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Abstract. In this paper we present a novel method for multi-fiber re-
construction given a diffusion-weighted MRI dataset. There are several
existing methods that employ various spherical deconvolution kernels
for achieving this task. However the kernels in all of the existing meth-
ods rely on certain assumptions regarding the properties of the under-
lying fibers, which introduce inaccuracies and unnatural limitations in
them. Our model is a non trivial generalization of the spherical decon-
volution model, which unlike the existing methods does not make use
of a fix-shaped kernel. Instead, the shape of the kernel is estimated si-
multaneously with the rest of the unknown parameters by employing a
general adaptive model that can theoretically approximate any spheri-
cal deconvolution kernel. The performance of our model is demonstrated
using simulated and real diffusion-weighed MR datasets and compared
quantitatively with several existing techniques in literature. The results
obtained indicate that our model has superior performance that is close
to the theoretic limit of the best possible achievable result.

1 Introduction

Many diffusion MR reconstruction methods are based on the Stejskal-Tanner
equation S = S0 exp(−bd) which describes the signal S observed in a diffusion
MR image at a voxel scale, where b is the diffusion weighting factor depending
on the strength as well as the effective time of diffusion, S0 is the signal in the
absence of any diffusion weighting, and d is called apparent diffusion coefficient

(ADC) [1]. In the diffusion tensor imaging (DTI)[2], d is assumed to take a
quadratic form d = gTDg, where D is a 3×3 positive definite matrix, and g is the
diffusion gradient direction. However, the inability of DTI to deal with regions
containing intra-voxel orientational heterogeneity has been widely reported in
literature [3–6] making it a well-known and challenging problem.

To overcome the single fiber orientation limitation inherent with the uni-
modal quadratic functions, higher order models [3, 4, 7] have been proposed to
model the diffusivity function. However, the flexibility brought by these methods
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does not solve the problem that the peaks of the ADC profile do not necessarily
yield the fiber orientations in the case of fiber crossings [8, 9].

The ensemble-average diffusion propagator P(r,t) can be computed using
the q-space methods by exploiting the Fourier relation between the signal at-
tenuation and the diffusion propagator. Diffusion spectrum imaging (DSI) [10]
performs a discrete Fourier transform to obtain P(r,t), which requires a time-
intensive Cartesian sampling in q-space and hence is impractical for routine clin-
ical use. Instead of the Cartesian sampling, the Q-ball imaging (QBI) method
takes measurements on a q-space ball and approximates the radial integral of
the displacement probability distribution function by the spherical Funk-Radon
transform [11]. In more recent studies, the analytic solution of QBI’s Funk-
Radon transform has been derived by using a spherical harmonic basis [12–14].
One problem with QBI is that the estimated diffusion ODF is modulated by
a zeroth-order Bessel function that induces spectral broadening of the diffusion
peaks. Another technique called the diffusion orientation transform (DOT) [8]
computes the displacement probability profile at a fixed radius by expressing the
Fourier transform in spherical coordinates and evaluating the radial part of the
integral analytically. DOT assumes signals decay can be described by either a
mono- or a multi-exponential model, the latter of which requires data acquisition
over multiple concentric spheres, a time consuming proposition.

Another research direction in the multi-fiber reconstruction literature is to
describe the signal attenuation by multi-compartment models beyond the mono-
exponential Stejskal-Tanner equation. The approach in [6] assumes the signal
in each voxel can be split into a weighted sum of contributions from different
diffusion tensors individually. Various partial volume models have been studied
in [15, 16] and were extended in [17, 18]. The model selection problem in these
methods usually requires complicated solution techniques and computationally
intensive simulations to infer the optimal model parameters properly.

To avoid the model-selection problem several spherical deconvolution tech-
niques have been proposed in which the DW-MRI signal can be expressed as
the convolution over the sphere of a fiber bundle response (also known as ker-
nel function k) with a probability density function [19–22]. In this spherical
deconvolution approach there is no limitation on the number of the estimated
distinct fiber populations within a voxel. However, all of these methods employ
a predefined fix-shaped function such as Gaussian [19, 21, 23], von Mises [22],
Rigaut-type [20], each of which is treated as a spherical basis, whose shape pa-
rameters are chosen based on certain assumptions relating to the properties of
the underlying fibers. Such assumptions introduce inaccuracies and unnatural
limitations in the methods since in a real DW-MRI dataset the properties of the
underlying fibers may vary spatially.

In this paper we present a novel mathematical model for multi-fiber recon-
struction using an adaptive deconvolution kernel, whose shape is not fixed and is
estimated simultaneously with the rest of the unknowns of the model. The adap-
tive kernel is defined as a spline over the space of magnetic gradient directions
and the diffusion weighting factor b, which can theoretically approximate any



continuous function. We present extensive comparisons between the proposed
method and other existing techniques demonstrating superior performance of
our method. Furthermore we show that the results produced by the proposed
model are close to the limit of the theoretically best possible result.

The main contribution of this paper is a novel mathematical model for multi-
fiber reconstruction. To the best of our knowledge, it is the first method that
employs an adaptively shaped spherical deconvolution kernel instead of a fixed
one used by the existing techniques. Our model overcomes the limitations of the
other methods and furthermore generalizes the spherical deconvolution frame-
work, in which all the other existing methods can be expressed as special cases.

2 Mathematical model

The DW-MRI signal response can be modeled as the convolution of a kernel
function k, which corresponds to a single fiber response, with a mixing density
function f as expressed in the following equation

S(b,g)/S0 =

∫

f(p)k(b,g|p)dp (1)

where the kernel k is a parametric function with parameter vector p, which is
also the random variable of the density function f , and the integration is over
the domain of p. S0 is the zero gradient image, and g and b are the magnetic
gradient field direction and the b-value respectively. In [24], it has been shown
that several existing multi-fiber reconstruction models can be expressed in the
above generalized fiber convolution model.

Two possible choices for the kernel function are the multivariate Gaussian

function k(b,g|D) = e−bgT Dg [12, 19–21], and the von Mises-Fisher function

over the sphere given by k(b,g|µ) = κ
4πsinhκ

eκµT
g [22]. The integration space in

the above examples is the space of 3× 3 symmetric positive-definite matrices D

and the space of 3-dimensional unit vectors µ respectively. The kernel functions
as well as the mixing densities that correspond to several existing multi-fiber
reconstruction models are reported and compared in [24].

Due to the spherical nature of the diffusion-weighted acquisition process, the
mixing density function f can be parametrized using a discrete hemispherical
lattice as follows

f(p) =

N
∑

j=1

wjφ(p|vj) (2)

where v1 . . .vN is a set of unit vectors uniformly distributed on the hemisphere,
and φ(p|vj) is a mixing density function that is treated here as a basis function
weighted by the unknown mixing weights wj . By substituting Eq. 2 into Eq. 1
and convolving these basis functions with the kernel over the space of the kernel’s
parameters as follows

∫ N
∑

j=1

wjφ(p|vj)k(b,g|p)dp =
N

∑

j=1

wjK(b,g|vj) (3)



we obtain a continuous function K(b,g|vj) =
∫

φ(p|vj)k(b,g|p)dp. In several
cases, this function can be computed analytically [20, 22] and corresponds to a
multi-fiber reconstruction kernel K, employed in the following mixture model

S(b,g)/S0 =

N
∑

j=1

wjK(b,g|vj) (4)

Different choices of k(b,g|p) in Eq.(1) and of φ(p|vj) in Eq.(2) result in
differently shaped kernel K(b,g|vj) in Eq.(4). Thus it is entirely possible for
some kernels to be better suited to a particular data set than others in terms of
reconstruction accuracy.

In all of the existing methods, the shape of the kernel K is assumed to be
fixed, which is an unnecessary constraint and adds an unnatural restriction to
the computed fiber reconstructions. For example the shape of the Rigaut-type
kernel K(b,g|,Tj) = (1+(bgTTjg)/p)−p derived in [20] is fixed by using certain
predefined value of p as well as eigenvalues in the tensor Tj , the diffusion basis
kernel K(b,g|Tj) = exp(−bgTTjg) in [19, 21] is also fixed by predefining the
eigenvalues of the tensor, and the shape of the model employed in [22] is fixed
by choosing a value for the parameter κ.

In this paper, we do not make any such assumptions instead, we develop a
general adaptively shaped kernel, whose shape is simultaneously estimated with
the mixing weights wj in Eq.(4). The proposed kernel is expressed as a spline,
which can theoretically approximate any continuous function. Furthermore, by
considering the cylindrical geometry of the underlying fibers in the tissue [25]
the spline model can be reduced to a 2-dimensional spline over the 2D domain
b× |g · vj | as follows:

K(b,g|vj) =
∑

k

∑

l

ck,lψl(b)ψk(|g · vj |) (5)

where ck,l are the so-called unknown control points, and ψi(x) is a spline basis.
In the special case of HARDI acquisition using a constant b-value, the formula
for the corresponding adaptively shaped kernel is simplified to an 1-dimensional
spline given by

K(g|b,vj) =
∑

k

ckψk(|g · vj |). (6)

Figure 1 illustrates the 2D and 1D splines that correspond to Eq.(5) and
Eq.(6) respectively computed from simulated DW-MRI data. As expected, the
diffusion-weighted MR signal attenuation S/S0 decreases while b-value increases
and also decreases when the magnetic gradient direction g becomes parallel to
the fiber orientation v.

By substituting Eq.6 into Eq.4 we derive our model which is given by Eq.(7).

S(g)/S0 =
N

∑

j=1

wj

∑

k

ckψk(|g · vj |) (7)



Fig. 1. Plot of the 2D spline that corresponds to K(b,g|v) computed from sim-
ulated DW-MRI data of a single fiber with orientation v. The dashed line is a
plot of the 1D spline that corresponds to K(g|b,v) for a constant b-value using
the same simulated dataset.

The unknowns in this model are the weights wj and the control points ck. The
number of the unknown weights wj corresponds to the resolution of the hemi-
sphere tessellation by the vectors vj , and the number of the control points ck
corresponds to the resolution of the discretization of the spline. Here we should
emphasize that the adaptively shaped kernel employed in Eq. 7 can theoretically
approximate any kernel function and therefore it does not add any kind of limi-
tation related to the underlying fiber characteristics, which is one of the major
advantages of our model when compared with the existing techniques. In the
next section we estimate these unknowns from a given DW-MRI dataset.

3 Algorithm and implementation details

In this section we assume that a set of M diffusion-weighted MRI images Si

are given, along with the corresponding magnetic gradient directions gi. The
underlying fiber populations in this dataset can be reconstructed by using our
adaptively-shaped kernel model (Eq.7) in a least-square minimization frame-
work, by minimizing the following objective function

E(w, c) =

M
∑

i=1



Si/S0 −

N
∑

j=1

wj

P
∑

k=1

ckψk(|gi · vj |)





2

(8)

where w and c are the two unknown vectors that consist of the unknown variables
wj and ck.

Any spline basis function can be used for ψk(x) in Eq.8. In our experiments
we employed the B-spline basis of various orders due to their simple analytic
form, and the corresponding control points were positioned on a uniform grid of
knots. The number of control points P controls the flexibility of the estimated



adaptive kernel, i.e. large P can accommodate more bumps in the approximated
kernel function. However, in our particular application the kernel function should
represent the diffusion-weighted MRI signal attenuation of a single fiber, which
is a very smooth function (see Fig.1) and therefore can be well approximated by
using a small number of control points (P ∼ 5).

Additionally, the diffusion-weighted MRI signal attenuation of a single fiber
is a monotonically decreasing function of |gi · vj |, (or monotonically increasing
function of 1 − |gi · vj |) due to the physics of DW-MRI acquisition. Hence the
corresponding adaptively-shaped kernel should also be a monotonically increas-
ing function of 1− |gi · vj |, which can be incorporated into our parametrization
by enforcing the corresponding unknown control points ck to form a monoton-
ically increasing sequence. This can be achieved by further parameterizing the
sequence of control points as: c1 = a1, c2 = a1 + a2,..., ck =

∑l=k

l=1
al where

a1, . . . , ak is a sequence of non-negative numbers. By plugging the parameters
ak into Eq.8 we arrive at the following expression for the objective function

E(w,a) =

M
∑

i=1



Si/S0 −

N
∑

j=1

wj

P
∑

k=1

ak

P
∑

l=k

ψl(1− |gi · vj |)





2

(9)

where a is the unknown vector that consists of the parameters ak. This min-
imization problem can be solved iteratively by first estimating w given a and
then estimating a given w. Note that all the unknown parameters should be
non-negative real numbers and therefore they can be computed using the non-
negative least squares method [26].

Both vectors w and a can be estimated by solving two linear systems. First
we form the linear system Aw = b, where the matrix A is of size M × N ,
and its elements are Ai,j =

∑P

k=1
ak

∑P

l=k ψl(1− |gi · vj |) and the elements of
b are bi = Si/S0. After having solved this linear system using non-negative
least squares, we form another linear system A′a = b, where the matrix A′

is of size M × P , and its elements are A′
i,k =

∑N

j=1
wj

∑P

l=k ψl(1 − |gi · vj |).
This system should also be solved using a non-negative least squares approach.
These two alternating steps are repeated until convergence of the algorithm.
The convergence of the algorithm is guaranteed, due to the fact that both steps
converge and reduce the same positive-valued objective function (Eq. 9).

The process for reconstructing fibers using adaptively-shaped kernels is sum-
marized in Algorithm 1. As was previously discussed, argmin is implemented
by solving a linear system using the non-negative least squares method. In order
to increase the robustness of the adaptively-shaped kernel method to the pres-
ence of noise in the data, we can slightly modify our algorithm by penalizing
the smallest weights from vector w when updating the vector a. The dominant
weights correspond to strong fiber responses, while the smallest weights capture
high frequency details such as noise. In our experiments, in the step for updat-
ing vector a, we employed a penalizing function that scales down by a factor 0.5
those weights wj that have less than half of the strength of the largest weight in
w. Other penalizing functions can be employed as well.



input : S1 . . . SM , g1 . . .gM , S0, b-value, and a small tolerance value e
output: the vector of weights w and the vector of control points c

t← 0 ;
while ‖ at − at−1 ‖> e do

w ← argminwE(w,a) given a ;
a← argminaE(w,a) given w ;

end

for k = 1 . . . P do

ck ←
∑l=k

l=1
al ;

end

Algorithm 1: Adaptively-shaped kernels for multi-fiber reconstruction

Finally, after having approximated the DW-MRI signal by using the proposed
adaptively-shaped kernel model, we can estimate the fiber orientations by finding
the maxima of the water molecule displacement probability given by the Fourier
integral

P (r) =

∫

S(q)

S0

e−2πiqT rdq (10)

where q is the reciprocal space vector, S(q)/S0 is the approximated DW-MRI
signal value associated with vector q, and r is the displacement vector. Note
that vector q is a function of the b-value and the magnetic gradient direction
g. However, if the adaptively-shaped kernel model is fitted to data that were
acquired using a constant b-value, then the estimated kernel is given by Eq.6,
which is not a function of b-value. In this case the fiber orientations can be
computed by finding the maxima of the following approximated expression

P (r) '
N

∑

j=1

wj

P
∑

k=1

ck

∫

ψk(|g · vj |)e
−2πi‖q‖gT rdg (11)

where the integrals

∫

ψk(|g · vj |)e
−2πi‖q‖gT rdg form a new basis that can be

precomputed numerically over a set of predefined displacement vectors r.
In the next section we demonstrate the results of application of our algorithm

to synthetic and real DW-MRI datasets.

4 Experimental results

This section is divided into two subsections: a) Synthetic data experiments and
b) experiments using real DW-MRI data from excised rat hippocampus and
optic chiasm.

4.1 Synthetic data experiments

The data employed in the experiments of this section were synthesized using the
realistic simulation model proposed in [25]. This method simulates the DW-MRI



signal attenuation from water molecules, whose diffusion is restricted inside a
cylindrical fiber of radius ρ and length L. We employed this model to simulate
a 2-fiber crossing (depicted in Fig. 2 left) using the parameters ρ = 5µm, L =
5mm, b-value = 1500s/mm2 which are typical values in rat brain datasets [8].
The dataset were simulated using 81 gradient directions computed as the 3rd-
order tessellation of the icosahedron on the unit hemisphere.

Fig. 2. Plots of the kernels computed by applying our algorithm to a synthetic
dataset from a 2-fiber crossing (left) using various orders of the spline basis. The
dotted line is the ground truth (simulated signal from a single fiber).

First, in order to demonstrate the ability of our algorithm in estimating an
accurate deconvolution kernel (i.e. single fiber response) from a 2-fiber crossing,
we applied it to the simulated dataset using various orders of the b-spline basis
ψk(x) used in the kernel parametrization. By observing the recovered kernels
(Fig. 2), we can see that for each order of the B-spline used, the recovered
kernel was the closest possible approximation of the simulated signal from a
single fiber (dotted line). In the 2nd-order case there was perfect match with the
ground truth (floating precision degree error). Here we should emphasize that
neither the number of fibers nor the shape of the deconvolution kernel (single
fiber response) were known in our algorithm. This is in contrast to the existing
methods, which employ a given fixed deconvolution kernel. The estimated control
points ck for order-2 are shown in Fig. 3.

Fig. 3. The control points ck computed by applying our algorithm to the simu-
lated dataset. The plots of the b-spline basis are shown along with the evaluated
kernel (dotted line). The centers of the basis (knots) are also marked.

In the next experiment, we added various levels of Riccian noise to the simu-
lated 2-fiber crossing dataset and then tested the accuracy of several competing



Fig. 4. Comparison of the estimated fiber orientation errors produced by several
multi-fiber reconstruction models (QBI [11], DOT [8], MOVMF [22], MOW [20],
and our adaptive kernel technique) using simulated 2-fiber crossing data.

multi-fiber reconstruction techniques in estimating fiber orientations. The fiber
orientations were estimated by finding the maxima of either the displacement
probability or the ODF computed by the corresponding methods. We used four
distinct noise levels and for each noise level the experiments were repeated 100
times. The obtained results are shown in Fig. 4 and for the particular noise level
with std. dev.= 0.08 the errors are reported in the table. The results demonstrate
the superiority of the proposed model. Furthermore, there was no significant dif-
ference between the results obtained by the 0th and the 2nd-order B-spline basis,
both of which yielded more accurate results compared to the other methods.

The last entry in the table in Fig. 4 corresponds to results obtained using
the simulated single fiber response as the deconvolution kernel K in the spherical
deconvolution framework (Eq. 4). Since this kernel is identical to the simulated
single fiber response used in data generation, we will consider the multi-fiber re-
construction results produced by using it as the limiting case, which corresponds
to the theoretic best possible result. Note that our method is the only method
that produces average errors smaller than 1 degree compared to the limiting
case. Finally we can further improve the results produced by all the methods by
using post-processing tools such as ODF sharpening similar to that presented in
[14], however in our experiments we compared the strength of each individual
model without using any additional post-processing supplements.

4.2 Real data experiments

In this section we present experimental results obtained using real data set from
excised rat hippocampus (shown in Fig. 5) and optic chiasm (shown in Fig. 6).
The original DW-MRI data sets contained 22 images acquired using a pulsed
gradient spin echo pulse sequence, with 21 different diffusion gradients and ap-
proximate b value of 1250 s/mm2.



Fig. 5. The adaptively-shaped kernels estimated from a hippocampal DW-MRI
dataset. The S0 image is shown on the left and then the estimated kernel (Eq.
6) evaluated at |g · v| = 0.9. The plot of the average adaptive kernel in various
ROIs is shown as a bar chart on the right.

We applied the proposed method to the hippocampal dataset using 2nd-order
b-spline and 5 control points ck. In order to demonstrate the variability of the
shape of the estimated deconvolution kernel across the dataset, we depict the
estimated kernel (eq. 6) evaluated at |g · v| = 0.9 as an image in Fig. 5b. As
we expected, the regions of high anisotropy appear darker, since the signal is
more attenuated in such regions when the gradient direction g forms a small
angle with the fiber orientation v. This demonstrates that our method estimates
clinically meaningful deconvolution kernels, which vary across the field, contrary
to the existing methods, which employ a pre-defined fix-shaped kernel.

Furthermore, the plot in Fig 5 shows the average adaptively-shaped kernel
estimated in various regions of interest (ROI) in hippocampus. By observing the
plot we can see that fimbria contains more anisotropic fibers, which corresponds
to steeper kernel shape, while stratum radiatum contains less anisotropic fibers,
which corresponds to flattened kernel shape. These results are validated by the
existing knowledge on hippocampal anatomy [27]. This motivates the use of
our method, which is based on the cylindrical geometry of fibers as well as the
physics of the DW-MRI acquisition, unlike othe existing techniques that require
the cylindrical geometry assumption but with prespecified dimensions of the
cylinder (not required in our case).

Finally, in Fig. 6 we present multi-fiber reconstruction results from a DW-
MRI dataset of an excised rat’s optic chiasm. The spherical function plots depict
the estimated displacement probability profiles (Eq. 11) at each lattice point.
The region of interest is marked with a box in the S0 image. The depicted field
contains spherical plots that correspond to single fibers as well as fiber crossings
and other complex probability profiles.



Fig. 6. The field of displacement probabilities estimated by the proposed tech-
nique using data from an excised rat’s optic chiasm.

5 Conclusions

In this paper, we presented an algorithm that uses adaptively-shaped kernels
for multi-fiber reconstruction. In this algorithm, we simultaneously estimate the
shape of the kernel with the rest of the unknown parameters in the model. Our
technique is motivated by the fact that the characteristics of the underlying
fibers vary across a dataset, which corresponds to variations in the shape of the
deconvolution kernel. The method was tested on synthetic and real DW-MRI
datasets. The experimental results demonstrate the superiority of our model
over existing techniques. We validated our algorithm by presenting quantitative
as well as visual results. Our future efforts will be focused on employing the
proposed method in multi-fiber tracking framework in order to study the changes
on the shape of the estimated kernels along known fiber bundles in the brain.
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[25] Söderman, O., Jönsson, B.: Restricted diffusion in cylindirical geometry. J.
Magn. Reson. B 117(1) (1995) 94–97

[26] Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Englewood
Cliffs, NJ: Prentice-Hall (1974)

[27] Shepherd, T.M., et al: Structural insights from high-resolution diffusion ten-
sor imaging and tractography of the isolated rat hippocampus. NeuroImage
32(4) (2006) 1499–1509


