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ABSTRACT

In Diffusion Tensor Magnetic Resonance Image (DT-MRI)
processing a 2nd order tensor has been commonly used to ap-
proximate the diffusivity function at each lattice point of the
3D volume image. These tensors are symmetric positive defi-
nite matrices and the appropriate constraints required in algo-
rithms for processing them makes these algorithms complex
and significantly increases their computational complexity. In
this paper we present a novel parameterization of the diffusiv-
ity function using which the positive definite property of the
function is guaranteed without any increase in computation.
This parameterization can be used for any order tensor ap-
proximations; we present Cartesian tensor approximations of
order 2, 4, 6 and 8 respectively, of the diffusivity function all
of which retain the positivity property in this parameterization
without the need for any explicit enforcement. Furthermore,
we present an efficient framework for computing distances
and geodesics in the space of the coefficients of our proposed
diffusivity function. Distances & geodesics are useful for per-
forming interpolation, computation of statistics etc. on high
rank positive definite tensors. We validate our model using
simulated and real diffusion weighted MR data from excised,
perfusion-fixed rat optic chiasm.

Index Terms— Biomedical imaging, Biomedical image
processing,Magnetic resonance imaging, Diffusion processes

1. INTRODUCTION

Data processing and analysis of matrix-valued image data is
becoming quite common as imaging sensor technology ad-
vances allow for the collection of matrix-valued data sets. In
medical imaging, in the last decade, it has become possible to
collect magnetic resonance image (MRI) data that measures
the apparent diffusivity of water in tissue in vivo. A 2nd order
tensor has been commonly used to approximate the diffusiv-
ity profile at each lattice point of the image lattice [1]. The
approximated diffusivity function is given by gT Dg, where
g = [g1 g2 g3]

T is the gradient unit vector andD is a 3×3ma-
trix. This approximation yields a diffusion tensor (DT-MRI)
data setDi, which is a 2D or 3D matrix-valued image, where
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subscript i denotes location on a 2D or 3D lattice respectively.
These tensorsDi are elements of the space of 3×3 symmetric
positive-definite (SPD) matrices.
Mathematically, these SPD tensors belong to a Rieman-

nian symmetric space, where a Riemannian metric, which is
affine invariant assigns an inner product to each point of this
space. By using this metric, one can perform various com-
putations on the elements of the space [2, 3]. However im-
plementation of algorithms using this affine invariant frame-
work increases significantly the execution time of the algo-
rithms and complex algorithms may not be finish their execu-
tion within a reasonable time frame.
Recently, a Log-Euclidean metric was proposed in [4] for

computing with tensors. In this work, the elements from the
space of SPD tensors, are mapped to a vector space of di-
mension �6 using the matrix logarithm map. Therefore, one
can use the Euclidean norm for computations in this space
and finally by using the inverse mapping, the data are mapped
back to the space of SPD matrices. This framework is quite
interesting and has advantages due to its high computational
efficiency in comparison to the affine invariant framework.
Both affine invariant and Log-Euclidean frameworks can

be employed for processing fields of 2nd order tensors. Use
of higher order tensors was proposed in [5] to represent more
complex diffusivity profiles which better approximate the dif-
fusivity of the local tissue geometry. However to date, none
of the reported methods in literature for the estimation of the
coefficients of higher order tensors preserve the positive defi-
niteness of the diffusivity function.
In this paper we propose a novel parameterization of the

diffusivity profile that guarantees the positive definite prop-
erty without the need of any further computation. We present
an efficient framework for computing distances and geodesics
in the space of the coefficients of our proposed diffusivity
function. The key contribution of our work is that we em-
ploy this framework for estimating higher (4th, 6th and 8nd)
order tensors from diffusion-weighted MR images. Note that
we are only interested for symmetric tensors and therefore
we consider only even orders. We compare our method with
other existing DTI methods showing high efficiency of the
proposedmethod. We present validation of our framework us-
ing real diffusion-weightedMR data from excised, perfusion-
fixed rat optic chiasm [6].
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2. EXPONENTIAL DIFFUSION TENSORS

We define an Exponential Diffusion Tensor (EDT) of order
2 as a 3 × 3 symmetric matrix E, which will be used in the
following diffusivity function

d(g,E) = egT Eg (1)
The EDT matrixE is not necessarily an SPD matrix since

the diffusivity function 1 is positive for any symmetric ma-
trix. For example, in the case that E is the 3× 3 zero matrix,
we have d(g) = e0 = 1 ∀ g. If we use the standard diffusiv-
ity function gT Dg, the previous example corresponds to the
diffusion tensorD = I. In this case we have gT Dg = 1 ∀ g.
In eq. 1 the diffusivity function was defined by using a

2nd order exponential tensor E. This function d(g,E) can be
generalized by using higher order tensors. In the case of a 4th

order symmetric tensor we have 15 unique coefficients col-
lected into a vector �E =(E4,0,0, E0,4,0, E0,4,0, E2,2,0, E0,2,2,
E2,0,2, E2,1,1, E1,2,1, E1,1,2, E3,1,0, E3,0,1, E1,3,0, E0,3,1,
E1,0,3, E0,1,3). In the case of higher order tensors we will use
the notation Ep1,p2,p3

to indicate that it is the coefficient of
the term g1

p1g2
p2g3

p3 . By using this notation eq. 1 can be
generalized as

d(g, �E) = exp

(
N∑

i=1

g1
p1ig2

p2ig3
p3iEp1i,p2i,p3i

)
(2)

where in the case of 2nd, 4th, 6th and 8th order N = 6, 15,
28 and 45 respectively.

2.1. Distance measure

We can define a distance measure between same order EDTs
�E1 and �E2 by computing the normalized L-2 distance of the
corresponding diffusivity functions d(g, �E1) and d(g, �E2),

given by dist(�E1, �E2)
2

=
1∫
dg

∫
[d(g, �E1)− d(g, �E2)]

2
dg

where the integration is over the unit sphere (i.e. for all unit
vectors g). As an example, the distance between the 2nd

order EDT matrices E1 = 0 and E2 = (limx→−∞ x)I is
dist(E1,E2)

2
= 1. This is true, since d(g,E1) = 1 and

d(g,E2) = 0 ∀ g. However, we need to define a metric that
assigns infinite distance between the purely isotropic d(g,E1)
and the ’degenerate’ case d(g,E2). Here we use the term ’de-
generate’ in order to highlight the correspondence between
d(g,E2) and the standard diffusivity function gT Dg, where
D = 0. A distance measure that satisfies this property is
given by the following equation

dist(�E1, �E2)
2

=
1

4π

∫
[log(d(g, �E1)) − log(d(g, �E2))]

2
dg

(3)
By analytically computing the integral, eq. 3 can be writ-

ten in the from of sum of squares, which is very fast to com-
pute. As an example in the case of 2nd order EDTs eq. 3

can be evaluated using 8 additions and 10 multiplications , in
the 4th order case using 47 add. and 33 mul.. Due to lack of
space we do not provide these formulas, since their derivation
is simple.
Note that the metric defined above is rotation invariant in

the case of any order exponential tensors. Furthermore, by
using this distance measure it is easy to prove that the mean
element �Eμ is defined as the Euclidean average (�E1 + ... +
�EN)/N (or geometric mean of d1,...,dN ) and the geodesic
(shortest path) between two elements �E1 and �E2 is defined as
Euclidean geodesic γ(t) = (1− t)�E1 + t�E2, t ∈ [0, 1].
In the following section we employ this distance measure

to define an anisotropy map of 2, 4, 6 & 8th-order EDTs.

2.2. Distance from the closest isotropic case

In the isotropic case the quantity d(g, �E) is the same con-
stant for every unit vector g, forming an isotropic sphere c =

log(d(g)) = c(g1
2 + g2

2 + g3
2)

(K/2), where c ∈ � and K

denotes the order of the symmetric tensor �E and is even. The
above equation is satisfied by: 2nd order exponential diffu-
sion tensors of the form E = cI, 4th order EDTs of the form
E4,0,0 = E0,4,0 = E0,0,4 = c, E2,2,0 = E0,2,2 = E2,0,2 =
2c, 6th order EDTs of the formE6,0,0 = E0,6,0 = E0,0,6 = c,
E4,2,0 = E4,0,2 = E2,4,0 = E0,4,2 = E2,0,4 = E0,2,4 =
3c, E2,2,2 = 6c, and 8th order EDTs of the form E8,0,0 =
E0,8,0 = E0,0,8 = c, E6,2,0 = E6,0,2 = E2,6,0 = E0,6,2 =
E2,0,6 = E0,2,6 = 4c, E4,4,0 = E0,4,4 = E4,0,4 = 6c,
E4,2,2 = E2,4,2 = E2,2,4 = 12c, where c is a scalar and the
rest of the elements of �E are equal to zero.
Given an arbitraryKth-order �E, we can compute the clos-

est isotropy tensor coefficients �Eiso by finding the scalar c
that minimizes the distance of �E from the isotropic case. In
the 2nd-order case c = (E1,1 + E2,2 + E3,3)/3, in the 4th-
order case c = (E4,0,0 + E0,4,0 + E0,0,4 + E2,2,0 + E0,2,2 +
E2,0,2)/9, in the 6th-order case c = (E6,0,0+E0,6,0+E0,0,6+
E4,2,0+E4,0,2+E2,4,0+E0,4,2+E2,0,4+E0,2,4+E2,2,2)/27
and in the 8th-order case c = (E8,0,0 + E0,8,0 + E0,0,8 +
E6,2,0 +E6,0,2 +E2,6,0 +E0,6,2 +E2,0,6 +E0,2,6 +E4,4,0 +
E0,4,4 + E4,0,4 + E4,2,2 + E2,4,2 + E2,2,4)/81.
The function fiso(�E) = dist(�E, �Eiso) maps the space of

�E to the space of non-negative real numbers. The smaller the
value of the function, the closer is �E to the �Eiso. The behav-
ior of the function fiso is similar to that of the well-known
fractional anisotropy (FA) map of 2nd order diffusion tensors.
To illustrate this, we estimated the DT field and the EDT field
from a real dataset, and then we computed the FA and the fiso

map respectively (Fig. 1a and 1b). Furthermore, we plot the
fiso as a function of FA in Fig.1d. The same figure also con-
tains the plot (in red) of the fitted function (−c)log(1− FA)
for an estimated c = 0.318. The inverse of the above function
is 1 − exp(−(1/c)fiso(�E)) and can be used to map fiso to
values in the interval [0,1] as was done in Fig. 1c.

793



Fig. 1. Comparison between FA and 4th-order fiso map using
rat optic chiasm data [6]. a) FA, b) fiso, c) fiso mapped to
[0,1] using the fitted function of Fig. 1d, d) plot of fiso vs.
FA

2.3. Estimation of EDT field from DWI

The coefficients of any order exponential diffusion tensor can
be estimated from diffusion weighted images (DWI) by min-

imizing the function E(�E, S0) =

M∑
i=1

(Si − S0e
−bid(gi,�E))2,

whereM is the number of diffusion weighted images associ-
ated with gradient vectors gi and b-values bi, Si is the corre-
sponding acquired signal and S0 is the zero gradient signal.
S0 can either be assumed to be known or estimated simul-
taneously with the coefficients of �E. In our experiments we
minimized the above equation using simple gradient descent
algorithm, however any non-linear functional minimization
method can be used. One can use also additional regulariza-
tion terms in the above function in order to enforce smooth-
ness across the lattice.

2.4. Displacement probability profile

Studies on estimating the fiber orientation from the diffusiv-
ity profile has been shown that the peaks of the diffusivity
profile does not necessarily yield the orientations of the dis-
tinct fiber populations. One should instead employ the dis-
placement probability profiles should [6]. The displacement
probability P (R) is given by the Fourier integral P (R) =∫

E(q)exp(−2πiq · R)dq where q is the reciprocal space
vector, E(q) is the signal value associated with vector q di-
vided by the zero gradient signal and R is the displacement
vector.
In the case of 2nd order exponential diffusion tensors the

peak of the diffusivity profile coincides with the peak of the
displacement probability profile. Therefore fiber orientation
can be estimated as the eigenvector associated with the largest
eigenvalue of matrix E. In higher order case, instead of find-
ing the maxima of P (R) we can find the maxima of the ex-

pression:
N∑

i=1

∫
∞

−∞

E(qqi) exp(−2πiqqi ·R) 4πq2 dq, which

approximates the reciprocal space using the icosahedral tes-
sellation of the unit hemisphere, where q is a scalar and qi

are unit vectors corresponding to the tessellation. In the case
of third-order tessellation we have N = 81, which is the ap-
proximation that we used in our experiments. By computing

TABLE A: COMPARISON OF DTI FRAMEWORKS
Frameworks: Affine invar. Log-Euc. EDT framework
Distance map 0.19 sec 0.45 sec 0.04 sec
Smoothing 5.65 sec 0.64 sec 0.10 sec

–
TABLE B: PROPERTIES OF DTI FRAMEWORKS
Properties / Frameworks Affine inv. Log-Euc. EDT

Affine. Invariance X
Rotation Invariance X X X
Fast DTI processing X X

Unconstrained estimation X
Use of higher order tensors X

the integral analytically in the above approximation we have

P (R) ≈
√

π

4N

N∑
i=1

exp

(
− α

4β

)(
2

β5/2
− α

β3/2

)
(4)

where α = (2πqi ·R)
2, β = 4πtd(qi, �E) and t is the effec-

tive diffusion time.

3. EXPERIMENTAL RESULTS

In this section we present experimental results using synthetic
and real data. All the synthetic data were generated by simu-
lating theMR signal from single fibers or fiber crossings using
the realistic diffusion MR simulation model in [7].
In order to compare the time performance of the proposed

framework with other existing frameworks (affine invariant
[3], and Log-Euclidean [4]) for processing tensor fields we
synthesized a single row of a 2nd-order DTI and EDT field
of size 10000 and then we applied two simple calculations
on every pair of tensors: a)computing their distance and b)
smoothing by finding their average using the abovementioned
frameworks. According to the times reported in Table A, our
framework is the fastest. In the case of smoothing, it is signif-
icantly faster than the Affine invariant framework and asymp-
totically faster than the Log-Euclidean. A comparison of their
properties is presented in Table B. Note that only the EDT
framework can be used for higher-order approximations.
Furthermore, we estimated the 4th-order exponential ten-

sor field of a dataset acquired from excised, perfusion-fixed
rat optic chiasm [6]. Figure 2 shows the displacement prob-
ability profiles computed from the estimated field. The prob-
ability profiles demonstrate the distinct fiber orientations in
the central region of the optic chiasm where myelinated ax-
ons from the two optic nerves cross one another to reach their
respective contralateral optic tracts. These orientation maps
are consistent with other studies on this anatomical region of
the rat nervous system [6]. Furthermore the fiso map (Fig.
1c) has slightly brighter intensities in the central region, com-
pared to the FA map (Fig. 1a). This is because FA uses 2nd-
order approximation, which fails in approximating the fiber
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Fig. 2. Displacement probability profiles of a 4th-order EDT
field from a rat optic chiasm data set [6]. In the background
the distance from the closest isotropy fiso is shown.

crossings in this region and produces estimations close to the
isotropy (darker intensities).
In our framework, after having estimated the coefficient

vectors �E, we can use algorithms developed for vectorfield
processing in order to compute statistics (average, principal
components), interpolate EDT fields etc. Figure 3 (top) shows
some examples of processes for resolving fiber crossings, in-
terpolating and computing principal components using the pro-
posed framework, for the entire image of Fig. 2.
Finally Fig. 3 (bottom) presents a comparison of 4th-

order DTI [5] and EDT in estimating fiber orientations us-
ing simulated MR signal [7] for different amounts of Riccian
noise in the data. The errors observed by using our method
are significantly smaller than those of 4th-order DTI, which
conclusively validates the accuracy of our proposed method.

4. CONCLUSION

In this paper a novel framework for efficient high-order DT-
MRI processing was presented. This framework ensures posi-
tive definiteness of the diffusivity profile and can be employed
for higher order approximations. A metric was developed
for doing computations between same order exponential ten-
sors. The isotropic cases and the distance map from the clos-
est isotropies were also analyzed. Comparisons of the pro-
posed framework with other existing DTI frameworks were
presented demonstrating the high efficiency of the proposed
method. Finally the proposed framework was validated using
simulated and real data from a rat optic chiasm.

Fig. 3. Top: Uses of the proposed framework for: resolv-
ing fiber crossings (8th-order example), geodesic interpola-
tion and calculating PCA (4th-order example) from dataset of
Fig. 2. Bottom: Comparison of 4th-order DTI and EDT in
estimating fiber orientations for different SNR in the data.
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