
Developing Mini VR Game Engines as an Engaging
Learning Method for Digital Arts & Sciences

Angelos Barmpoutis, Wenbin Guo, Ines Said

University of Florida, {angelos, wenbin, ines}@digitalworlds.ufl.edu

Abstract – Digital Arts and Sciences curricula have been
known for combining topics of emerging technologies and
artistic creativity for the professional preparation of
future technical artists and other creative media
professionals. One of the key challenges in such an
interdisciplinary curriculum is the instruction of complex
technical concepts to an audience that lacks prior
computer science background. This paper discusses how
developing small custom virtual and augmented reality
game engines can become an effective and engaging
method for teaching various fundamental technical topics
from Digital Arts and Sciences curricula. Based on
empirical evidence, we demonstrate examples that
integrate concepts from geometry, linear algebra, and
computer programming to 3D modeling, animation, and
procedural art. The paper also introduces an open-source
framework for implementing such a curriculum in Quest
VR headsets, and we provide examples of small-scale
focused exercises and learning activities.

Index Terms –Computer Education, Digital Arts, Game
Engines, Virtual Reality

INTRODUCTION

Since the first use of computing systems in academia,
scholars have stressed the importance of integrating
computer programming within the Fine Arts and Liberal Arts
curricula. In 1962 Perlis argued that computer programming
is as essential in a liberal arts course as in science or
engineering because it is an educational subject about
constructing, analyzing, and describing processes [1].
Buckingham, in 1965, demonstrated how computer
programming could be integrated with the Fine Arts by
providing the source code and output of a geometric design
program [2].

Along the lines of these recommendations, several
interdisciplinary programs were formed in the last decades of
the twentieth century by extending the traditional fine arts
with emerging digital media. The increasing use of computer
graphics in motion pictures and the rapid growth of the video
game industry led to the further expansion and formalization
of these programs in the first decade of the twenty-first
century [3]. Digital Arts and Sciences (DAS) programs
intersect with graphic design, visual arts, traditional fine arts,
computer science, art and design, and others. As a result,
there is a natural flow of students between these areas.
Subsequently, digital arts and sciences students have a strong

background and in-depth exposure to these areas, but their
technical foundation differs significantly from those in
traditional engineering fields. Therefore, interdisciplinary
programs, such as DAS, have the challenge of providing an
integrated curriculum covering digital art topics (such as 2D
and 3D digital animation, 3D modeling and texturing, digital
storytelling, game design, etc.) as well as many technical
topics from computer science, such as computer
programming, computer graphics, human-computer
interaction, and others, to sufficiently prepare future
technical artists, special effects artists, and animators, which
are few of the highest-paid professions compared to other arts
and design occupations [4].

However, acquiring computer science skills, especially
technical skills such as programming, can be challenging, and
the learning difficulties have been well-known and discussed
in the literature [5]. Within the context of digital arts, it has
been shown that combining computer programming and art
can improve student learning outcomes and effectively teach
other technical topics, such as mathematics [6]. Therefore,
visual designers and artists can benefit directly by integrating
principles from their own discipline with computer
programming instruction [7].

Additionally, using games as a learning tool has been
very popular, especially in K-12 education, and their benefits
have been well studied [8,9,10,11]. Within the CS context,
games have been used in two different ways: 1) gamification
of curriculum, as a method for motivating and rewarding the
students while learning [8,9,14], and 2) game development,
as a hands-on experience for learning technical topics
[10,11,15], which is the focus of this paper.

Games can be easily developed even by beginners with
the use of appropriate tools. Scratch is a popular example of
a block coding environment developed at MIT for early
exposure to computer programming, which provides several
tutorials for making simple games such as chase games,
clicker games, pong games, and adventure games [10].
According to Casey Rea and Ben Fry [7], undergraduate
students at UCLA learned new programming skills by
producing video games or kinetic artworks using Processing,
a simple Java-based coding language. A similar environment
for beginners is the Python PyGame framework [11].

Moreover, immersive gaming systems such as virtual
reality (VR) headsets combine all the aforementioned
benefits by integrating 3D arts and games in an immersive
and engaging modality and have been used in various
educational applications beyond DAS [12,17]. These

This manuscript has been accepted for presentation in the 13th IEEE Integrated STEM Education
Conference, Johns Hopkins University, Laurel, Maryland, March 11, 2023

immersive interfaces have been shown to increase the level
of engagement by transforming the learning content into
hands-on experiences [12].

Game development software, such as Unreal and Unity
3D, offer VR game engines and collections of tools and
automations that simplify the game development process and
thus have become an important tool of instruction in DAS
curricula [15]. Although these tools can be used
professionally to produce commercial-standard games, their
automated pipeline can also be helpful to beginners, as it is
possible to produce a playable game with minimal effort [16].
Students can choose from a variety of available 3D models,
prepackaged shaders, preprogrammed colliders, game
components, and other plugins without the burden of
designing them or coding them from scratch and thus avoid
blank page trauma.

However, technical artists and other creative media
professionals, more often than not, are expected to be able to
design and animate their own models, code custom shaders,
program colliders, and other components beyond those
available off-the-shelf. So, the main question is, where do we
draw a line between consuming existing designs and
solutions and creating new ones in an academic curriculum?
For example, should a post-beginners level student stop using
premade shaders and start exploring the inner technical
structures of a shader to learn how to create new shaders in
GLSL? And what are the tools that we need to provide to the
students to be able to explore the technical details that are
usually hidden in premade game engines?

This paper argues that the process of making or
modifying a custom-made small-scale game engine can be of
significant educational value because it lets students explore
and understand several necessary technical concepts that are
typically left unexplored when using premade game engines.
The contributions of this paper are three-fold: 1) We present
several examples of focused learning activities that
demonstrate how specific technical concepts related to game
development can be taught in practice. 2) We introduce an
open-source framework for implementing such a curriculum
in Quest VR headsets. Finally, 3) We present our findings
from a limited testing of this framework in an undergraduate
DAS course.

MAKING A BASIC GAME ENGINE AS A LEARNING METHOD

Creating a VR game engine is a complex task that requires
the development of several components, including geometric
structures (models and scene hierarchy, transformations,
etc.), rendering processes (shaders, shadow generators, etc.),
file format parsers (3D objects, textures, etc.), animation
processes (physics simulations, particle effects, etc.),
hardware event listeners (controllers, headset, triggers, etc.),
and many others. Hence, the use of an existing game engine
is the recommended choice, especially for quick prototyping
and production. However, when students rely on an existing
body of work, some foundational elements may be left
unexplored within an educational context. Therefore, it is

essential to be given the opportunity to study these
foundational elements and understand how they function.

One way to do this is by exploring the source code of a
particular VR game engine component (for example, a
collider function or a fragment shader) and experimenting
with it by modifying it and observing the resulting behavior.
However, in many cases, the source code may not be
available, or it is so advanced and complex that it is hard to
understand or cannot be modified and recompiled easily.

Therefore, having a readily available and easy-to-modify
small-scale game engine can be very educational, especially
if it is used as part of targeted learning activities.
Furthermore, the following characteristics could improve its
usability and ease of use within educational settings:
• Self-contained and ready to use. The framework must

contain all necessary resources to minimize the setup
effort.

• Open-source. The source code of the game engine
components must be available and easy to compile.

• Minimum functionality. The framework must contain a
minimal game engine implementation to keep each
component simple and easy to modify.

• Well-structured and -documented. Each component
must be structured in an intuitive object-oriented manner
and be well-documented.

• Used within an Integrated Development Environment to
be easy to navigate and extend.

• Contain examples and templates. The game engine must
come with several examples to facilitate learning by
example and minimize blank page trauma.

• Compatible with VR hardware. The framework must
directly compile and run in modern VR equipment to
facilitate fast iterative modify-and-run learning cycles.

• Non-VR alternative. To accommodate a broader
audience that may not have access to VR hardware, a
low-cost non-VR solution must also be available in the
same framework.

The following section provides examples of focused learning
activities that can be done with the proposed framework.

EXAMPLES OF LEARNING ACTIVITIES

I. 3D coordinate systems and transformations

Linear Algebra, specifically vertex transformations with 4x4
matrices, plays a major role in computer graphics. Such a
purely algebraic topic can be better understood by extending
the classical Logo turtle graphics exercises [13] to 3
dimensions. Turtle graphics has been a popular API that
allows programmers to compose a 2D image by instructing
the “turtle” to move on the plane and draw its trace by a
sequence of commands such as move forward, turn left, and
turn right. It has been shown [7,13] that such exercises can be
helpful in teaching procedural logic, coordinate systems, and
other topics related to geometry and procedural arts.

These exercises can be extended to 3 dimensions by
combining 3D transformation commands (translate, rotate,
scale, etc.) with primitive geometric shape commands

(cuboid, sphere, cylinder, pyramid, prism, trapezoid, etc.). In
this framework, a 3D shape can be composed by a sequence
of commands that move the coordinate system (a.k.a. “the
turtle”) to the proper position and orientation and place there
a primitive shape with the desired color and size, and then
move to a different location and put a different shape, etc.
Models composed with this process are shown in Fig. 1. This
exercise can be helpful in learning 3D transformations and
understanding their results, especially when used in
sequence. Mastery of coordinate transformation functions is
essential for technical artists, especially for creating
animations and implementing interactions.

FIGURE I

EXAMPLES OF 3D SHAPES COMPOSED BY STUDENTS USING PRIMITIVE
SHAPES AND 3D TRANSFORMATIONS.

II. 3D model encoding

Mastering 3D modeling is an essential skill for digital artists
that is typically taught and practiced using a 3D modeling
software tool such as Blender (blender.org) and Maya
(autodesk.com). In addition to the creative process of
designing a tridimensional geometric shape, there are many
technical tasks, such as texture mapping, normal mapping,
material design, and others that combine concepts from
mathematics (such as geometry), physics (such as light
reflectance), and technology (computer graphics/shaders)
with artistic creativity. The produced 3D model is often saved
in a text-based file format, such as OBJ (Wavefront), DAE
(COLLADA), or the ASCII versions of PLY (Stanford
Triangle Format) and STL (Stereolithography).

FIGURE II

DESIGN EXERCISE OF A 3D PYRAMID BY IDENTIFYING THE X,Y,Z VERTEX
COORDINATES AND THE VERTEX INDICES IN EACH TRIANGLE.

Browsing the contents of such files with a plain text

editor is a practical exercise that exposes to the artists the
technical side of their designs, i.e., the coordinates of each
vertex, the indices of the 3 vertices in each triangle in the

mesh, pixel coordinates in texture mappings, and possibly
other material parameters. Generating these parameters
manually for a simple geometrical shape, such as a pyramid
(Fig. 2), can help students bridge the gap between 3D art and
the underlying technology (in this example, 3D data
encoding), which is an essential step for understanding
rendering using shader languages, such as GLSL.

III. User Interaction

Modern gaming systems offer natural user interfaces that
track the user’s body (head, hands, etc.) in real-time. They
may also have controller devices that provide numerous user
input forms, such as toggle buttons, squeeze buttons, and
joysticks. Each of these input points generates events that
game developers can handle to implement interesting user
interactions. Providing an easy-to-use event-based API
facilitates fast prototyping by creating an abstraction layer on
top of lower-level commands, such as OpenXR library
commands.

Several hands-on exercises can be designed for teaching
various concepts from Digital Arts and Sciences curricula
using this experiential learning setup. One example is the
topic of collision detection between 3D objects, an essential
task related to human-computer interaction in virtual reality.
Developing a collider involves concepts related to geometry
(convex solids), resource optimization (mesh simplification),
and computer programming (collider implementation).
Implementing spherical colliders between a hand-held
controller and various virtual objects is an easy exercise that
covers several of the aforementioned topics. Additionally,
handling button and joystick events can prompt the students
to investigate innovative forms of user interaction while
working on small-scale focused assignments, such as
drawing in 3D by tracing the hand-held controller’s location,
selecting color and material properties, etc.

OPEN-SOURCE IMPLEMENTATION

The proposed framework has been implemented in Android
Studio using Oculus OpenXR Mobile SDK (46.0) and is
available at: https://github.com/digitalworlds/JavaForQuest.
The project is titled Java For Quest (J4Q), and it demonstrates
how to create AR/VR applications for Meta Quest headsets
using Java in Android Studio. It can be used as a platform to
learn and teach the development of a basic game engine from
scratch, as well as related topics, such as 3D geometry,
shaders using GLSL, event-driven human-computer
interaction, vibration feedback, etc.

The repository contains a common core API with several
basic classes implemented in Java, such as Position,
Orientation, Transform, Mesh, Model, Shader, and others,
which can be used for quick prototyping of VR apps. The
repository also contains several VR projects ready to use as a
development starting point. The projects range from a basic
tutorial on how to compose 3D polygonal shapes to a full-
scale demo of the J4Q API that implements an endless runner
game in VR with controller interaction.

0

1 2

3
4

5 Vertices
0: 0, 2, 0
1: -1, 0, -1
2: -1 ,0, 1
3: 1, 0, 1
4: 1, 0, -1

6 Triangles
0, 1, 2
0, 2, 3
0, 3, 4
0, 4, 1
1, 4, 3
1, 3, 2

FIGURE III

PLOT OF THE DISTRIBUTION OF STUDENT 3D ARTWORKS BASED ON THEIR
EFFORT (LENGTH OF CODE) AND AESTHETIC VALUE (NUM. OF LIKES)

EMPIRICAL EVIDENCE AND DISCUSSION

The proposed framework was designed iteratively in four
cycles based on our observations and student feedback from
the undergraduate-level class at the University of Florida,
‘Wearables and Mobile App Development’, during the Fall
semesters of 2019-2023. Although we have not yet designed
a formal study to assess this framework quantitatively, we
briefly list some of our observations below:
• The students repeatedly reported that they learned and

understood programming better by making VR apps
compared to traditional CS courses on programming.

• Several students felt they became more confident users
of 3D modeling and professional game design tools after
learning about their ‘under the hood’ details.

• The students better grasped advanced CS concepts, such
as optimization and algorithmic complexity, when
working with meshes and shaders in our framework.

• The students creatively used the coordinate system
transform commands to compose artful 3D models.

Figure 3 illustrates the relationship between the coding effort
and the aesthetic outcome of 3D models composed using the
J4Q API. We noticed two distinct patterns: 1) peers upvoted
the artworks with better aesthetics, and their popularity
increased by the coding effort (shown in blue), 2) designs that
lacked artistic value received fewer votes, but they also
increased with effort (in red). This observation was evaluated
by the coef. of determination (R2) and using K-means (K=2)
along with linear regression to fit the lines shown in Fig. 3.
The top row of Fig. 1 shows examples of upvoted models,
and the bottom row shows examples of less popular designs.

CONCLUSION AND FUTURE DIRECTIONS

This paper demonstrated how the process of making or
modifying a small-scale VR game engine can be used as an
experiential learning platform for teaching technical concepts
that are typically left unexplored when using premade game

engines. We provided examples of educational activities that
can be used along with our open-source implementation
introduced in this paper. The proposed framework can be
used in DAS curricula for training future technical artists,
special effects artists, animators, and other creative media
professionals. In the future, we would like to identify K-12
common core standards and design a study to assess if the
proposed framework can also be used in secondary education.

REFERENCES

[1] Perlis, Alan J. “The Computer in the University.” In Greenberger,
Martin (ed.), 1962, Management and The Computer of the Future, New
York and London: John Willey and Sons, pp.180-217.

[2] Buckingham, R. A., 1965. “The computer in the university.” The
Computer Journal 8(1), pp.1-7.

[3] Wang, V. and Wang, D. 2021. “The Impact of the Increasing
Popularity of Digital Art on the Current Job Market for Artists.” Art
and Design Review 9, pp. 242-253.

[4] “Occupational Outlook Handbook: Arts and Design Occupations”,
U.S. Bureau of Labor Statistics, 2022. https://www.bls.gov/ooh/arts-
and-design/home.htm. Web. Accessed: January 3, 2023.

[5] Piteira, Martinha and Costa, Carlos 2013. “Learning computer
programming: study of difficulties in learning programming”. In
Proceedings of the 2013 International Conference on Information
Systems and Design of Communication (ISDOC '13), New York, NY:
Association for Computing Machinery, pp. 75–80.

[6] Friend, M., Matthews, M., Winter, V., Love, B., Moisset, D. and
Goodwin, I. 2018. “Bricklayer: Elementary Students Learn Math
through Programming and Art.” In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education (SIGCSE '18),
New York, NY: Association for Computing Machinery, pp. 628–633.

[7] Reas, Casey and Fry, Ben 2007. Processing: A Programming
Handbook for Visual Designers and Artists, Cambridge, Massachusetts:
MIT Press.

[8] Pinto, M. and Terroso, T. “Learning Computer Programming: A
Gamified Approach.” In Simões, Alberto and Silva, João Carlos (eds.),
2022, Third International Computer Programming Education
Conference (ICPEC 2022), Dagstuhl: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. pp. 11:1-11:8.

[9] Venter, Marisa 2020. “Gamification in STEM programming courses:
State of the art”, In Proceedings of the 2020 IEEE Global Engineering
Education Conference (EDUCON), pp. 859-866.

[10] “SCRATCH”, Massachusetts Institute of Technology.
https://scratch.mit.edu/. Web. Accessed: January 3, 2023.

[11] Kafle, Sachin 2019. Learning Python by Building Games: A
Beginner’s Guide to Python Programming and Game Development,
Cambridge: Packt Publishing Ltd.

[12] Kavanagh, S., Luxton-Reilly, A., Wuensche, B. and Plimmer, B. 2017.
“A systematic review of Virtual Reality in education”. Themes in
Science and Technology Education 10(2), pp. 85-119.

[13] Papert, Seymour. “What is Logo? Who Needs It?”, In 1999, Logo
Philosophy and Implementation, Logo Computer Systems, Inc., pp.
IV-XVI.

[14] Flores, N., Paiva, A. C., & Cruz, N. 2020. “Teaching Software
Engineering Topics Through Pedagogical Game Design Patterns: An
Empirical Study.” Information, 11(3), 153.

[15] Dickson, P. E., Block, J. E., Echevarria, G. N., & Keenan, K. C. 2017.
“An experience-based comparison of unity and unreal for a stand-alone
3D game development course.” In Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer Science
Education, pp. 70-75.

[16] Dickson, Paul E. 2015. “Using Unity to Teach Game Development:
When You've Never Written a Game.” In Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE '15). New York, NY: Association for Computing
Machinery, pp. 75–80.

[17] González-Zamar, M. D., & Abad-Segura, E. 2020. “Implications of
virtual reality in arts education: Research analysis in the context of
higher education.” Education Sciences, 10(9), 225.

