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ABSTRACT advantage of GTI model is the ability to approximate multi-

lobed diffusivity profiles [2]. A combination of rank-2 and
rank-4 tensors have been employed in Diffusion Kurtosis

. : Imaging to model the apparent kurtosis of the non-Gaussian
MRI datasets, namely Diffusion Tensor Imaging (DT!), Gen water diffusion [3]. It has been shown that various invatrian

_erallzed Tenso_r Imaging (GTI), and Diffusion Ku_rtos_ls Imag characteristics and inherent quantities of kurtosis cazobe
ing (DKI). In this paper we use homogeneous trivariate poly-
. . ) . puted from the parameters of the rank-2 and rank-4 tensors
nomials to show that GTl is a special case of DKI for single; - e
. in DKI [4] that can be used as indicators of diffusion pat-

angular shell acquisitions, and then we employ the theary fo

imposing positive semi-definite (PSD) constraints to GTils i :ggluzn[gmgl%s due to various pathogenic conditions inaieur
order to perform robust estimation of the DKI parameters. We The robust estimation of the parameters in the DKI model

propose a novel framework for DKI estimation that simulta-. : Lo . ;
neously imposes constraints to the diffusivity functioiffd IS esse_znhal especially |n_th_e case of computing kurtoai=d
sion tensor and diffusion kurtosis. These three constairg biological markers for clinical purposes. We should empha-

. - . size here that GTIl and DKI models are more prone to noise in
parameterized explicitly as a set of linear systems thabean
- X : the data compared to DTI due to the large number of unknown
efficiently solved using the non-negative least squards-tec

. : higher order coefficients that need to be estimated.
nigue. The robustness of our framework is demonstrated us- :
In this paper we present a novel method for robust DKI

ing synthetic and real data from a human brain. estimation from a given DW-MRI dataset. In the proposed
Index Terms— Diffusion Kurtosis Imaging, Generalized framework we express tensors in their equivalent trivariat

Several tensor-based models have been presented indrerat
for parameterizing the water diffusion in Diffusion-Wetgh

Diffusion Tensors, Homogeneous Polynomials homogeneous polynomial form. Using homogeneous poly-
nomials we establish a mathematical relationship between t
1. INTRODUCTION parametersin GTland DKI models, and we employ it in order

to impose explicitly positivity constraints to various auiéies

In Diffusion Tensor Imaging (DTI) [1], rank-2 tensors have in the diffusion kurtosis model. More specifically our medho
been used to model the water diffusion in a given Diffusion-guarantees that the estimated parameters correspond$e a po

Weighted (DW) MRI dataset using the Stejskal-Tanner signdfive diffusivity function, positive rank-2 diffusion tesor, and
attenuation model: constrained apparent kurtosis. Furthermore, we show how to

implement explicitly all three constraints as a set of lirmes-
S = Spebdle) (1) tems with non-negative least squares solutions. Finaly, w
performed quantitative comparison of each constraint unde
whered(g) is the diffusivity function,S is the observed sig- various levels of Rician noise in the data. The results aencl
nal associated with the diffusion sensitizing magneticdgra sively demonstrate the robustness of the proposed frankewor
ent orientatiorg and the diffusion weighting, andS, is the = and motivate the need for constrained estimation of the DKI
observed non diffusion-weighted signal-€ 0s/mm?). parameters.
In Generalized Tensor Imaging, tensors of higher rank The contributions in this paper are threefold: 1) we
(e.g. 4) have replaced the rank-2 tensorl{g). The main present a novel method for robust DKI estimation, 2) we
- o hod ed it N use homogeneous polynomials to show that GTl is a special
T S e e ey case of DKI, and therefore shotld no be treated as diferent
change (www.mathworks.com/matlabcentral/fileexchangdihis research  t€chniques [7], and 3) we show how to explicitly parameteriz

was funded in part by US Army W81XWH-08-1-0725, PT075827% hitH the problem in the convenient form of linear systems.
EB007082.




2. HOMOGENEOUS POLYNOMIALS wheret(g) € Hj such that(g) = d(g) — %w(g) Vg € Ss.
The model in Eq. 4 is known as the generalized tensor imag-
Any homogeneous polynomial in 3 variables (z2, z3) of  ing (GTI) model [2]. One of the advantages of the degree-4
degreen can be written in the following form homogeneous polynomial parameterization of the difftgivi
h(x) = Z ol ok @) in Eq. 4 is that it has been well studied and there have been
4 14203 24,5,k proposed several techniques forimposing positivity awirst
AR to the polynomial estimated from DW-MRI data [8, 9].
wherez; is the i component of the variable vectar = In the case of single shell acquisitions Eq. 3 and Eq. 4 are
[21 x2 23]7, andT; ;. are the polynomial coefficients. The identical (for the single given), since the degree-2 polyno-
number of unique polynomial coefficients in Eq. 2 equals tonial d(g) in Eq. 3 can be written as a ternary quartic (degree-
@l \wheren is the degree of the polynomial. In the cases# homogeneous polynomial) due to the property discussed in

2(n)! !

of n = 2, 4, 6 the number of unique coefficientss 15, 28 Sec. 2. Based on the above, it can be easily shown that the

respectively. If we stuck all polynomial coefficients intnep ~ Parametrization in the DKI model (Eq. 3) is redundant for
vectort, Eq. 2 can be further simplified dgx) = v, (x)Tt, single sh_ell acquisitions and the GTI model (Eg. 4) should
whereu, (x) is a vector that contains al-degree monomials be used instead. Hence, the unknown parameters in the DKI
of the variables inc. For example in the case of = 2, t model can be estimated from DW-MRI with at least 2 shells.
is a 6 dimensional coefficient vector, ang(x) is the corre- In the next section we present a novel method for robust
sponding 6D vector of monomials2, zoxs, 22, 2123, ©172 DKI estimation using constrained homogeneous polynomials
22)T, andvy(x) is the corresponding 15D vector of monomi-
als (z3, xoxl, 2323, 2323, 23, 1123, T12223, 117303, 1123, 4. ROBUST ESTIMATION OF KURTOSIS
2323, ¥3wows, 2373, viws, 2370, 27)T. _ 3

The space ofi" degree homogeneous polynomials in 3N order to estimate accurately the parameters of the diffus
variables will be denoted b2 If we restrict the input vari-  Kurtosis model (Eq. 3) from a DW-MR dataset, we need to
ables to bex € S, (i.e. unit vectors), then for anf(x) €  impose certain constraints to the estimated coefficientsut
H2, there exists another polynomial(x) € H;”Q such that discussion we will assume that the given dataset consists of
h(x) = I'(x) ¥V x € S». According to this property any the DW-MRIsignal attenuatiofi(b;, g:,;)/So acquired using
spherical function parametrized as a homogeneous polynd! shells that correspond to diffusion weightinigs - - -, by
mial of degree 2 can be written as an equivalent homogeneo@§d dlﬁereht sets of sensitizing gradiegts;, - - -, g; n: for
polynomial of degree 4, because the former belongs to a sugach shell{€ {1,---, N}).
space of the latter. For instankgx) = h(x)(z3+235+13) =
h'(x), whereh € H3, b/ € H3, andx € Ss. 4.1. Positive diffusivity function

In the next sections we will use homogeneous polynomi- . e .
als to parameterize the diffusion and the kurtosis in DWMRI.lr_] the presence qf oriented qmusmn the angre_d DW._MRI
signal response is monotonically decreasing with This

leads to positive diffusivity functions in the exponent bét
Stejskal-Tanner model, i.et(g) > 0 in Eq. 4. Therefore,
he need for positivity constraints is essential since nega
ive diffusivity values are unnatural and it has been shown
that positive-definite diffusion models are robust and oedu
significantly the fitting errors [9].
o —bd(g)+ 2222 We will impose this constraint using degree-4 homoge-
5(b.g) = Soe™*H&TTEIE) ®) neous polynomials(g) = v4(g)”'t in Eq. 4 and employing
whereg is the sensitizing gradient direction (unit vectdr), the unified framework presented in [9] which imposes posi-
is the applied diffusion weightingi(g) € H3 is the diffu- tivity to any even degree polynomial. The method will be ap-
sion tensor in a polynomial fromy(g) € H3 is the kurtosis  plied separately to the signal from each shell and will pozdu
tensor in a polynomial form, and = s, d(g)dg/4m is the N positive polynomials: (g), - - -, tv(g) associated with,,
mean diffusivity. We should note here that Eq. 3 is identical - -, bx. The coefficients of thé’" polynomial can be com-
to the standard diffusion kurtosis (DKI) model introduced b puted ag; = C,x;, whereC, is a fixed15 x M basis with
J.H. Jensen et al. in [3], since there is equivalence betweghe coefficients o\l degree-4 tensors that span the boundary
the commonly used tensor forms and the homogeneous polgf the PSD space [9], and; is a M -dimensional vector with
nomials employed here. non-negative entries, which is computed as the non-nagativ
For a fixedb value the model in Eq. 3 can be simplified least squares solution [10] to the following linear system:
by using the property in Sec. 2 as follows:

U4(g__1‘:1)T C B *log(s(b_i_-,_gi,l)/sr)) 5
S(b,g) = Spe~"®) (4) vagon)” ) T\ loa(Stigixg)/50) ) ©

3. DIFFUSION KURTOSIS

The acquired Diffusion-Weighted MR signal can be modele
by incorporating the kurtosis component of the diffusioh [3
in the Stejskal-Tanner equation (Eq. 1) as follows:




After computing the polynomial coefficient vectars we o . . .
P 9 holy = Table 1. Definitions of various matrices used in our method

can estimate the co_efﬁuents vecto_rsmdw of the po_lyno- Matrix Size Contents
mialsd(g) andw(g) in Eq. 3 by solving thd 5N x 21 linear 2 . T
system: va(g) | 6x1 (93 9293 95 9193 9192 97 )
(blA —b2 /6115 > () (t1 ) ®) v4(g) 15 x 1 | (g8 9203 9302 - dig2 gi‘)l (see Sec. 2
b /ol ) Y 110200820010080
whereA is a fixedl5 x 6 matrix that converts the coefficients | A 15 %6 000001010000100
. .. . 000000101000010
of a degree-2 polynomial to the coefficients of the equivialen 000000000101001/
degree-4 polynomial (equivalence$3 domain as discussed S 15 x 1 (102010000202001)
in Sec. 2), and 5 is the 15-dimensional identity matrix. Cy 6 x M | fixed set of positive-definite basis [9
The system can be solved by computing the pseudo in- Cy 15 x M | fixed set of positive-definite basis [9

verse matrix. Then the diffusion and kurtosis componergs ar
given byd(g) = v2(g)Td andw(g) = v4(g)"w/d?. Note 013 . : : : , : .
that the estimated DKI parameters satisfy the positivity-co e B e

. . L. . | | == Dif. Funct d Diff i (Sec.4.2) i
straint of the diffusivity function. . 138 Fimction, D5 Teusor el Apys Kiniosie (Svc: 43
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4.2. Positive apparent diffusion

Fitting Error

In addition to the constrained optimization in Sec. 4.1 we
can also enforce the estimated diffusion tensor or its eorre
sponding polynomiad(g) to be positive as well. This can be
achieved by modifying the system in Eq. 6 as follows:

b1 ACs —b3 /6115
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t}\'; Standard Deviation of Rician Noise in the DW-MRI data

where C, is a fixed predefined matrix of sizg x M that
containsM bases of degree-2 [9], andis an unknown}/ -
dimensional vector with non-negative entries. The sofutio
can be computed by initializing andw to be zero vectors
and then by iteratively solving for andw using non-negative
least squares [10] and pseudo-inverse respectively as\ll

Fig. 1. Comparison of various methods for DKI estimation
from a synthetic DW-MRI dataset with various noise levels.

5. EXPERIMENTAL RESULTS

(b“}.Cz ) — ( b1+ w/6 ) In this section we demonstrate the proposed method using
by AC: -+ w/6 @)  synthetic and real DW-MRI data from a human brain.
(_b§/6115"') W — ( t1=51 ACox ) . Diffusion weighted images from the brain of a healthy
—b% /6115 tn—by ACzx volunteer were acquired on a 3T Siemens Tim Trio scanner at

After that, the positive-definite diffusion tensor coeffists  the University of Maryland MR Research Center. The proto-
are given byd = Csx. This process guarantees that bothcol used a diffusion weighted single-shot echo planar imggi

diffusion tensor and diffusivity function are positive. sequence with 64 directions. 2 b-values were collected (b =
500 and 1508 /mm?) for each direction together with.
4.3. Constrained apparent kurtosis In order to test the robustness of the proposed DKI esti-

. , . mation method we selected a region of 100 voxels with high
Finally, we can also restrict the apparent kurtosis to bgelar signal to noise ratio and then we constructed a synthetgynoi

than—3/7, which is the kurtosis limit for regions that consist j5iaset by adding to the corresponding DW-MRI signal at-
of water confined to spherical pores [3]. This can be done byyation(s/5,) different levels of Rician noise with stan-

simply modifying the first system in Eq. 8 as follows: dard deviation in the range 0.04-0.2. Then we fit the DKI
b1AC2 \ t1+biw/6-bias model (Eqg. 3) to the synthetic dataset using 4 different meth

(b AC ) - 2w/ ) ds: li fitti ith i [ i [

NAC, t b3 w/6—byas ods: a) linear fitting without constraints, b) imposing posi

tivity to the diffusivity function (Sec. 4.1), c) imposingp-
itivity to both diffusivity function and diffusion tensoiSgc.
4.2), d) imposing positivity similarly to ¢ and also congtra

wherea = /maz{0,mazges, — 7/3v4(g)Tw}, s is the
15-dimensional coefficient vector of the degree-4 polyradmi

representing the unit isotropy, and is a M-dimensional ing the apparent kurtosis (Sec. 4.3). We compared the ob-
. A ] T . 4.3).

non-negfimve vector Wh'Ch IS rel.ated ioby X = X' T tained estimates with the original dataset without noisa{c

3a/M (1) The obtained solution satisfies all three con-sidered here as ground truth) using the following error met-

straints covered in Sections 4.1,4.2 and 4.3. ric Zb_’g (Sfitted — Strutn)?. Figure 1 shows a comparison
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Fig. 2. Comparison of the apparent kurtosis estimated in two

ROIs (Splenium and Internal Capsule, shown in feim-

unconstrained method to estimate unnatural negativesiliffu

ity values due to the high anisotropy in the ROI. On the other
hand, the proposed method produced more natural kurtosis
values which demonstrated the efficiency of our technique.

6. CONCLUSIONS

In this paper we presented a novel method for robust esti-
mation of the diffusion kurtosis parameters. The proposed
method guarantees the positive-definite property to the est
mated diffusivity function as well as diffusion tensor ansba
constrains the estimated apparent kurtosis. Another advan
tage of the proposed method is its rigorous formulation as a
set of linear systems that can be solved efficiently by using
non-negative least squares or pseudo-inverse calculdtion
nally, the robustness and efficiency of our method was demon-
strated using synthetic as well as real DW-MRI datasets.

7. REFERENCES

[1] P.J. Basser, J. Mattiello, and D. Lebihan, “Estimatién o
the Effective Self-Diffusion Tensor from the NMR Spin
Echo.,”J. Magn. Reson. B, vol. 103, pp. 247-254, 1994.

[2] E.Ozarslan and T. H. Mareci, “Generalized DTl and an-
alytical relationships between DTl and HARDIMRM,
vol. 50, no. 5, pp. 955-965, Nov 2003.

[3] J. H. Jensen et al., “Diffusional Kurtosis Imaging: The
quantification of non-gaussian water diffusion by means
of MRI,” MRM, vol. 53, no. 6, pp. 1432-1440, 2005.

age) by a) an unconstrained linear solver, and b) the prapose[4] L. Qi et al., “Principal invariants and inherent param-

method (Sec. 4.3) which yielded more natural (biologically

feasible) values, wit > —3/7.

eters of diffusion kurtosis tensorsJ. of Mathematical
Analysisand Applications, vol. 349, pp. 165-180, 2009.

[5] H. Lu et al.,, “Three-dimensional characterization of

of the observed fitting errors. Our methods produced a sig-  non-gaussian water diffusion in humans using DKI,”

nificantly smaller error than the unconstrained method twhic

NMR Biomed., vol. 19, no. 2, pp. 236—247, 2006.

demonstrates the robustness of the proposed algorithms and

also indicates the need for constrained optimization wisen e 6]
timating the DKI parameters. Among all methods, the one
discussed in Sec. 4.3 yielded the smallest errors as expecte

M. Cheung et al., “Does DKI lead to better neural tis-
sue characterization? A rodent brain maturation study,
Neurolmage, vol. 45, no. 2, pp. 386—392, 2009.

Furthermore, we applied the aforementioned methods to[7] L. Minati et al., “Bioexponential and DKI, and GDTI
a real human brain dataset. After estimating the DKI param-  with rank-4 tensors: a study in a group of healthy sub-

eters, we computed the apparent kurtosis, given by

K(g) =vi(g)" w/(va2(g)"d). (10)

jects,” MRMPBM, vol. 20, no. 5-6, pp. 241-253, 2007.

[8] A. Ghosh, R. Deriche, and M. Moakher, “Ternary quar-
tic approach for positive 4th order diffusion tensors re-

Figure 2 shows a comparison of the estimated apparent kur- visited,” ISBI, pp. 618-621, 2009
tosis in two regions of interest (ROIs): 1) Internal Capsule ’ T ' '

(FA ~ 0.6 — 0.7), and 2) Splenium (FA~ 0.8 — 0.9). Al-

[9] A. Barmpoutis and B. C. Vemuri, “A unified framework

though in the first case the kurtosis estimated by both method ~ for estimating diffusion tensors of any order with SPD
has similar values, in the case of splenium the unconstlaine  constraints,"ISBI, pp. 1385-1388, 2010.

method yielded unnaturally small values 2000) in con-

trast to the results obtained by our method. This is becau

410] C.L. Lawson and R.J. Hansorgolving Least Squares
€ " Problems, Prentice-Hall, 1974.

the highly compact axons in the region of splenium made the



