the matrix D. Multi-
fiber reconstruction models, such as HOT, DKI, ODF,
FOD, and others may compute more than one fiber
orientations given by fiber;(v) i = 1..N, where N is the
number of reconstructed fibers, which is typically 1 for
a single fiber, and 2 or 3, for 2-fiber or 3-fiber crossings
respectively. In this case Eq. 6 can be generalized as

v — father(v)
|[v — father(v)]]

Costy(v) = min - fiber;(v) (7)
3

which computes the cost that corresponds to the most

coherent fiber orientation, i.e. the fiber that is more

perpendicular to the estimated surface.

3.2 Geometric Cost

The geometric cost ensures the continuity of the
estimated surface within a fiber bundle. This definition
makes use of the fact that a fiber bundle corresponds
to a smoothly varying field of fiber orientations. Under
this assumption, adjacent voxels on the solution surface
should correspond to similarly oriented underlying
fibers. In our implementation the geometric cost
measures the degree of parallelism between the fiber
orientation at the candidate voxel v and the fiber
orientation at its hierarchical father voxel father(v).
The geometric cost can be expressed as

Costy(v) =1 — |fiber(v) - fiber(father(v))] (8)

where v and father(v) are defined as in Eq. 6. In the
case of employing a multi-fiber reconstruction model for
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computing the underlying fiber orientations, Eq. 8 can
be extended as follows:

Costy(v) = miin (1 — | fiber;(v) - fiber(father(v))|)(9)

where the index i runs for all fiber orientations in the
candidate voxel v. There fiber orientation of the father
of v corresponds to that particular orientation that
gave the smallest cost when father(v) was a candidate
voxel. In multi-fiber reconstruction case, the chosen fiber
orientation should be stored for all the voxels in the
solution space, along with their cost value and father’s
index.

3.3 Joint Cost

The role of the joint cost function is to ensure
that both fiber and geometric conditions are satisfied
simultaneously. In a discrete binary case (Boolean case)
such a function would correspond to the logical ‘AND’
function. In a continuous implementation (fuzzy logic
cases), the logical ‘AND’ function is represented by
multiplication of values in the interval [0-1], where a zero
value represents the negative Boolean state (i.e. false
state), and a unit value represents the positive Boolean
state (i.e. true state). In our particular case the positive
(desirable) state corresponds to low cost, (i.e. low cost
is desired), which is represented by the logical function
1 — Cost(v). Therefore, the joint cost function can be
written in the following fuzzy-logic form:

Cost(v) =1— (1 —Costy (v)) (1 —Costy (v))  (10)

where Costy(v) and Costy(v) are given by Eq.6 and
Eq.8 respectively. The joint cost function given by Eq.10
can be used along with single fiber orientation vector
fields, such as those computed by the DTI model (Eq.
2).

The joint cost function that should be used along
with multi-fiber recostruction models generalizes Eq.10
by ‘merging’ the min functions in Eqs.7 and 9 as follows:

Cost(v) = miin (1—(1—=Costy(v))(1—Costy(v)))(11)

where the index ¢ runs for all reconstructed fiber
orientations in the candidate voxel v, and the functions
Costy(v) and Costy(v) are evaluated by the formulas
in Egs. 6 and 8 respectivelly using fiber;(v) instead
of fiber(v). As a result, the total cost function selects
that particular fiber orientation in the candidate voxel v
that yields the smallest joint fiber and geometric cost. In
practice, the voxels that belong to our solution surface
will have smaller costs assigned to them than the voxels
outside the perpendicular fiber section.

In the next section we employ the joint cost function
presented here in order to construct a 3D cost map using
dynamic programming.

3.4 Computation of the 3D cost map

The dynamic programming algorithm for perpendicular
fiber tracking was formulated as a graph search for
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a minimum cost map. Graph search based dynamic
programming algorithms have been used in many
applications in computer vision and interactive image
segmentation (24). Our proposed algorithm requires a
seed voxel and a field of fiber orientations as its input
data. The result (i.e. the cost map) is computed in the
form of a three dimensional matrix C. The algorithm is
summarized below.

Algorithm Perpendicular_Fiber_Tracking

Input: A seed voxel location s. A field of fiber (or multi-
fiber) orientations.
Output: The cost map C (a 3D matrix).

1 Initialize: L < s; C < o0;

2 If L = () stop algorithm and return C, otherwise
continue.

3  Remove the voxel m from L with the minimum
cost C(m).

4 For all voxels v with C(v) = oo in the
neighborhood of m do: L <~ LU v;
father(v) <~ m; C(v) < Cost(v);

5 Go to step 2.

End Perpendicular_Fiber_Tracking

For the calculation of the cost in step 4 of the algorithm,
the joint cost function is employed (Sec. 3.3). Note that
in the calculations of the cost function, the voxel m
is used as the the hierarchical father of the candidate
voxel v. Depending on the type of the input field of fiber
orientations, the DTI or the multi-fiber version of the
joint cost function can be used respectively (Eqgs. 10 and
11).

The main body of the proposed algorithm is a loop
that includes steps 2-5. In every iteration, one voxel m is
removed from the list of candidate voxels until we pass
once through all voxels in the DW-MRI dataset. Hence
the total number of iterations equals to the number of
voxels in the input dataset. As a result, a cost value is
calculated for every pixel in the cost map C, which is
the output of the algorithm. According to the definition
and properties of the fiber cost (Sec.3.1) and geometric
cost (Sec.3.2), the cost value will significantly increase
outside the traced perpendicular fiber section. One can
visualize the traced fiber section either by superimposing
the cost map on the top of the corresponding DW-MRI
dataset (see Fig. 4), by plotting the computed cost map
as semi-transparent density map using volume rendering
techniques, or finally by extracting the 3D surface model
using contours (See Figs. 1, 6, and 8).

Since in our particular application we are interested
in a specific subset of voxels that belong to the region of
interest around the seed voxel s, we can stop the main
loop of the algorithm before covering the entire dataset,
reducing significantly the computational cost/execution
time. This can be implemented by introducing an

additional condition to step 4 of the algorithm for
filtering out the candidate voxels v in the neighborhood
of m that correspond to Cost(v) > Cinreshoid, where
Cinreshold 18 a user-defined value. Obviously, for large
threshold values the method becomes identical to the
previous version of the algorithm, as described above,
and the cost map is calculated for the entire dataset.
Similarly, one can introduce stronger conditions in step
4, that refine further the set of candidate voxels v using
separate thresholds for Cost¢(v) and Costy (V).

In our experimental results (Sec. 5) we test the
robustness of the proposed algorithm using various
values for Cipreshord- In the next section we present an
application of the perpendicular fiber tracking algorithm
for fiber bundle analysis.

4 Fiber Bundle Analysis

The algorithm for perpendicular fiber tracking presented
in Sec. 3 can be used for fiber bundle analysis in
conjunction with traditional fiber tracking techniques.
The goal is to estimate useful quantities along a fiber
bundle that characterize its structure and topology. Our
proposed method for fiber bundle analysis is summarized
below.

Algorithm Fiber_Bundle_Analysis

Input: A seed voxel location s. A field of fiber (or multi-
fiber) orientations.

Output: An array of cost maps C; and their statistical
measurements.

1 Perform fiber tracking from the seed point s using
any traditional fiber tracking method.

2 For every point p; along the fiber perform
perpendicular fiber tracking using the proposed
method and setting p; as the seed point.

3 For every computed cost map C;, estimate its area
and average curvature and plot the results as
functions along the fiber.

4  Fiber bundle segmentation step (optional): Use
each voxel in every perpendicular fiber section as a
seed point for fiber tracking and plot the results,
i.e. the entire traced fiber bundle.

End Fiber_Bundle_Analysis

The area of each of the perpendicular fiber
sections estimated by our algorithm can be
approximated/computed as the number of voxels in
the cost map that intersect the solution surface. For
example the voxels in the middline of the cost map in
Fig. 4 correspond to the solution surface, and hence
they should be included in the calculation of the
area of the perpendicular fiber section. Similarly, the
average curvature of a perpendicular fiber section can
be approximated by the average angle of the underlying
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fiber orientation between adjacent voxels on the solution
surface. The values of these quantities can be presented
as one-dimensional plots showing how they vary along
the fiber bundle (see Figs. 2, 5, 7, and 9).

Furthermore, the set of traced perpendicular fiber
sections along a fiber bundle can be perceived as the
segmentation of the fiber bundle. The entire segmented
fiber bundle can be plotted in 3D as a stack of fiber
bundle sections. The voxels in the segmented region can
also be used as seed points for tracking the fibers within
the entire fiber bundle, as shown in Figs. 6 and 8.

An implementation of the algorithms presented here
is available in Matlab(c) through the website of Matlab-
central'. The proposed methods are demonstrated and
validated in the next section using real and synthetic
DW-MRI datasets.

5 Experimental Results

This section is organized into two subsections in
which we present the experimental results obtained
using synthetic data and real DW-MRI data from rat
hippocampus.

5.1 Synthetic data experiments

In order to validate quantitatively the accuracy of the
proposed algorithm, we synthesized a DW-MRI dataset
by simulating the signal attenuation in the presense of
restricted cylindrical diffusion model using the adaptive
kernel implementation (5) of the realistic simulation
model in (31). A set of 21 diffusion sensitizing gradient
orientations was constructed using tessalations of the
icosahedron on the unit sphere. The b-value was set to
1500s/mm? and the matrix size of the simulated dataset
was 60 x 60 x 60. The synthetic dataset was created by
simulating a single fiber bundle with straight parallel
fibers within a conic section fiber bundle volume (Fig.
1). Due to this particular pre-defined fiber geometry, the
ground truth curvature of the perpendicular fiber bundle
sections was zero throughout the bundle and the ground
truth area of the surfaces was linearly increasing.

After simulating the DW-MRI signal attenuation,
we estimated the field of diffusion tensors using the
method in (3). The principal eigenvector field of the
diffusion tensors was provided as input to the proposed
algorithm for fiber bundle analysis using perpendicular
fiber tracking as presented in Sec. 3. The perpendicular
fiber sections traced by our algorithm are shown in
Fig. 1 (only 9 sections are displayed for clarity).
The corresponding computed surface area and average
curvature are plotted in Fig. 2. The obtained results
conclusively demonstrate the accuracy of the proposed
technique. The estimated values of both quantities for
all the perpendicular sections match the ground truth
values. The color of the plots goes gradually from red to
blue to indicate the position along the fiber bundle as it

J 0 JJ

Figure 1 Results obtained by applying the proposed
method for perpendicular fiber tracking to a
synthetic DW-MRI dataset. The figure depicts the
estimated fiber sections, which agree with the
ground truth geometry of the synthetic fiber
bundle.

Area of Fiber Sections Curvature of Fiber Sections

Ground Truth = 0 degrees

Curvature of Section

Ground Truth

Area of Section (in pixel?)

2 0 2z 4 6 8 10 12 14 16
0 2 6 8 0 12 14 16 18 Fiber Sections
Fiber Sections

Figure 2 Comparison of the computed fiber section area
and curvature with the ground truth values for all
the estimated fiber sections (shown in Figl).

is noted in Fig. 1 with the blue and red dot in the two
ends of the bundle.

5.2 Real data experiments

After validating the algorithm on synthetic data, we
then applied it on a real excised rat brain dataset
to examine its clinical viability. Perpendicular fiber
sections were traced in three different regions (stratum
radiatum, stratum lacunosum-moleculare and stratum
oriens) of rat hippocampus. The acquisition protocol
included 21 diffusion-weighted image sets with a b-value
of approximately 1250s/mm? (6). A diffusion tensor
field was estimated from the DW-MRI dataset using the
method in (3). Fig. 3 shows the Fractional Anisotropy
(FA) map of the dataset (top) and the corresponding FA
color map using the square of the three components of
the primary eigen vector field as the red, green, and blue
color components (bottom).

In order to demonstrate the cost map estimated by
our algorithm in the region of stratum oriens, we super
impose the cost map over the FA map corresponding
to the central slice of the 3D dataset. By observing the
figure we can see that the midline of the cost map is
alligned with geometric structures that are visible in the
dataset.
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Figure 3 An image from the real DW-MRI dataset of rat
hippocampus. The FA map is shown on the top,
and the FA color map is shown on the bottom.

Figure 4 Visualization of the cost map computed by the
proposed algorithm in the region of stratum
radiatum. The arrow indicates the seed point.

Area of Fiber Sections for Various Cost Thresholds Avrea of Fiber Sections for Various Cost Thresholds

>?

Area of Section (in plxel§)
Area of Section (in plxelsz)

1 2 3 s 6 7 8 1 2 3 4 5 6 7 8 9 10
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Figure 5 Demonstration of the robustness of the proposed
algorithm tested using various threshold values.
The figure shows that the shape and critical points
of the plots remain the same for all test settings.

stratum lacunosum-moleculare »

Figure 6 Results obtained by applying the proposed
method for perpendicular fiber tracking to the rat
hippocampal dataset 3. The figure depicts the
estimated fiber sections (left) and the segmented
bundle of fibers (left) in the region of stratum
lacunosum-moleculare.

Furthermore, we demonstrate the robustness of
the proposed algorithm using various threshold values
Ctihreshold ranging from 0.5 to 1.0 using 0.1 increments.
The surface areas were computed from the corresponding
cost maps for the regions of stratum lacunosum-
moleculare and stratum oriens and are shown in Fig. 5.
By observing the plots we can see that the structure,
relative values, and critical points of the plotted lines
do not change with the value of the threshold; only the
absolute value changes, as expected. Therefore, these
plots can be used as robust markers that characterize the
structure of a fiber bundle. By comparing the plots in
Fig. 5 obtained for the two hippocampal regions we can
see that there are obvious structural differences, which
agree with the traced perpendicular fiber sections shown
in Figs. 6 and 8.

Figs. 6 and 8 show the perpendicular fiber sections
traced by the proposed method in the regions of stratum
lacunosum-moleculare and stratum oriens respectively.
In each figure only 8 slices are shown for clarity. The
figure also shows the segmented fiber bundle along
with the fiber stream lines obtained by simple DTI-
based fiber tracking (11) starting from every voxel
in the fiber bundle. We chose these two particular
hippocampal regions because they have significant
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Figure 7 Plots of the estimated fiber section area and
curvature values for the region of stratum
lacunosum-moleculare (Fig. 6).

structural differences. The region of stratum lacunosum-
moleculare follows a simple cylindrical fiber bundle
model, while stratum oriens has the structure of a
membrane wrapped around the hippocampus. Although
the bundles have such structural and topological
differences, the proposed algorithm correctly traced the
perpendicular sections in both cases and both bundles
were properly segmented.

Finally, Figs. 7 and 9 show the plots of the computed
area and curvature of the estimated surfaces from both
hippocampal regions. In both plots we used the threshold
value Cipreshola = 0.7, although its value does not play
significant role, as it was discussed previously. It is known
that quantitative comparison cannot be easily performed
in real data due to the absense of ground truth.
Nevertheless we can qualitatively evaluate the data by
using knowledge on the structure of hippocampus (30)
and observing that the estimated quantities follow the
structural changes along the two bundles, as they are
depicted in the 3D plots shown in Figs. 6 and 8.

6 Discussion and Conclusion

In conclusion, in this paper the idea of perpendicular
fiber tracking was introduced, and an application for
fiber bundle analysis was presented. The proposed
algorithms were tested in synthetic, as well as real
DW-MRI datsets. The validation experiments against
the ground truth in the synthetic dataset demonstrated
the efficiency and accuracy of our perpendicular fiber
tracking technique.

The proposed method produces interactively (using
a user-defined seed point) comprehensive statistics on
area and curvature along fiber bundles with potential
for real-time clinical use. The algorithm successfully
performs perpendicular fiber tracking (in contrast to the
existing techniques for tracking fiber along the principal
direction) and can be employed for computing significant
information on local fiber patterns of diffusion. The
technique can be used as a tool for fiber bundle
segmentation, for neural fiber analysis, and potentially
as a biomarker for various brain diseases that involve
change in white matter, including AD, PD, epilepsy,
autism, and other dementias.

stratum oriens

Figure 8 Plot of the estimated fiber sections in the region
of stratum oriens. The segmented bundle of neural
fibers is shown on the bottom.

Area of Fiber Sections Curvature of Fiber Sections

= =
#

=

Curvature of Section

Area of Section (in pixel§)

2 9

N
IS
©

45 6 7
Fiber Sections Fiber Sections
Figure 9 Plots of the estimated fiber section area and
curvature values for the region of stratum oriens

(Fig. 8).
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In the future the method can be applied to diseased

(AD, epilepsy, PD, cancer) brain data sets to detect
patterns of changes in fiber geometry. Perpendicular
tracking based on HARDI is expected to allow us to
compute similar fiber bundle statistics for regions of fiber
crossings and other complex fiber geometries and may
also improve the analysis of small pathways and long
tortuous pathways.
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Note

!An implementation of the algorithms presented here is
available in Matlab(© through the website of Matlab-
central: http://www.mathworks.com/matlabcentral
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