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ABSTRACT
The basic knowledge of computer programming is generally consid-
ered a valuable skill for educated citizens outside computer science
and engineering professions. However, learning programming can
be a challenging task for beginners of all ages especially outside
of formal CS education. This paper presents a novel source code
editing method that assists novice users understand the logic and
syntax of the computer code they type. The method is based on
the concept of text replacements that interactively provide the
learners with declarative knowledge and help them transform it to
procedural knowledge, which has been shown to be more robust
against decay. An active tokenization algorithm splits the typed
code into tokens as they are typed and replaces them with a pre-
aligned translation in a human natural language. The feasibility of
the proposed method is demonstrated in seven structurally different
natural languages (English, Chinese, German, Greek, Italian, Span-
ish, and Turkish) using examples of computer code in ECMAScript
(JavaScript).
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1 INTRODUCTION
The relationship between natural and computer programming lan-
guages has been a topic of research from multiple perspectives.
Both types of languages obey to specific sets of rules that form the
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grammar of each language and use distinct bodies of words, known
as vocabularies. The key differences, however, are their flexibility
in expressing a message in multiple different ways and the context
in which they are utilized. Although natural languages can be used
in many different contexts, programming languages are primarily
used to precisely describe a set of actions to be performed by a
computing device.

Natural language can be translated to computer code under
certain conditions, especially if the structure of the natural language
text is restricted so that there is no ambiguity in its content[21, 23].
For example, a spoken variation of Java has been defined in [5]
in the form of a precisely structured English language. Similarly,
a small set of predefined pseudo-code phrases have been used to
interactively generate computer code in [17].

On the other hand, machine translation of a computer code to a
natural language, such as English, can be achieved using statistical
machine translation algorithms [13, 30] and has many applications
including understanding the logic of the program by reading its
pseudo-code and generating automatic documentation in a natural
language. For the latter application, summary comments can be
generated to outline the structure of a program, such as the list of
the defined methods or functions and their corresponding input
and output [10, 16, 27, 38].

Furthermore, coding can be used to visualize natural language in
the form of storytelling [24]. Conversely, storytelling can provide
useful insights about coding [18]. The correspondence between
natural and programming languages has also been utilized in edu-
cational context. Learning to code has assisted students in learning
English as a foreign language [28].

The present paper introduces a novel method for assisting be-
ginners to learn programming languages through the immediate
translation and replacement of the code being typed with phrases
from a natural language. Computer education is a well-studied
research subject. Learning computer programming involves acqui-
sition of several skills, including problem solving, computational
thinking, and information encoding in programming language syn-
tax. Several methods have been developed to help students acquire
computer programming skills using age appropriate tools [14],
such as tangible user interfaces (TUI), including robotics [35, 44]
and block-coding interfaces (BCI) [8, 31, 46]. Although these tools
have been very successful in early stages of learning, especially
for acquiring problem solving and computational thinking skills,
transitioning to text editing interfaces (TEI), also known as type-
face interfaces, could be problematic for beginners, as it requires
encoding in programming language syntax [26, 32]. TEIs constitute
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the final learning step that introduces learners to professional pro-
gramming languages, which provide greater flexibility in content
and can be used to teach more advanced concepts [26, 29].

In order to ease the transition from BCIs to TEIs, various so-
lutions have been developed. A hybrid technique between BCIs
and TEIs is frame-based coding, which offers an extended block-
coding interface using frames that resemble TEIs [6, 32, 45]. Another
approach is to split the interface into a TEI panel and a code vi-
sualization panel, which can present the execution of the code as
an explanatory animation [7]. A popular solution is to offer sim-
plified special-purpose application programming interfaces (APIs)
within light TEI environments that resemble professional integrated
development tools [12, 34].

This paper presents an alternative solution to this problem, opti-
mizing first exposure to TEI environments, using a set of translated
phrases from a natural language that have been pre-aligned with
the syntax of a programming language. The goal of this solution
is to train learners in encoding procedural information using pro-
fessional computer language syntax, a necessary skill in computer
programming. Hence the emphasis here in not on the acquisition
of other skills that are majorly independent from any specific pro-
gramming language, such as problem solving and computational
thinking. Therefore, the proposed solution is complimentary to
the aforementioned TUI and BCI techniques that can be used by
learners before transitioning to TEIs.

The proposed method is based on a multi-layer active tokeniza-
tion algorithm that identifies individual tokens as soon as they are
typed by the users and replaces them with interpretative textual
overlays in the native language of the user. The produced trans-
lated version of the computer code can be navigated and edited by
intuitively editing the underlying programming code; hence the
proposed text editor trains the users to code in a professional pro-
gramming language while they read the logic of the code in their
natural language. The feasibility of the method is demonstrated
in 7 structurally different natural languages. Finally, the proposed
method was tested in a preliminary study using 88 students of ages
between 10-15 years old.

2 THEORETICAL FRAMEWORK
The process of learning a programming language involves the ac-
quisition of the skill to transcribe information using a particular
well-defined encoding scheme, among other skills as discussed in
section 1. These encoding schemes are mappings between a specifi-
cally encoded input (computer source code) and the corresponding
procedural information that the programmer intends to transcribe.

The learning of encoding mappings has been well studied out-
side of the scope of programming languages due to its applicability
in several forms of human-machine interaction and its direct ef-
fects in the human brain. Like any form of learning, it relies on
neuroplasticity, which is evident not only in gray matter but also
in white matter, as it has been shown in individuals during the
learning of Morse code [36]. In this case, the neuroplasticity is due
to the encoding of the mapping between an input code such as
“.-.." and the corresponding letter “L". The questions that arise are:
When is the neuroplasticity adequate so that the learner can read

Table 1: Stages of learning (derived from [19])

# Stage Knowledge Application
1 Acquiring Declarative Slow
2 Consolidating Decl. & Procedural Moderate
3 Tuning Procedural Fast

“.... . .-.. .-.. —" and natively perceive it as “HELLO" and vice versa,
and how can we optimize the learning process?

It has been shown that system design plays significant role in
the process of learning such mappings. More than a billion users
have become proficient in typing input such as “4433555555666" for
encoding themessage “hello" and achieved notable speeds (20words
per minute) within their first 400 min. of experience using multi-tap
text messaging in 4 × 3 cellphone keypads [25]. Within the same
period of exposure even higher speeds (26 words per minute) can
be achieved by users who learn how to encode the same message
as “11001 11000 00111 00111 11111" using 5-bit binary mappings by
performing the corresponding 5-finger gestures [40]. These findings
are in agreement with studies in computer science education that
have shown that novices can learn programming languages such
as Java, which borrows several keywords from English with similar
effort as programming languages that use random ASCII keywords
[39].

The learning of all of the above mappings can be interpreted
using the theory of learning in three stages by Kim at al. [19], which
is based on the theory of Fitts [11], Anderson [1], Rasmussen [33]
and VanLehn [42]. According to this theory, learning is achieved
in three stages, as outlined in Table 1. In the first stage, the learner
acquires knowledge about a particular mapping (e.g. the instruc-
tor/instructional material says that “a != b" is the syntax for testing
inequality). The acquired declarative knowledge is consolidated
in the second stage. For example, the learner is reading scripts
that contain various instances of the aforementioned syntax and
is trying to understand their logic and replicate them. In the final
stage, the learner can use the syntax fluently due to procedural
knowledge that has been acquired by experience. According to Kim
at al., during the third stage of learning, declarative knowledge
may degrade especially with lack of use of the particular mapping.
Nevertheless, the learner can still perform the task if all the knowl-
edge is proceduralised (hence used natively) or is available in the
environment and thus not forgotten with time [19]. For example,
if the learner reads in the text editor the script: “a != b" but fails
to understand its meaning due to declarative memory failure, the
text editor (i.e. the system) should provide the missing declarative
knowledge: “a is not equal to b".

In all of the aforementioned examples the mapping is between an
unknown domain (i.e. the subject of learning), such as programming
syntax, Morse code, multi-tap sequences, binary finger gestures, etc.
and a known domain, such as a description of the instructed actions
in the learner’s native language (for example German), or characters
from the learner’s native language (for example the Latin alphabet).
It is known that people establish a one-to-one correspondence
between the elements of the two domains by unconsciously building
a mapping according to the alignment of relational structure [9],
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known as relational isomorphism [15]. According to Gentner’s
systematicity principle [15], the deeper the corresponding relational
structure shared by the two domains, themore likely it is that people
will construct a relational mapping.

In the case of programming languages, the domain elements are
the individual tokens that compose syntactically correct source
code, while in the case of natural languages, the domain elements
are the individual words or phrases with self-contained meaning.
The systematicity principle can be applied by establishing a strong
one-to-one relational structure between the two domains [9, 15].
Since the programming language domain cannot be altered (i.e. the
syntactic rules have been previously established) the only available
degree of freedom of the aforementioned relational structure lies
in the formation of the natural language counterparts. For example,
the syntax “a . b" can be mapped to the English phrase “b of a" or
to the alternative phrase “a’s b". The latter, however, corresponds
to a stronger one-to-one relational structure. Hence, according to
this theory, it is more likely that learners will develop a stronger
declarative memory by mapping “a . b" to “a’s b" [9, 15].

Therefore, in order to reinforce learning, the system (i.e. the text
editor) should be able to support the learner’s declarative memory
[19] by producing one-to-one mapping between the programming
language tokens and the corresponding words or phrases from a
natural language, also known as straight alignment [43]. In such
case, the tokens of programming languages become the medium
for encoding procedural information no differently from encoding
letters with Morse code or computer tasks with keyboard shortcuts.
When a user learns to close an application using Command-W (Mac)
or Alt-F4 (Windows), the initial declarative knowledge becomes
procedural knowledge with use. It is well-known that procedural
memory is more robust than declarative memory [19]. Hence, if a
student learns that a particular combination of characters, such as
“!=" (in C-like languages), “/=" (in Fortran 90), or “∼=" (in Matlab),
is the shortcut for the phrase “is not equal to", this knowledge can
remain robust against decay when it is proceduralized through the
shortcut interaction.

The following section demonstrates that the design of such sys-
tem is feasible by establishing straight alignment between computer
code in ECMAScript (JavaScript) syntax and various natural lan-
guages.

3 SYSTEM DESIGN
The framework presented in this paper requires a computer code
to be mapped to a natural language using specific theory-driven
constraints, as discussed in section 2, that enable interactive re-
placement of each token in a computer script. It should be noted
that the verb “translate" does not properly describe this mapping
process, as it implies that the result should be a flawless text in a
natural language, which, however, may not be possible due to the
theoretical constraints. In this section these constraints are defined
and are employed for the design of the proposed system using 7
natural languages.

3.1 Mapping constraints
In statistical machine translation, word or text alignment is the
process of matching the words or phrases of equivalent meaning

between two versions of the same text in different languages [20].
For a detailed discussion on the text alignment problem the reader
is referred to [43]. It is possible in translations of short and simple
sentences to have straight alignment between the corresponding
texts. For example, the phrase “It is good" and its German translation
“Das ist gut" have straight alignment because the first words of each
phrase have equivalent meaning, and the same is for the second
and third words.

In the case of mapping computer code to natural language, there
are different possible alignments that can be produced. For ex-
ample, the natural language could simply follow the syntax of
the computer code by “reading" it symbol after symbol, such as
“player dot trophies equals five", which corresponds to the code
“player.trophies=5;" (using [5]). The goal of this translation is not to
explain the logic of each command as in pseudo-code but to create
a straightly aligned spoken version of the code.

On the other hand, a translation can be in the form of explanatory
statements that describe the logic of each command, such as “sub-
stitute 5 for trophies", which corresponds to the code “trophies=5;"
(using [13]). In this case, the alignment between the two texts is not
straight, because the translated words follow the proper order of
the natural language and not the order of the programming tokens.
Furthermore, the symbol “=" was translated by [13] as “substitute"
and not as “equals", which was the translation suggested by [5].

It is evident from the previous examples that the characteristics
of the translation in need depend on the nature of the application.
For the educational application discussed in this paper, the derived
mappings should satisfy the following constraints:

(1) The number of aligned words, phrases, or symbols in the
mapped text must be equal to the number of tokens in the
corresponding computer code. This constraint will enhance
relational isomorphism by creating one-to-one mapping [15].

(2) The alignment between the computer code and the natural
language should be straight. This constraint will enforce the
creation of a strong shared relational structure between the
two mapped domains [9].

(3) The composed natural language text should be as grammat-
ically correct as possible and contain simple phrases that
describe the logic of the underlying code. With this con-
straint the system will contain the necessary declarative
knowledge [19].

The first two constraints will enable the interaction of emoticon-
like typing within a source code editor as shown previously in [4].
More specifically, due to the first condition, each programming
token can be replaced by a word, phrase, or symbol that will cover
the original token in a similar manner as typing emoticons through
keyboard shortcuts in social media. Furthermore, the sequence of
replacements will be arranged in the same order as the correspond-
ing tokens according to the second condition. This will reinforce
learning of the underlying computer programming syntax as dis-
cussed in section 2 and will also enable users to traverse and edit
the original code by performing the same actions to the translated
text.

Finally, the third constraint will allow users to build one-to-one
connections between computer code and its logic, as described by
the natural language replacements. Subsequently, syntax errors
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Figure 1: Example of text replacements in English (En), Chi-
nese (Zh), German (De), Greek (El), Italian (It), Spanish (Es),
and Turkish (Tr) in alphabetical order. The corresponding
JavaScript (JS) tokens and English replacements are shown
on the top.

in the computer code will be reflected in the translated phrases.
Erroneous translations can work as a hint that helps users identify
and correct their mistakes in the computer code.

3.2 Practical implications
The aforementioned theory-derived constraints were employed in
order to map the unique tokens in JavaScript to words or phrases
from the following 7 natural languages: English, Chinese, German,
Greek, Italian, Spanish, and Turkish. The selection of the languages
was made so that the three most popular languages are included
(Chinese, Spanish, and English) and others based on the availability
and willingness of faculty and students from various countries to
participate in this project. The mapping to each language was led
by faculty and post-doctoral fellows from Computer Science and
relevant departments, who were also assisted by their students. All
participants were native speakers of the corresponding language
and had expertise in computer programming. The list of the previ-
ously described constraints was given to each team along with the
list of all unique tokens and syntax patterns in JavaScript that they
had to map.

Figure 1 shows an example of computer code along with the
corresponding mappings as defined by the participating groups.
In all cases there is a one-to-one mapping to the corresponding
programming tokens. However, this is not always possible for ev-
ery expression in a given computer programing language and a
corresponding natural language, and there are several practical
implications that were noted as a result of this exercise and are
discussed in this section.

3.2.1 Straight alignment. Straight alignment is not always feasible
between computer code and a natural language due to strict syntax
constraints in some natural languages, such as the placement of
the verb within a sentence. Table 2 summarizes the results from
the alignment of JavaScript tokens to the 7 aforementioned natural
languages. Straight alignment was possible across all participating
natural languages for several types of tokens, such as assignment

Table 2: Feasibility of straight alignment

Type of tokens Examples Straight align.
assignment operators =, += 100%
relational operators ==, != 85.7%
logical operators | |,&& 100%
control flow statements if, while 100%
object-oriented expressions a.b 78.5%

operators, logical operators, and control flow statements. However,
straight alignment was not possible for relational operators (in
Turkish), as well as object-oriented expressions (in Greek, Italian,
and Spanish). Details on these specific issues are provided in the
rest of this section.

3.2.2 Simple alignment graph. In the example of Fig.1 the keyword
“var" has been replaced by “Let" in English and a similar expression
“Deje que" in Spanish, an equivalent expression that means “Define"
(Shēngmíng) in Chinese and (Tanimla) in Turkish, and “Let’s define"
(Aς oρίσoυµϵ) in Greek. By observing the text replacements, it is
evident that it is not always possible to establish one-to-one align-
ment between one programming token, such as “var", and a single
word in a given natural language, such as “Let". In this case the
users will establish in their mental models an association between a
programming token and a phrase. This association can be enhanced
by avoiding large phrases, hence by maintaining simplicity in the
established alignment graph.

Furthermore, in the case of German, although straight alignment
was successfully achieved using grammatically correct mappings,
it was done by avoiding subordinate clauses (that would inconve-
niently require the verb to be placed at the end of the sentence)
through the use of “Definiere:" in the beginning of the sentence.
Similarly, in Spanish, a slightly better translation “Sea flag igual a
verdadero" was avoided, because this would map the symbol “=" to
the phrase “igual a", which does not provide the correct declarative
information regarding the assignment operator, hence the mapping
to the word “sea" was preferred instead as shown in Fig.1.

3.2.3 Translating logic not keywords. Although most programming
languages include keywords in English such as “if", “for", and “this",
they should not be directly translated to a natural language in order
to satisfy the previously defined constraint (3). The underlying
logic should be used instead in their translation. For example, when
translating computer code to English, the token “for" could be
aligned with “iterate" or “iterate for", and the token “this" could be
aligned with the phrase “this object", etc.

3.2.4 Translating meaning not symbol names. The various symbol-
based tokens such as “=", “==", and “===" should not be aligned with
the corresponding symbol’s name but with a word or phrase that
explains their meaning. In this example “be:" or “become:" should
be used as the replacement of the single equal sign instead of its
name, i.e. “equal sign". Similarly, the double equal sign could be
replaced by “is equal to" and the triple equal sign could be aligned
with “is strictly equal to".
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Figure 2: Context-based text replacement example that
shows problematic straight alignment in the use of genitive
case in languages with noun declension. (In alphabetical or-
der except from JavaScript and English, which are shown on
the top.)

3.2.5 Use of articles. In programming code the names of variables
are typically nouns (or composite phrases that contain nouns) de-
fined by the programmer. In several natural languages the nouns
have gender properties and may be accompanied by an article in
the gender of the noun. In this case, the variable names should also
be accompanied by a default article for non-native words, such as
neuter, in order to compose grammatically correct code translations.
In the example of Fig. 1 the variable name “flag" is aligned with
“τo f laд" in the Greek translation, where “τo" is the article that
precedes the non-native (not translated) noun “f laд".

3.2.6 Genitive case. In several object-oriented programming lan-
guages the relation between objects and their properties is denoted
by the use of a symbol between them, such as “." in the expression
“object.property". In natural languages this corresponds to the so-
called genitive case. In English such relationship can be expressed
either as “property of the object" or “object’s property". In order to
satisfy the previously defined constraint (2), the latter phrase must
be used as it corresponds to a straight alignment with the computer
code, in which “." is aligned with “’s" (Fig. 2). Similarly, in Chinese
straight alignment can be achieved by using the logogram “de", and
in Turkish by using “’um", as shown in the same figure. However,
straight alignment is not possible in the Greek, Italian, and Spanish
translations, as the words “τoυ", “di", and “de" respectively indicate

Figure 3: Illustration of the proposed three-level active tok-
enization method.

ownership in the opposite direction, i.e. it should be used in front
of the noun “robot." In this case, all three constraints cannot be sat-
isfied simultaneously without introducing an artificial directional
symbol, as shown in the corresponding examples of Fig. 2. It should
be noted that “’s" is used in German language in certain phrases
(although not always) and for this reason it was conveniently used
in the mapping of the token “.", as in the English translation.

3.3 Implementation
The computer code mapping framework established in the previous
section can be implemented using an active tokenization algorithm
that identifies the individual programming tokens and replaces
them with their translation in a natural language as soon as they
are typed by the user.

In this algorithm, the typed text is not treated as a string of char-
acters but as a sequence of individual token elements. Each token
element is a data structure that consists of the type of the token
(such as name, number, string, etc.), the corresponding computer
code, and its textual replacement and can be either in edit or rigid
mode. By default all tokens are in rigid mode and show their textual
replacements (as in Figs. 1 and 2). Only one token at a time can
be in edit mode and shows its underlying code that can be edited
by the user. Insertion, deletion, merging, or splitting of tokens can
be performed by the active tokenization algorithm that consists of
three layers as shown in Fig. 3.

3.3.1 Key Level. The top level is the entry point of the algorithm,
which is triggered every time the user types a new character (in-
cluding control characters, such as backspace). The top level is
responsible for initializing the current token when its first charac-
ter is typed (function initializeToken in Alg. 1). For example, if “a"
is typed in a new token, it is initialized as a token of type “name."
While, if “5" is typed instead, it is initialized as a token of type
“number", etc.

3.3.2 Token Level. The second level is responsible for updating,
splitting, merging, and deleting existing tokens based on the new
character being typed and the existing content of the current token
(function appendCharacters in Alg. 1). For example, if “a" is typed
at the end of an existing token that contains the number “5", it
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Algorithm 1: Active Tokenization Algorithm
Input: List of tokens l , current token element t , new typed

character ID c , caret position i
Output: The updated list of token elements l
p=getPreviousToken(l ,t );
if length(t .code)=0 then

if isBackspace(c) then
editToken(p);
removeToken(l ,t );

else
initializeToken(t ,c);

end
else

if length(t .code)=i then
appendCharacters(t ,c);

else
if i=0 and isBackspace(c) then

editToken(p);
removeToken(l ,t );
appendCharacters(p,t .code);

else
newCode=modifiedCode(t .code ,c ,i);
resetToken(t );
appendCharacters(t ,newCode);

end
end

end

Table 3: Examples of context-based replacements

Token English replacement When followed by
= be a value
= be the following the name “function"
= be the following array “["
= be the following object “{"
. ’s a name
. do a name followed by “("

will trigger the splitting of the token into two tokens “5" and “a",
because the latter is not allowed to be appended to the former.

3.3.3 Context Level. The completion/modification of existing to-
kens triggers the third level that is responsible for rendering the
tokens that go into rigid mode based on their context. Table 3 shows
examples of context-based replacement rules for the tokens “=" and
“.". For instance, the token “." can be replaced by the English word
“do" if followed by the call of a method as shown in the example of
Fig. 2, which reads “robot do turn (with input: 90 deg)". In the same
example, the token “(" has been replaced by “(with input:". This
context-based replacement is triggered when the left parenthesis
follows a name token, such as “turn" in this example.

The proposed method was implemented in JavaScript as a web-
based source-code editor that allows the user to choose the language

of preference for the text replacements (between the 7 available
languages discussed in this paper). The editor allows the user to
interact with the typed code in a “playful" manner that resembles
the typing of emoticons in social media [4]. In this case, each to-
ken is being replaced by a text instead of an icon or a set of icons
as shown in [2]. An advanced example of a complete computer
program rendered by the proposed source code editor using text
replacements in English is shown in Fig. 4. It should be noted that
the user in this example has typed the JavaScript code shown in
Fig. 4a. However, while typing each token has been immediately
replaced by the corresponding textual replacement as shown in Fig.
4b. Due to space limitations this paper does not provide the corre-
sponding examples in other languages. The readers are encouraged
to visit the website of the project (provided in section 6) and type
the script in Fig. 4a using their preferred set of token replacements
in other languages.

By observing Fig. 4, several correspondences between code and
English can be identified. For example, the tokens “{", “}", “==", “+=",
and “//" have been replaced by “begin", “end", “is equal to", “be
increased by:" and “Note:" respectively. Furthermore, the token “="
has been replaced by “be:" or the phrase “be the following" when
precedes the keyword “function". The latter has been replaced by
“procedure:".

The developed source code editor was tested by a small-scale
study that is presented in the next section.

4 PILOT USER STUDY
A pilot study was performed in order to assess the effectiveness
of the proposed TEI as an environment that can assist beginners
practice computer coding in comparison to conventional TEIs. The
tested hypothesis was that the proposed environment with text-
based token replacements improves students’ learning outcome in
comparison to a conventional environment without token replace-
ments.

4.1 Study design
As discussed previously in section 1, learning computer program-
ming is a complex process that depends on several parameters, such
as the learner’s competency in problem solving, prior exposure to
procedural thinking (see detailed discussion in [22]), as well as gen-
eral attitude towards STEM areas, and many other factors including
basic knowledge of English language [28]. In order to avoid unin-
tentional bias from all of these external factors, 8 different measures
were taken in the design of this study. More specifically, various
measures were taken during the environmental setup and several
other constraints were imposed to the user enrollment procedure
and are presented in detail in this section.

4.1.1 Subject Enrollment. Although the vision of the proposed
project is to assist learners from all nationalities without any dis-
crimination, it is expected that non-English speakers could poten-
tially benefit more when English-based programming tokens are
replaced with explanatory phrases in their native language. This
is a clear advantage of the proposed method over traditional TEIs.
Hence any comparative study using non-English speakers will in-
troduce a natural bias in favor of the proposed method.
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4a) What is typed in the proposed editor.

4b) What is shown instead.

Figure 4: An advanced example that shows the English-
replaced JavaScript code of a program that prints the first
numbers of the Fibonacci sequence. The two panels show
the code that was typed in the proposed editor (top) and
what was shown instead (bottom).

For this reason, in order to create the conditions for an unbiased
study, it was decided to disadvantage the proposed method by
allowing only native English speakers to participate in this study
among other constraints which are listed below:

(1) Students whose native language was not English were not
eligible to enroll in this study.

(2) Students with prior experience in computer coding using
TEIs were not eligible to enroll in this study. This constraint
was necessary in order to ensure (to the extend possible) that
all users had similar prior knowledge on the subject before
the study. This was determined with a pretest questionnaire
that was given to the subjects upon enrollment.

(3) All subjects were enrolled in schools in the same region of
the same country at the time of this study. The reason for
this constraint was to avoid unnatural differences caused by
significant variations in school curricula and state standards
across larger geographical regions.

(4) All subjects were equally distributed in the control group
(conventional TEI) and study group (proposed TEI) based
on their gender, school level (grade), and school (current en-
rollment). Such even distribution was necessary in order to
avoid any bias related to these factors. The corresponding de-
mographic information was also collected upon enrollment
as part of the pretest questionnaire.

4.1.2 Environmental Setup. Additionally, the following measures
were taken to avoid bias due to the experimental setup:

(1) The same programming language was used (taught, prac-
ticed, and tested) by both study and control groups during
this experiment.

(2) The same instructional material was used in both study and
control groups (number of slides, content of slides, given
examples, and practice questions).

(3) The same amount of timewas given to both study and control
groups for instruction, practice, and test.

(4) The same compiler was used by both control and study
groups in order to ensure that the error messages had exactly
the same information and verbiage.

4.2 Study execution
The experimental setup described in section 4.1 was implemented
and executed as a short-term pilot study using 88 students of ages
between 10-15 years old, who volunteered to participate. All sub-
jects were enrolled in three schools in Alachua county, Florida,
were native speakers of English, and had no prior experience in
TEI environments for source code editing or programming syntax
in general. The study took place in the computer facilities of the
Digital Worlds Institute at the University of Florida in the period
between March-July 2017 on different days based on the availability
of each participating school. Before the study, the enrolled subjects
were split into two similarly sized groups of similar age, gender,
and school mix as described in section 4.1.

One of the two groups was used as the control group (N=46), and
the other one was the study group (N=42). During the study, the
students of each group were exposed to the same basic program-
ming principles, namely variables and conditionals using JavaScript
syntax for approximately 45 minutes. During this time the students
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Table 4: Levels of student success per metric

Method Metric 1 Metric 2 Metric 3 Metric 4
Nat.Language 52.38% 97.62% 80.95% 90.48%
Comp. Code 17.39% 93.48% 50.00% 54.35%
Increase 201.19% 4.43% 61.90% 66.48%

χ2 11.9624 0.8675 9.2180 14.0898
p 0.00054 0.35164 0.00239 0.00017

of each group practiced using different text editors: the study group
used the proposed editor with natural language replacements in
English, and the control group used a conventional source code
editor without replacements. Both editors used the same compiler
(JavaScript compiler of Google Chrome) with the same error mes-
sages as explained in section 4.1. At the end of the study all students
had to complete the same programming assignment in JavaScript
with pen and paper based on the material that was covered in the
study. The reason for performing the final assessment in pen-and-
paper fashion was to test if the students could recall the syntax
and logic of the programming language without the assistance of
the compiler or the proposed natural language replacements. The
programming assignment involved the declaration of a few vari-
ables and the use of conditionals to test their values based on the
material covered in the study.

The student solutions to the programming assignment were
quantitatively evaluated for accuracy using four different metrics:
1) The submission had no logical or syntax errors, 2) The variable
declarations had no errors, 3) The conditionals had no errors, 4)
There were no other errors (examples of observed errors in this
category are: “var if" followed by a correct conditional, incorrect
variable reference as “var name" inside a conditional, unbalanced
braces, etc.)

Table. 4 shows the percentages of student success using the four
established metrics. According to the data in the first column (per-
centage of submissions without errors), the students who practiced
programming using the proposed editor performed better compared
to the students who used conventional editors. More specifically,
the use of natural language replacements increased the success
of the students by a factor of 3, i.e. the number of students who
successfully completed the assignment tripled (52% vs. 17%).

Overall, the detailed percentages from all metrics indicate that
the proposed method improved the student success, especially in
conditionals (metric 3) and other errors (metric 4). More specifically,
the percentage of success was increased by 4.4%, 61.9%, and 66.5%
in terms of variable declarations, conditionals, and other syntactical
structures respectively.

In order to evaluate the statistical significance of each finding,
a chi-square test of independence was performed for each metric.
More specifically, the null hypothesis was that the two categorical
variables, namely the employed TEI and the student performance
in a particular metric, are independent. The alternative hypothesis
was that the two categorical variables are dependent, i.e. the student
performance depends on the employed TEI. The calculated critical
values (χ2) for each metric are shown in table 4 as well as the

corresponding probability values (p). Based on the calculated values,
the null hypothesis is rejected (p < 0.01) for metrics 1,3,4, while
there is no significant statistical difference observed in metric 2.

5 DISCUSSION
After studying the behavior of users while interacting with the
proposed educational tool, the following observations were made:

(1) The proposed environment is not a simple text editor but a
space for active experimentation, in which the users type
and expect an immediate reaction. Through the continuous
alternation of action (typing) and cognition (observation
of the token replacement), the learners pass through the
three learning stages [19]. This process leads to abstract
conceptualization, i.e. reinforces learning through a try-and-
error environment. For example, if a student intends to test
equality in the computer code, he or she expects to see a
text replacement “is equal to." But if the text replacement
suddenly appears as “be:" instead, it indicates an erroneous
token that was typed by the user. Subsequently, students
who practiced using the proposed editor during our study
had improved learning outcomes.

(2) One of the key advantages of this framework is that it does
not constitute an intermediate learning step but a terminal
one, as the users learn to type correct code in the syntax of
a professional programming language.

(3) The proposed editor promotes good coding habits with re-
gards to the names of properties and methods defined by the
students in their code. The students tend to use nouns and
verbs for the properties and methods of their objects, so that
the translated code will read better in conjunction with “’s"
and “do" respectively.

However, due to the narrow scope of this paper there are several
issues and limitations that need to be addressed in the future, some
of which are listed below:

(1) The study presented in section 4 was pilot in nature, hence
it was limited in duration as well as number of participants.
The results only indicate that there was a positive effect in
the user’s first experience with TEIs. Although it is known
that the outcome of the first experience has a substantial and
lasting effect on participants’ subsequent behavior [37, 41],
a long-term study should be undertaken in the future.

(2) Section 3 did not investigate how different verbiage could be
used for different target audiences. More effective mappings
could possibly be developed for specific populations, such
as college educated adults, adults without college education,
high school students, middle school students, etc. This is
an interesting topic that should be addressed in a future
publication.

(3) This framework has not been tested on non-English speakers
in order to avoid introducing bias. Investigating how pro-
gramming languages are biased towards English, and how
this affects learning is an interesting topic that has been
discussed in the past [28] and could be further investigated
using the proposed framework.

(4) The proposed framework was demonstrated for the syntax
of one programming language only (JavaScript). Identifying
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mappings for different syntax, such as for Python, R, or
other programming languages is a critical topic that should
be addressed in the future.

(5) Finally, this paper did not address the possible effects from
coupling the proposed framework with other methods such
as BCI followed by the proposed TEI or TUI followed by the
proposed TEI as it was recently assessed in a different study
[3].

6 DISSEMINATION
In order to increase the dissemination of the proposed method and
its impact on the widest possible audience, the tool presented in
this paper has been made available online at the following address:
https://research.dwi.ufl.edu/projects/emoticoding/.

The tool includes a source-code editor with active tokenization
and various sets of token replacements including plain JavaScript,
English, Chinese, German, Greek, Italian, Spanish, and Turkish.
With the assistance of early adopters new sets are under develop-
ment for Korean, and Indonesian.

7 CONCLUSIONS
In this paper a novel method was presented for assisting begin-
ner programmers in their first exposure to source code editors.
The contributions of this paper were threefold: a) a framework for
aligning computer code to natural languages was presented and
demonstrated using seven structurally different languages, b) an
implementation of the proposed framework was developed using
an active tokenization algorithm, which interactively replaces indi-
vidual programming tokens with words or phrases from a natural
language, c) the results from a pilot study were discussed, which
indicated that the proposed method improved the students’ per-
formance. In the future, text replacements from more languages
will be included in order to make the proposed tool available to a
wider audience. Finally, a large scale study will be performed in
order to assess the effect of the proposed method during a year-long
curriculum in different countries using non-English students.
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