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Abstract. In Diffusion Weighted Magnetic Resonance Image (DW-MRI)
processing a 2nd order tensor has been commonly used to approximate
the diffusivity function at each lattice point of the DW-MRI data. It is
now well known that this 2nd-order approximation fails to approximate
complex local tissue structures, such as fibers crossings. In this paper we
employ a 4th order symmetric positive semi-definite (PSD) tensor approx-
imation to represent the diffusivity function and present a novel technique
to estimate these tensors from the DW-MRI data guaranteeing the PSD
property. There have been several published articles in literature on higher
order tensor approximations of the diffusivity function but none of them
guarantee the positive semi-definite constraint, which is a fundamental
constraint since negative values of the diffusivity coefficients are not mean-
ingful. In our methods, we parameterize the 4th order tensors as a sum of
squares of quadratic forms by using the so called Gram matrix method
from linear algebra and its relation to the Hilbert’s theorem on ternary
quartics. This parametric representation is then used in a nonlinear-least
squares formulation to estimate the PSD tensors of order 4 from the data.
We define a metric for the higher-order tensors and employ it for regular-
ization across the lattice. Finally, performance of this model is depicted on
synthetic data as well as real DW-MRI from an isolated rat hippocampus.

1 Introduction

Data processing and analysis of matrix-valued image data is becoming quite
common as imaging sensor technology advances allow for the collection of matrix-
valued data sets. In medical imaging, during the last decade, it has become
possible to collect magnetic resonance image (MRI) data that measures the
apparent diffusivity of water in tissue in vivo. A 2nd order tensor has commonly
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been used to approximate the diffusivity profile at each image lattice point in a
DW-MRI [3]. The approximated diffusivity function is given by

d(g) = gT Dg (1)

where g = [g1 g2 g3]
T is the magnetic field gradient direction and D is the

estimated 2nd-order tensor. This approximation yields a diffusion tensor (DT-
MRI) data set Di, which is a 3D matrix-valued image, where subscript i denotes
location on a 3D lattice. These tensors Di are elements of the space of 3 × 3
symmetric positive-definite matrices. Mathematically, these tensors belong to
a Riemannian symmetric space, where a Riemannian metric assigns an inner
product to each point of this space. Using this metric, one can perform various
computations, e.g. interpolation, geodesics, geodesic PCA [2,7,12].

Use of higher order tensors was proposed in [9] to represent more complex
diffusivity profiles which better approximate the diffusivity of the local tissue
geometry. To date however, none of the methods reported in literature for the
estimation of the coefficients of higher order tensors preserve the positive defi-
niteness of the diffusivity function.

The use of a 4th-order covariance tensor was proposed by Basser and Pajevic
in [4]. This covariance tensor is employed in defining a Normal distribution of
2nd order diffusion tensors. This distribution function has been employed in
[5] for higher-order multivariate statistical analysis of DT-MRI datasets using
spectral decomposition of the 4th-order covariance matrix into eigenvalues and
eigentensors (2nd order). However, 2nd order tensors are used to approximate the
diffusivity of each lattice point of a MR dataset, failing to approximate complex
local tissue structures, such as fiber crossings.

In this paper we approximate the diffusivity profile using 4th-order tensors. We
propose a novel parametrization of these positive-definite higher order tensors
as a sum of squares of quadratic (2nd-order) forms. This parametrization is en-
forced by employing the Gram matrix method in conjunction with the Hilbert’s
theorem on ternary quartics [8]. We present an efficient algorithm which esti-
mates 4th-order symmetric positive semi-definite diffusion tensors from diffu-
sion weighted MR images. We also propose a distance measure for the space
of higher-order tensors that can be computed in closed form, and employ it to
regularize the estimated data across the lattice. Finally, we present experimental
results using real diffusion-weighted MR data from an isolated rat hippocampus.
The motivation for processing and analyzing the hippocampus lies in its impor-
tant role in semantic and episodic formation, which is particularly vulnerable
to acute or chronic injury [1,16]. Based on knowledge of hippocampal anatomy,
complex local tissue structures such as fiber crossings are commonly present at
the anatomical regions of stratum lacunosum-moleculare, hilus, molecular layer
(see fig. 3(d) region 4) and stratum lucidum (fig. 3(d) region 5). The techniques
being developed here can approximate accurately such crossings and complex
fiber structures and thus could prove useful in improving the sensitivity and
specificity of diffusion MRI for detecting and monitoring hippocampal diseases.
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The rest of the paper is organized as follows: In section 2, we present a novel
parametrization of the 4th-order tensors that is used to enforce the positivity
semi-definiteness of the estimated tensors. In section 2.1, we present a method to
estimate 4th-order tensors from diffusion-weighted MR images. Furthermore, in
section 2.2 we propose a distance measure for the space of 4th-order tensors, and
we employ it for regularization of the estimated tensor field. Section 3 contains
the experimental results and comparisons with other methods using simulated
diffusion MRI data and real MR data from an isolated rat hippocampus. In
section 4 we conclude.

2 Diffusion Tensors of 4th Order

The diffusivity function can be modeled by Eq. (1) using a 2nd-order tensor.
Studies have shown that this approximation fails to model complex local struc-
tures of the diffusivity in real tissues [10] and a higher-order approximation
must be employed instead. A 4th-order tensor can be employed in the following
diffusivity function

d(g) =
∑

i+j+k=4

Di,j,kgi
1g

j
2g

k
3 (2)

where g = [g1 g2 g3]
T is the magnetic field gradient direction. It should be noted

that in the case of 4th-order symmetric tensors there are 15 unique coefficients
Di,j,k, while in the case of 2nd-order tensors we only have 6.

In DW-MRI the diffusivity of the water is a positive quantity. This property is
essential since negative diffusion coefficients are nonphysical. However there is no
guarantee that the estimated coefficients Di,j,k by the above process, will form a
positive semi-definite tensor. Therefore, we need to develop a new parametriza-
tion of the 4th-order tensor, which enforces the positive semi-definite property
of the estimated tensor.

Regarding gi in (2) as variables, the equivalence between symmetric tensors
and homogeneous polynomials is straightforward. Moreover if a symmetric tensor
is PSD, then its corresponding polynomial must be nonnegative for all real-
valued variables. Hence here we are concerned with the positive definiteness of
homogenous polynomials of degree 4 in 3 variables, or the so called ternary
quartics. In this work we propose a novel parametrization of the symmetric 4th-
order PSD tensors, using the Hilbert’s theorem on positive ternary quartics, was
first proved by Hilbert in 1888 (see [14] for modern exposition):

Theorem 1. Every positive real ternary quartic is a sum of three squares of
quadratic forms.

Assuming the most general case, a PSD ternary quartic can be expressed as
a sum of N squares of quadratic forms as.

d(g) = (vT q1)2 + ... + (vT qN )2 = vT QQT v = vT Gv (3)

where v is a properly chosen vector of monomials, (e.g. [g2
1 g2

2 g2
3 g1g2 g1g3

g2g3]T ), Q = [q1|...|qN ] is a 6 × N matrix by stacking the 6 coefficient vectors
qi and G = QQT is the so called Gram matrix.
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Using this Gram matrix G expression, Eq. (2) can be written as d(g) = vT Gv,
and the correspondence between the 4th-order tensor coefficients Di,j,k of Eq.
(2) and the Gram matrix G can be established as follows:

G =

⎛

⎜⎜⎜⎜⎜⎜⎝

D4,0,0 a b 1
2D3,1,0

1
2D3,0,1 d

a D0,4,0 c 1
2D1,3,0 e 1

2D0,3,1
b c D0,0,4 f 1

2D1,0,3
1
2D0,1,3

1
2D3,1,0

1
2D1,3,0 f D2,2,0 − 2a 1

2D2,1,1 − d 1
2D1,2,1 − e

1
2D3,0,1 e 1

2D1,0,3
1
2D2,1,1 − d D2,0,2 − 2b 1

2D1,1,2 − f
d 1

2D0,3,1
1
2D0,1,3

1
2D1,2,1 − e 1

2D1,1,2 − f D0,2,2 − 2c

⎞

⎟⎟⎟⎟⎟⎟⎠
(4)

where a, b, c, d, e, f are free parameters, i.e for any choice of those parameters
the obtained Gram matrix represents the same 4th-order tensor [13]. According
to Theorem 1, if N = 3 (i.e. Gram matrix G has rank 3) then the whole space
of PSD ternary quartics is spanned. For some specific choices of the parameters
a, b, c, d, e, f of Eq. (4), the rank of matrix G becomes 3 [13]. Powers and Reznick
in [13] worked on finding fundamentally different choices of those parameters that
yield the same given PSD ternary quartic, i.e. in how many different ways can
a ternary quartic be expressed as a sum of squares of three quadratic forms.
However, given a Gram matrix G we can uniquely compute the coefficients
Di,j,k of the tensor (see Eq. (4)). Therefore, we can employ the Gram matrix
method for the estimation of the coefficients Di,j,k of the diffusion tensor from
MR images using the following two steps: 1) first we estimate a Gram matrix G
from the MR signal of the given images, and then 2) we uniquely compute the
coefficients Di,j,k of the 4th-order tensor by using formulas obtained from Eq.
(4). Note that although the estimated matrix G is not unique, the coefficients
Di,j,k are uniquely determined.

In the following section we will employ this Gram matrix method to enforce
the positive semi-definite property of the estimated diffusion tensors from the
diffusion weighted MR images.

2.1 Estimation from DWI

The coefficients Di,j,k of a 4th order diffusion tensor can be estimated from
diffusion-weighted MR images by minimizing the following cost function:

E(Q, S0) =
M∑

i=1

(Si − S0e
−bivT

i QQT vi)2 (5)

where M is the number of the diffusion weighted images associated with gradient
vectors gi and b-values bi; Si is the corresponding acquired signal and S0 is the
zero gradient signal. Using the magnetic field gradient directions gi we construct
the 6-dimensional vectors vi = [g2

i1 g2
i2 g2

i3 gi1gi2 gi1gi3 gi2gi3]T . In Eq. (5), the
4th order diffusion tensor is parameterized using the Gram matrix G = QQT ,
where Q is a 6×N matrix and N ≥ 3 is a predefined constant. In our experiments
we used N = 3, which is justified by Theorem 1. Having estimated the matrix
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Q that minimizes Eq. (5), the coefficients Di,j,k can be computed directly from
the Gram matrix using the relation described by the matrix of Eq. (4). S0 can
either be assumed to be known or estimated simultaneously with the coefficients
Di,j,k by minimizing Eq. (5).

Starting with an initial guess for S0 and Q, we can use any optimization
method in order to minimize Eq. (5). For the optimization schemes that employ
the gradients of Eq. (5) with respect to the unknown coefficients of Q, the
gradient is given by the following equation

∇QE(Q, S0) = 4
M∑

i=1

biS0e
−bivT

i QQT vi(Si − S0e
−bivT

i QQT vi)vT
i viQ (6)

Now given Q at each iteration of the optimization algorithm we can update S0
by again minimizing Eq. (5). The derivative of this equation with respect to the
unknown S0 is

∇S0E(Q, S0) = −2
M∑

i=1

(Si − S0e
−bivT

i QQT vi)e−bivT
i QQT vi (7)

By setting Eq. (7) equal to zero, we derive the following update formula for S0

S0 =
M∑

i=1

Sie
−bivT

i QQT vi/

M∑

i=1

e−2bivT
i QQT vi (8)

In our experiments we used the well known Lavenberg-Marquardt (LM) nonlin-
ear least-squares method, which has advantages over other optimization meth-
ods, in terms of stability and computational burden.

As pointed out earlier, although the coefficients Di,j,k are uniquely estimated,
the Gram matrix parametrization G = QQT is not unique, i.e. there exist dif-
ferent matrices Q which parameterize the same Gram matrix. For example there
are infinitely many matrices Q that yield the same G, due to the orthogonality
property (RRT = I) of the rotation matrices R, where I is the identity matrix.
Thus, in the case that Q is of size 6 × 3, for any 3 × 3 orthogonal matrix R we
have (QR)(QR)T = QQT . In order to reduce this infinite solution space to a
finite set of solutions, which theoretically can be handled by the optimization
techniques, we use the well known QR decomposition of real square matrices to

uniquely decompose any given 6 × 3 matrix Q in the form Q =
[
TR
A

]
, where

all matrices are of size 3 × 3 and specifically T is lower triangular, and R is an

orthogonal matrix. Then by setting R = I we reformulate Q as Q =
[
T
A

]
and

thus the infinitely non-unique issue is replaced by a countably non-uniqueness
issue, which can be handled by the optimization algorithm. Note that using this
formulation there are only 15 unknown parameters in matrix Q, which is equal
to the number of the unknown coefficients Di,j,k of the estimated tensor.
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2.2 Distance Measure

In the previous section we discussed about estimating PSD 4th-order tensors
from DW-MRI data. After having estimated the tensor coefficients Di,j,k, we
can perform tensor regularization across the lattice. The regularization can be
performed by a functional minimization method using the following regulariza-
tion term ∑

j

∑

i∈ηj

dist(Dj ,Di)
2 (9)

where ηj is the set of lattice indices whose distance from lattice index ’j’ is 1.
In the regularization term defined in Eq. (9) we need to employ an appropriate
distance measure between the tensors Di and Dj . Here we use the notation D
in order to denote the set of 15 unique coefficients Di,j,k of a 4th-order tensor.

We can define a distance measure between the 4th-order diffusion tensors D1
and D2 by computing the normalized L2 distance between the corresponding
diffusivity functions d1(g) and d2(g) leading to the equation,

dist(D1,D2)
2 =

1
4π

∫

S2
[d1(g) − d2(g)]2dg (10)

=
1

315
[(Δ4,0,0 + Δ0,4,0 + Δ0,0,4 + Δ2,2,0 + Δ0,2,2 + Δ2,0,2)2 +

4[(Δ4,0,0 + Δ2,2,0)2 + (Δ4,0,0 + Δ2,0,2)2 + (Δ0,4,0 + Δ2,2,0)2 +
(Δ0,4,0 + Δ0,2,2)2 + (Δ0,0,4 + Δ0,2,2)2 + (Δ0,0,4 + Δ2,0,2)2] +

23(Δ2
4,0,0 + Δ2

0,4,0 + Δ2
0,0,4) − 6(Δ2

2,2,0 + Δ2
0,2,2 + Δ2

2,0,2) +

2(Δ4,0,0 + Δ0,4,0 + Δ0,0,4)2 + (Δ2,1,1 + Δ0,3,1 + Δ0,1,3)2 +
(Δ1,2,1 + Δ3,0,1 + Δ1,0,3)2 + (Δ1,1,2 + Δ3,1,0 + Δ1,3,0)2 +

2
[
(Δ3,1,0 + Δ1,3,0)2 + (Δ3,0,1 + Δ1,0,3)2 + (Δ0,3,1 + Δ0,1,3)2

]
+

2(Δ2
3,1,0 + Δ2

3,0,1 + Δ2
1,3,0 + Δ2

0,3,1 + Δ2
1,0,3 + Δ2

0,1,3)]

where, the integral of Eq. (10) is over all unit vectors g, i.e., the unit sphere S2

and the coefficients Δi,j,k are computed by subtracting the coefficients of the
tensor D1 from the corresponding coefficients of the tensor D2.

As shown above, the integral of Eq. (10) can be computed analytically and
the result can be expressed as a sum of squares of the terms Δi,j,k. In this
simple form, this distance measure between 4th-order tensors can be implemented
very efficiently. Note that this distance measure is invariant to rotations in 3-
dimensional space since it was defined as an integral over all directions g.

Another property of the above distance measure is that the average ele-
ment (mean tensor) D̂ of a set of N tensors Di, i = 1 . . .N is defined as the
Euclidean average of the corresponding coefficients of the tensors. This property
can be proved by verifying that D̂ minimizes the sum of squares of distances∑

dist(D,Di)2. Similarly, it can be shown that geodesics (shortest paths) be-
tween 4th-order tensors are defined as Euclidean geodesics.
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3 Experimental Results

In this section we present experimental results on our method applied to sim-
ulated DW-MRI data as well as real DW-MRI data from an isolated rat hip-
pocampus.

In order to motivate the need of the PSD constraint in the 4th-order estimation
process, we performed the following experiment using a synthetic dataset. The
synthetic data was generated by simulating the MR signal from a single fiber us-
ing the realistic diffusion MR simulation model in [15]. Then, we added different
amounts of Riccian noise to the simulated dataset and we estimated the 4th-order
tensors from the noisy data by: a) minimizing

∑M
i=1(Si−S0exp(−bid(gi)))2 with-

out using the proposed parametrization to enforce PSD constraint, by employing
the method in [11] and b) our method, which guarantees the PSD property of
the tensors. (Si is the MR signal of the ith image and S0 is the zero-gradient
signal).

It is known that the estimated 4th-order tensors represent more complex dif-
fusivity profiles with multiple fiber orientations which better approximate the
diffusivity of the local tissue geometry compared to the traditional 2nd-order
tensors [9]. Studies on estimating fiber orientations from the diffusivity profile
have shown that the peaks of the diffusivity profile do not necessarily yield the
orientations of the distinct fiber bundles [10]. One should instead employ the
displacement probability profiles . The displacement probability P (R) is given
by the Fourier integral P (R) =

∫
E(q)exp(−2πiq ·R)dq where q is the recipro-

cal space vector, E(q) is the signal value associated with vector q divided by the
zero gradient signal and R is the displacement vector. In our experiments, we
numerically estimated the displacement probability profiles from the 4th-order
tensors.

Then, we computed the displacement probability profiles of the 4th-order ten-
sors estimated earlier with the two different methods, and we computed the fiber
orientations from the maxima of the probability profiles. The error angles (mean
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Fig. 1. Comparison of the fiber orientation errors for different amount of noise in the
data, obtained by using: a) our parametrization to enforce positivity and b) without
enforcing positivity of the estimated tensors
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and standard deviation) of the two methods for different amount of noise in
the data are plotted in Fig. 1. As expected, our method yields smaller errors in
comparison with the method that does not enforces the PSD property of the ten-
sors. When we increase the amount of noise in the data, the errors observed by
the later method are significantly increased, while our proposed method shows
clearly much smaller errors. This conclusively demonstrates the need for enforc-
ing the PSD property of the estimated tensors and validates the accuracy of our
proposed method.

Furthermore, in order to compare our proposed method with other existing
techniques that do not employ 4th-order tensors, we performed an other exper-
iment using synthetic data. The data were generated for different amounts of
noise by following the same method as previously using the simulated MR signal
of a 2-fiber crossing (see Fig. 2(a)) . We estimated 4th-order tensors from the
corrupted simulated MR signal using our method and then we computed the
fiber orientations from the corresponding probability profiles. For comparison
we also estimated the fiber orientations using the DOT method described in
[10] and the ODF method presented in [6]. For all three methods we computed
the estimated fiber orientation errors for different amount of noise in the data
(shown in Fig. 2(b)). The results conclusively demonstrate the accuracy of our
method, showing small fiber orientation errors (∼ 6o) for typical amount of noise
with signal to noise ratios (SNR): 12.5-16.6. Furthermore, by observing the plot,
we also conclude that the accuracy of our proposed method is very close to that
of the DOT method and is significantly better than the ODF method.

In the following experiments, we used MR data from an isolated rat hippocam-
pus. The diffusion weighted MR images of this dataset were acquired using the
following protocol. This protocol included acquisition of 22 images using a pulsed
gradient spin echo pulse sequence with repetition time (TR) = 1.5 s, echo time

(a)

0 16.6 12.5 8.3 6.2
0

10

20

30

40

SNR

er
ro

r 
an

gl
e 

(d
eg

re
e)

 

 

DT4
DOT
ODF

(b)

Fig. 2. Fiber orientation errors for different SNR in the data using our method for the
estimation of positive 4th-order tensors and two other existing methods: 1) DOT and
2) ODF. In the experiment we used simulated MR signal of a 2-fiber crossing, whose
probability profile is shown in (a).
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(TE) = 28.3 ms, bandwidth = 35 kHz, field-of-view (FOV) = 4.5×4.5 mm, ma-
trix = 90 × 90 with 56 continuous 200-μm-thick axial slices (oriented transverse
to the septo-temporal axis of the isolated hippocampus). After the first image set
was collected without diffusion weighting (b ∼ 0 s/mm2), 21 diffusion-weighted
image sets with gradient strength (G) = 415 mT/m, gradient duration (δ) =
2.4 ms, gradient separation (Δ) = 17.8 ms and diffusion time (Tδ) = 17 ms
were collected. Each of these image sets used different diffusion gradients (with
approximate b values of 1250 s/mm2) whose orientations were determined from
the 2nd order tessellation of an icosahedron projected onto the surface of a unit
hemisphere. The image without diffusion weighting had 36 signal averages (time
= 81 min), and each diffusion-weighted image had 12 averages (time = 27 min
per diffusion gradient orientation) to give a total imaging time of 10.8 h per
hippocampus. Temperature was maintained at 20 ± 0.2oC throughout the ex-
periments using the temperature control unit of the magnet previously calibrated
by methanol spectroscopy. Figures 3(a) and 3(b) show the S0 image and the FA
map respectively of a slice extracted from the 3D volume of the above dataset.

(a) (b) (c) (d)

Fig. 3. Isolated rat hipppocampus. a) S0, b) FA, c) White pixels indicate locations
where the estimated 4th-order tensor was not positive-definite, d) Manually labeled
image based on knowledge of hippocampal anatomy. The index of the labels is: 1)
dorsal hippocampal commissure, 2) fimbria, 3) alveus, 4) molecular layer, 5) mixture
of CA3 stratum pyramidale and stratum lucidum.

First, we estimated a 4th-order diffusion tensor field from this dataset by
minimizing

∑M
i=1(Si − S0exp(−bid(gi)))2 without using the proposed parame-

trization to enforce positivity [11]. As expected, some of the estimated tensors
were not positive. In Fig. 3(c) we show in white color the locations where those
non-positive-definite tensors were estimated. These tensors are mainly located
in the regions “dorsal hippocampal commissure”, “fimbria” and “alevus”, which
correspond to the regions 1, 2 and 3 respectively, shown in Fig. 3(d). Based on
knowledge of hippocampal anatomy, those regions are highly anisotropic with
FA ∼ 0.9. Therefore, from the experimental results (Fig. 3(c)) we conclude that
highly anisotropic diffusivities are most likely to be inaccurately approximated
by a non-positive semi-definite tensor. Thus one needs to employ a method that
guarantees the PSD property.
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(a) (b) (c)

Fig. 4. The estimated 4th-order tensor field from an isolated rat hippocampus dataset
using our method. (a) top:S0 and bottom:FA, (b) the estimated displacement proba-
bility profiles of the 4th-order tensor field in the region of interest (ROI) indicated by
a green rectangle in (a). (c)Comparison of the estimated 2nd-order tensors (top)and
the estimated probability profiles of the 4th-order tensors without (middle) and with
regularization (bottom) in a ROI indicated by a black rectangle in (b).

We computed the displacement probability profiles from: a) the 4th-order ten-
sor field estimated previously without the positive-definite constraint, and b) the
4th-order tensor field estimated by our proposed method. In order to compare
the results of the above algorithms, in Fig. 5 we plot the corresponding proba-
bility profiles from a region of interest in the “dorsal hippocampal commissure”.
By observing this figure, we can say that the field of probability profiles is noisy
if we do not enforce the PSD constraint (Fig. 5 middle). On the other hand the
profiles obtained by our method (Fig. 5 right) are more coherent and smooth.
Note that this is a result of enforcing the PSD constraint, since in this experiment
we did not use any regularization. This demonstrates the superior performance
of our algorithm and motivates the use of the proposed PSD constraint.

Finally Fig. 4(b) shows displacement probability profiles computed from the
estimated (by our method) 4th-order tensor field in another region of hippocam-
pus. This tensor field corresponds to the region of interest denoted by a green
rectangle in S0 and FA map shown in Fig. 4a. The X, Y, Z components of the
dominant orientation of each profile are assigned to R, G, B (red, green, blue)
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Fig. 5. Left: The region of interest from the “dorsal hippocampal commissure”, which
is magnified in the next plates of this figure. Comparison between the displacement
probability profiles computed from non-PSD 4th-order tensors (middle) and PSD ten-
sors estimated by our method (right).

components of the color of each surface. By observing Fig. 4(b) we can see several
fiber crossings in different regions of the rat hippocampus. One of those regions
is marked by a black rectangle and it is presented enlarged in Fig. 4(c). This re-
gion is consisted of a mixture of CA3 stratum pyramidale and stratum lucidum,
and it is most likely to contain fiber-crossings. As expected, in the center of this
region there are profiles presenting fiber crossings. These fiber crossings cannot
be resolved by using 2nd-order diffusion tensors estimated from the same dataset
(shown on the top of Fig. 4(c)). Finally in the bottom plate of Fig. 4(c), we show
an example using the regularization term defined in section 2.2. By comparing
the probability profiles shown in this image with those of the middle plate of Fig.
4(c) we can see that the regularization of the estimated data removes some of
the noise in the dataset, and as a consequence some of the crossings are observed
more clearly (see at the center of the image).

4 Conclusions

In diffusion weighted MR imaging 2nd-order tensors have commonly been used
to approximate the diffusivity profile. 4th-order tensors were employed in this
work, showing better approximation capabilities compared to the 2nd-order case.
We presented a method for estimating the coefficients of 4th-order tensors from
diffusion-weighted MR images. Our technique guarantees the positive
semi-definite property of the estimated tensors, which is the main contribution
of our work. This property is essential since non-PSD diffusivity profiles are not
meaningful from the point of view of physics of diffusion. To date, there is no
other reported work in literature which handles this constraint for rank-4 ten-
sors. We applied our proposed algorithm to a real MR dataset from an isolated
rat hippocampus. The superior performance of our method in the experimental
results demonstrates the need for employing the constraint and motivates the
use of our technique. The accuracy of our model was validated by using simu-
lated MR data of fiber crossings, and compared to other existing methods. In
our future work we plan to employ the methods proposed here to extend various
techniques used for the 2nd-order tensor fields such as segmentation, registration
and fiber-tracking, to the space of higher-order tensors.
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