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ABSTRACT

Several tensor-based models have been presented in literature
for parameterizing the water diffusion in Diffusion-Weighted
MRI datasets, namely Diffusion Tensor Imaging (DTI), Gen-
eralized Tensor Imaging (GTI), and Diffusion Kurtosis Imag-
ing (DKI). In this paper we use homogeneous trivariate poly-
nomials to show that GTI is a special case of DKI for single
angular shell acquisitions, and then we employ the theory for
imposing positive semi-definite (PSD) constraints to GTIs in
order to perform robust estimation of the DKI parameters. We
propose a novel framework for DKI estimation that simulta-
neously imposes constraints to the diffusivity function, diffu-
sion tensor and diffusion kurtosis. These three constraints are
parameterized explicitly as a set of linear systems that canbe
efficiently solved using the non-negative least squares tech-
nique. The robustness of our framework is demonstrated us-
ing synthetic and real data from a human brain.

Index Terms— Diffusion Kurtosis Imaging, Generalized
Diffusion Tensors, Homogeneous Polynomials

1. INTRODUCTION

In Diffusion Tensor Imaging (DTI) [1], rank-2 tensors have
been used to model the water diffusion in a given Diffusion-
Weighted (DW) MRI dataset using the Stejskal-Tanner signal
attenuation model:

S = S0e
−bd(g) (1)

whered(g) is the diffusivity function,S is the observed sig-
nal associated with the diffusion sensitizing magnetic gradi-
ent orientationg and the diffusion weightingb, andS0 is the
observed non diffusion-weighted signal (b = 0s/mm2).

In Generalized Tensor Imaging, tensors of higher rank
(e.g. 4) have replaced the rank-2 tensor ind(g). The main
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advantage of GTI model is the ability to approximate multi-
lobed diffusivity profiles [2]. A combination of rank-2 and
rank-4 tensors have been employed in Diffusion Kurtosis
Imaging to model the apparent kurtosis of the non-Gaussian
water diffusion [3]. It has been shown that various invariant
characteristics and inherent quantities of kurtosis can becom-
puted from the parameters of the rank-2 and rank-4 tensors
in DKI [4] that can be used as indicators of diffusion pat-
tern anomalies due to various pathogenic conditions in neural
tissue [5, 6, 7].

The robust estimation of the parameters in the DKI model
is essential especially in the case of computing kurtosis-based
biological markers for clinical purposes. We should empha-
size here that GTI and DKI models are more prone to noise in
the data compared to DTI due to the large number of unknown
higher order coefficients that need to be estimated.

In this paper we present a novel method for robust DKI
estimation from a given DW-MRI dataset. In the proposed
framework we express tensors in their equivalent trivariate
homogeneous polynomial form. Using homogeneous poly-
nomials we establish a mathematical relationship between the
parameters in GTI and DKI models, and we employ it in order
to impose explicitly positivity constraints to various quantities
in the diffusion kurtosis model. More specifically our method
guarantees that the estimated parameters correspond to a pos-
itive diffusivity function, positive rank-2 diffusion tensor, and
constrained apparent kurtosis. Furthermore, we show how to
implement explicitly all three constraints as a set of linear sys-
tems with non-negative least squares solutions. Finally, we
performed quantitative comparison of each constraint under
various levels of Rician noise in the data. The results conclu-
sively demonstrate the robustness of the proposed framework
and motivate the need for constrained estimation of the DKI
parameters.

The contributions in this paper are threefold: 1) we
present a novel method for robust DKI estimation, 2) we
use homogeneous polynomials to show that GTI is a special
case of DKI, and therefore should not be treated as different
techniques [7], and 3) we show how to explicitly parameterize
the problem in the convenient form of linear systems.



2. HOMOGENEOUS POLYNOMIALS

Any homogeneous polynomial in 3 variables (x1, x2, x3) of
degreen can be written in the following form

h(x) =
∑

i+j+k=n

xi
1x

j
2x

k
3Ti,j,k (2)

wherexi is the ith component of the variable vectorx =
[x1 x2 x3]

T , andTi,j,k are the polynomial coefficients. The
number of unique polynomial coefficients in Eq. 2 equals to
(2+n)!
2(n)! , wheren is the degree of the polynomial. In the cases

of n = 2, 4, 6 the number of unique coefficients is6, 15, 28
respectively. If we stuck all polynomial coefficients into one
vectort, Eq. 2 can be further simplified ash(x) = vn(x)T t,
wherevn(x) is a vector that contains alln-degree monomials
of the variables inx. For example in the case ofn = 2, t
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The space ofnth degree homogeneous polynomials in 3
variables will be denoted byHn

3 . If we restrict the input vari-
ables to bex ∈ S2 (i.e. unit vectors), then for anyh(x) ∈
Hn

3 , there exists another polynomialh′(x) ∈ Hn+2
3 such that

h(x) = h′(x) ∀ x ∈ S2. According to this property any
spherical function parametrized as a homogeneous polyno-
mial of degree 2 can be written as an equivalent homogeneous
polynomial of degree 4, because the former belongs to a sub-
space of the latter. For instanceh(x) = h(x)(x2

1+x2
2+x2

3) =
h′(x), whereh ∈ H2

3, h′ ∈ H4
3, andx ∈ S2.

In the next sections we will use homogeneous polynomi-
als to parameterize the diffusion and the kurtosis in DWMRI.

3. DIFFUSION KURTOSIS

The acquired Diffusion-Weighted MR signal can be modeled
by incorporating the kurtosis component of the diffusion [3]
in the Stejskal-Tanner equation (Eq. 1) as follows:

S(b,g) = S0e
−bd(g)+ b2d̄2

6
w(g) (3)

whereg is the sensitizing gradient direction (unit vector),b
is the applied diffusion weighting,d(g) ∈ H2

3 is the diffu-
sion tensor in a polynomial from,w(g) ∈ H4

3 is the kurtosis
tensor in a polynomial form, and̄d =

∫

S2

d(g)dg/4π is the
mean diffusivity. We should note here that Eq. 3 is identical
to the standard diffusion kurtosis (DKI) model introduced by
J.H. Jensen et al. in [3], since there is equivalence between
the commonly used tensor forms and the homogeneous poly-
nomials employed here.

For a fixedb value the model in Eq. 3 can be simplified
by using the property in Sec. 2 as follows:

S(b,g) = S0e
−bt(g) (4)

wheret(g) ∈ H4
3 such thatt(g) = d(g)− d̄2b

6 w(g) ∀g ∈ S2.
The model in Eq. 4 is known as the generalized tensor imag-
ing (GTI) model [2]. One of the advantages of the degree-4
homogeneous polynomial parameterization of the diffusivity
in Eq. 4 is that it has been well studied and there have been
proposed several techniques for imposing positivity constraint
to the polynomial estimated from DW-MRI data [8, 9].

In the case of single shell acquisitions Eq. 3 and Eq. 4 are
identical (for the single givenb), since the degree-2 polyno-
mial d(g) in Eq. 3 can be written as a ternary quartic (degree-
4 homogeneous polynomial) due to the property discussed in
Sec. 2. Based on the above, it can be easily shown that the
parametrization in the DKI model (Eq. 3) is redundant for
single shell acquisitions and the GTI model (Eq. 4) should
be used instead. Hence, the unknown parameters in the DKI
model can be estimated from DW-MRI with at least 2 shells.

In the next section we present a novel method for robust
DKI estimation using constrained homogeneous polynomials.

4. ROBUST ESTIMATION OF KURTOSIS

In order to estimate accurately the parameters of the diffusion
kurtosis model (Eq. 3) from a DW-MR dataset, we need to
impose certain constraints to the estimated coefficients. In our
discussion we will assume that the given dataset consists of
the DW-MRI signal attenuationS(bi,gi,j)/S0 acquired using
N shells that correspond to diffusion weightingsb1, · · · , bN

and different sets of sensitizing gradientsgi,1, · · · , gi,N ′

i
for

each shell (i ∈ {1, · · · , N}).

4.1. Positive diffusivity function

In the presence of oriented diffusion the acquired DW-MRI
signal response is monotonically decreasing withb. This
leads to positive diffusivity functions in the exponent of the
Stejskal-Tanner model, i.e.t(g) > 0 in Eq. 4. Therefore,
the need for positivity constraints is essential since nega-
tive diffusivity values are unnatural and it has been shown
that positive-definite diffusion models are robust and reduce
significantly the fitting errors [9].

We will impose this constraint using degree-4 homoge-
neous polynomialst(g) = v4(g)T t in Eq. 4 and employing
the unified framework presented in [9] which imposes posi-
tivity to any even degree polynomial. The method will be ap-
plied separately to the signal from each shell and will produce
N positive polynomialst1(g), · · · , tN (g) associated withb1,
· · · , bN . The coefficients of theith polynomial can be com-
puted asti = C4xi, whereC4 is a fixed15 × M basis with
the coefficients ofM degree-4 tensors that span the boundary
of the PSD space [9], andxi is aM -dimensional vector with
non-negative entries, which is computed as the non-negative
least squares solution [10] to the following linear system:

(

v4(gi,1)T

···

v4(gi,N′

i
)T

)

C4xi =

(

−log(S(bi,gi,1)/S0)
···

−log(S(bi,gi,N′

i
)/S0)

)

. (5)



After computing the polynomial coefficient vectorsti, we
can estimate the coefficients vectorsd andw of the polyno-
mialsd(g) andw(g) in Eq. 3 by solving the15N × 21 linear
system:

(

b1A −b2
1
/6I15

··· ···

bNA −b2N /6I15

)

( d
w ) =

(

t1
···

tN

)

(6)

whereA is a fixed15×6 matrix that converts the coefficients
of a degree-2 polynomial to the coefficients of the equivalent
degree-4 polynomial (equivalence inS2 domain as discussed
in Sec. 2), andI15 is the 15-dimensional identity matrix.

The system can be solved by computing the pseudo in-
verse matrix. Then the diffusion and kurtosis components are
given byd(g) = v2(g)T d andw(g) = v4(g)T w/d̄2. Note
that the estimated DKI parameters satisfy the positivity con-
straint of the diffusivity function.

4.2. Positive apparent diffusion

In addition to the constrained optimization in Sec. 4.1 we
can also enforce the estimated diffusion tensor or its corre-
sponding polynomiald(g) to be positive as well. This can be
achieved by modifying the system in Eq. 6 as follows:

(

b1AC2 −b2
1
/6I15

··· ···

bNAC2 −b2N /6I15

)

( x
w ) =

(

t1
···

tN

)

(7)

whereC2 is a fixed predefined matrix of size6 × M that
containsM bases of degree-2 [9], andx is an unknownM -
dimensional vector with non-negative entries. The solution
can be computed by initializingx andw to be zero vectors
and then by iteratively solving forx andw using non-negative
least squares [10] and pseudo-inverse respectively as follows:

(

b1AC2

···

bNAC2

)

x =

(

t1+b2
1
w/6

···

tN+b2Nw/6

)

(

−b2
1
/6I15···

−b2N /6I15

)

w =
(

t1−b1AC2x
···

tN−bNAC2x

)

.
(8)

After that, the positive-definite diffusion tensor coefficients
are given byd = C2x. This process guarantees that both
diffusion tensor and diffusivity function are positive.

4.3. Constrained apparent kurtosis

Finally, we can also restrict the apparent kurtosis to be larger
than−3/7, which is the kurtosis limit for regions that consist
of water confined to spherical pores [3]. This can be done by
simply modifying the first system in Eq. 8 as follows:

(

b1AC2

···

bNAC2

)

x′ =

(

t1+b2
1
w/6−b1αs
···

tN+b2Nw/6−bN αs

)

(9)

whereα =
√

max{0, maxg∈S2
− 7/3v4(g)T w}, s is the

15-dimensional coefficient vector of the degree-4 polynomial
representing the unit isotropy, andx′ is a M -dimensional
non-negative vector which is related tox by: x = x′ +

3α/M
(

1
···

1

)

. The obtained solution satisfies all three con-

straints covered in Sections 4.1,4.2 and 4.3.

Table 1. Definitions of various matrices used in our method
Matrix Size Contents
v2(g) 6 × 1 ( g2

3
g2g3 g2

2
g1g3 g1g2 g2

1 )T

v4(g) 15 × 1 ( g4

3
g2g3

3
g2

2
g2

3
··· g3

1
g2 g4

1 )
T (see Sec. 2)

A 15 × 6





1 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 1





T

s 15 × 1 ( 1 0 2 0 1 0 0 0 0 2 0 2 0 0 1 )
T

C2 6 × M fixed set of positive-definite basis [9]
C4 15 × M fixed set of positive-definite basis [9]

Fig. 1. Comparison of various methods for DKI estimation
from a synthetic DW-MRI dataset with various noise levels.

5. EXPERIMENTAL RESULTS

In this section we demonstrate the proposed method using
synthetic and real DW-MRI data from a human brain.

Diffusion weighted images from the brain of a healthy
volunteer were acquired on a 3T Siemens Tim Trio scanner at
the University of Maryland MR Research Center. The proto-
col used a diffusion weighted single-shot echo planar imaging
sequence with 64 directions. 2 b-values were collected (b =
500 and 1500s/mm2) for each direction together withS0.

In order to test the robustness of the proposed DKI esti-
mation method we selected a region of 100 voxels with high
signal to noise ratio and then we constructed a synthetic noisy
dataset by adding to the corresponding DW-MRI signal at-
tenuation(S/S0) different levels of Rician noise with stan-
dard deviation in the range 0.04-0.2. Then we fit the DKI
model (Eq. 3) to the synthetic dataset using 4 different meth-
ods: a) linear fitting without constraints, b) imposing posi-
tivity to the diffusivity function (Sec. 4.1), c) imposing pos-
itivity to both diffusivity function and diffusion tensor (Sec.
4.2), d) imposing positivity similarly to c and also constrain-
ing the apparent kurtosis (Sec. 4.3). We compared the ob-
tained estimates with the original dataset without noise (con-
sidered here as ground truth) using the following error met-
ric

∑

b,g (Sfitted − Struth)2. Figure 1 shows a comparison



Fig. 2. Comparison of the apparent kurtosis estimated in two
ROIs (Splenium and Internal Capsule, shown in theS0 im-
age) by a) an unconstrained linear solver, and b) the proposed
method (Sec. 4.3) which yielded more natural (biologically-
feasible) values, withK > −3/7.

of the observed fitting errors. Our methods produced a sig-
nificantly smaller error than the unconstrained method which
demonstrates the robustness of the proposed algorithms and
also indicates the need for constrained optimization when es-
timating the DKI parameters. Among all methods, the one
discussed in Sec. 4.3 yielded the smallest errors as expected.

Furthermore, we applied the aforementioned methods to
a real human brain dataset. After estimating the DKI param-
eters, we computed the apparent kurtosis, given by

K(g) = v4(g)T w/(v2(g)T d)2. (10)

Figure 2 shows a comparison of the estimated apparent kur-
tosis in two regions of interest (ROIs): 1) Internal Capsule
(FA ∼ 0.6 − 0.7), and 2) Splenium (FA∼ 0.8 − 0.9). Al-
though in the first case the kurtosis estimated by both methods
has similar values, in the case of splenium the unconstrained
method yielded unnaturally small values (< −2000) in con-
trast to the results obtained by our method. This is because
the highly compact axons in the region of splenium made the

unconstrained method to estimate unnatural negative diffusiv-
ity values due to the high anisotropy in the ROI. On the other
hand, the proposed method produced more natural kurtosis
values which demonstrated the efficiency of our technique.

6. CONCLUSIONS

In this paper we presented a novel method for robust esti-
mation of the diffusion kurtosis parameters. The proposed
method guarantees the positive-definite property to the esti-
mated diffusivity function as well as diffusion tensor and also
constrains the estimated apparent kurtosis. Another advan-
tage of the proposed method is its rigorous formulation as a
set of linear systems that can be solved efficiently by using
non-negative least squares or pseudo-inverse calculation. Fi-
nally, the robustness and efficiency of our method was demon-
strated using synthetic as well as real DW-MRI datasets.
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