
3

Orthonormal Basis Lattice Neural Networks

Angelos Barmpoutis1 and Gerhard X. Ritter2

1 University of Florida, Gainesville, FL 32611, USA
abarmpou@cise.ufl.edu

2 University of Florida, Gainesville, FL 32611, USA
ritter@cise.ufl.edu

Summary. Lattice based neural networks are capable of resolving some difficult
non-linear problems and have been successfully employed to solve real-world prob-
lems. In this chapter a novel model of a lattice neural network (LNN) is presented.
This new model generalizes the standard basis lattice neural network (SB-LNN)
based on dendritic computing. In particular, we show how each neural dendrite
can work on a different orthonormal basis than the other dendrites. We present
experimental results that demonstrate superior learning performance of the new
Orthonormal Basis Lattice Neural Network (OB-LNN) over SB-LNNs.

3.1 Introduction

The artificial neural model which employs lattice based dendritic computation
has been motivated by the fact that several researchers have proposed that
dendrites, and not neurons, are the elementary computing devices of the brain,
capable of implementing logical functions [1, 16]. Inspired by the neurons of
the biological brain, a lattice based neuron that possesses dendritic structures
was developed and is discussed in detail in [13, 14, 17].

Several applications of LNNs have been proposed, due to their high capa-
bility of resolving some difficult non-linear problems. LNNs were employed in
applications for face and object localization [3, 9], Auto-Associative memories
[10, 18, 19], color images retrieval and restoration [20] etc. Furthermore, vari-
ous models of fuzzy lattice neural networks (FLNN) were studied in [5, 6] and
some of their applications in the area of text classification and classification
of structured data domains were presented in [7, 8].

Despite the high capabilities of LNNs, training dendritic networks such
as Lattice Based Morphological Perceptrons with Dendritic Structure [13],
results in creating huge neural networks with a large number of neurons; the
size of the trained network sometimes is comparable to the size of the training
data.

In this work a new model of LNNs is proposed. In this model each neural
dendrite can work on a different orthonormal basis than the other dendrites.



44 Barmpoutis and Ritter

The orthonormal basis of each dendrite is chosen appropriately in order to
optimize the performance of the Orthonormal Basis Lattice Neural Network
(OB-LNN). OB-LNNs have some useful properties such as automatic com-
pression of the size of the neural network and they show significantly better
learning capabilities than the standard basis LNNs. Validation experimental
results in synthetic and real datasets are presented and demonstrate superior
learning performance of OB-LNNs over SB-LNNs.

The rest of the chapter is organized into the following sections: In Section
3.2, we make a brief review of the LNN model. In Section 3.3, the Orthonor-
mal Basis Lattice Neural Network is presented. This section is divided in two
parts. In the first part the model of OB-LNNs is presented. This is followed by
an algorithm for training such a neural network. Finally, in Section 3.4, valida-
tion experimental results are presented which demonstrate superior learning
performance of OB-LNNs over standard basis LNNs.

3.2 Lattice Neural Networks

The primary distinction between traditional neural networks and LNNs is the
computation performed by the individual neuron. Traditional neural networks
use a multiply accumulate neuron with thresholding over the ring (<,×, +)
given by the formula

τj(x) =
∑n

i=1
xiwij − θj (3.1)

where τj(x) is the total input to the jth neuron, xi are the values of
the input neurons connected with the jth neuron, and wij are their weights.
Finally θj are bias weights.

In the case of a lattice based neuron, lattice operators ∨ (maximum) and
∧ (minimum) are used. These operators and the addition (+) form the rings
(< ∪ −∞,∨,+) and (< ∪∞,∧,+). The computation performed by a neuron
is given by the formula

τj(x) = pj∨n
i=1rij(xi + wij) (3.2)

or
τj(x) = pj∧n

i=1rij(xi + wij) (3.3)

where τj(x) is the total input to the jth neuron, xi are the values of
the input neurons connected with the jth neuron, and wij are their weights.
Parameters rij take +1 or -1 value if the ith input neuron causes excitation
or inhibition to the jth neuron. Pj takes also +1 or -1 value if the type of
the output response is excitatory or inhibitory. A more detailed presentation
of the theory of lattice based morphological neurons and how their networks
work can be found in [11, 14].



3 Orthonormal Basis Lattice Neural Networks 45

Fig. 3.1. An artificial neural network model which employs lattice based dendritic
computations.

Using the above computational framework, a lattice neural network can
be constructed using layers of lattice based neurons which are connected to
neurons of other layers. Each lattice based neuron consists of dendrites which
connect the neuron with the previous layers neurons. Fig. 3.1 shows a lattice
neural network with an input layer and a lattice based neuron layer. Each
lattice neuron Mj consists of dendrites Dij . The neurons of the input layer
are connected to the next layer via the dendrites. The black and white circles
denote excitatory and inhibitory connection respectively. Each dendrite can
be connected with an input neuron at most twice (with one inhibitory and
one excitatory connection).

The computation performed by a single (the kth) dendrite can be expressed
using lattice operators by the formula:

τk(x) = pk∧i∈I∧l∈L(−1)1−l(xi + wl
ik) (3.4)

where I is a subset of 1,...,n which corresponds to the set of all input neurons
Ni with terminal fibers that synapse on the kth dendrite of the current lattice
based neuron. L is a subset of 1,0 and the other parameters are the same with
those used in Eqs. (3.2) and (3.3).

The geometrical interpretation of the computation performed by a den-
drite is that every single dendrite defines a hyperbox. The borders of this
hyperbox form the decision boundaries in a particular location of the input
space. The left part of Fig. 3.2 shows a hyperbox that separates data points
of two different classes. Here the input space is the plane of real numbers (<2)
and the hyperbox is a rectangle. This hyperbox can be defined by a single
dendrite via its weight values wij .



46 Barmpoutis and Ritter

Decision boundaries with more complex shapes, can be formed by using
more dendrites. Furthermore boundaries which separate more than two classes
can be formed, if more lattice based neurons are employed. The left part of
Fig. 3.3 shows an example of decision boundaries with more complex shape,
forming the letters ABC. In the middle of the same figure we can see how
a group of hyperboxes (2-dimensional boxes in this case) can approximate
the decision boundaries. Each box can be defined by a dendrite. Complicated
figures require a large number of dendrites, in order to achieve satisfactory
approximation of the decision boundaries.

Note that here the word hyperbox has a more general meaning, since some
of the bounding planes of the hyperboxes may have infinite length. The word
hyperbox as used in this article includes open hyperboxes. For example, in
<1 a half-open interval of form [α,∞) or (−∞,α] are half-open boxes, while
in <2 a rectangle as well as the convex area bounded by one, two, or three
mutually orthogonal lines are also considered to be hyperboxes. Following
similar reasoning, two parallel lines can be also considered as a hyperbox, etc.

Fig. 3.2. Decision boundaries of a SB-LNN dendrite (left) and a OB-LNN dendrite
(right).

An algorithm for training a lattice neural network with dendritic structure
can be found in [11] and method for learning LNNs can be found in [17].
A comparison of various training methods for LNNs that employ dendritic
computing is presented in [12]. The next section is divided into two parts.
In the first part the model of Orthonormal Basis lattice neural network is
presented. This is followed by an algorithm for training such a neural network.

3.3 Orthonormal Basis Lattice Neural Networks

In this section, the Orthonormal Basis Lattice Neural Network is presented.
This section is divided into two parts. In the first part the model of OB-
LNNs is presented. This is followed by an algorithm for training such a neural
network.



3 Orthonormal Basis Lattice Neural Networks 47

3.3.1 The OB-LNN model

As it was discussed earlier, the geometrical interpretation of the computation
performed by a dendrite is that every single dendrite defines a hyperbox in the
space of input values. These hyperboxes are oriented parallel to the Cartesian
axis of the space of input values. The left part of Fig. 3.2 presents a decision
hyperbox defined by a dendrite. Its edges are parallel to the x and y axis
of the input space (<2). Due to this constraint about the orientation of the
hyperboxes, the decision boundaries formed by lattice neural networks are not
smooth and box patterns are annoyingly visible along the boundaries (Fig.
3.3 middle).

Fig. 3.3. This is an illustration of the decision boundaries that can be formed by
a SB-LNN (middle) and an OB-LNN (right). The desired decision boundaries form
the ABC letters (left).

To overcome these disadvantages, a new type of dendrite can be defined,
which is able to form a hyperbox parallel to an arbitrary orthonormal system.
The right part of Fig. 3.2 presents such a hyperbox, whose orientation is no
longer parallel to the Cartesian axis of the input space. A neural network
consisting of lattice based neurons with such dendrites would be able to pro-
duce smoother decision boundaries (Fig. 3.3 right). In Fig. 3.3 the decision
boundaries formed by such an Orthonormal Basis Lattice Neural Network
are compared with these formed by a Standard Basis LNN. Notice that the
number of hyperboxes (thus the number of dendrites as well) required by the
OB-LNN is much smaller than the number of those required by a SB-LNN.

Another advantage of the Orthonormal Basis LNNs is that they store
information about the local orientation of the classes. This is demonstrated
with an example in Fig. 3.4. Suppose that the samples of a class form the
shape of the letter A. A neural network with Orthonormal Basis Dendtrites
can approximate this shape forming mainly 3 hyperboxes. The orientation of
each hyperbox contains information about the local orientation of this class
(Fig. 3.4 right). This useful information cannot be obtained by the standard
basis LNN that was trained for the same purpose (Fig. 3.4 left). This property
is better illustrated in Section 3.4 (Fig. 3.6), where training results of standard
and orthonormal basis LNNs are presented.

The computation performed by the kth Orthonormal Basis dendrite can
be expressed using lattice operators, changing slightly Eqn. (3.4) as follows

τk(X) = pk∧i∈I∧l∈L(−1)1−l [(RkX)i + wl
ik

]
(3.5)



48 Barmpoutis and Ritter

Fig. 3.4. Another advantage of OB-LBNN (right) is that they also store information
about the local orientation of the classes.

where X is the input value vector (x1, x2, ..., xI)T , Rk is a square matrix
whose columns are unit vectors forming an orhonormal basis, and (RkX)i

is the ith element of the vector RkX. Each dendrite now works in its own
orthonormal basis defined by the matrix Rk. The weights of the dendrite act
on the elements of vector RkX, hence the weights act on the rotated by the
orthonormal basis Rk space.

Note that Standard Basis Lattice Neural Networks are a sub group of the
Orthonormal Basis Lattice Neural Networks where the matrix Rk is the iden-
tity matrix. In this case it is obvious (RkX)i = xi, thus Eqn. (3.5) becomes
equal to Eqn. (3.4).

3.3.2 Training OB-LNNs

The training of an Orthonormal Basis Lattice Neural Network is based on
finding the best possible values for the weights and Rk matrices. In other
words, in order to train an OB-LNN, one must train its dendrites.

The training methods which can be used for training SB-LNNs can also be
used for training OB-LNNs with an appropriate modification in order to adopt
the fact that each dendrite works on its own orthonormal basis. The training
procedure of an orthonormal basis dendrite can be treated as a maximization
problem. The quantity that we are trying to maximize is the volume of the
hyperbox which is defined by the dendrite. Due to this volume maximization
process the OB-LNN training algorithm generally produces more compressed
neural networks compared to those in the standard basis case. This property
is expressed by lemma 1, which is discussed at the end of this section.

By fixing the matrix Rk , the weights of the dendrite can be estimated
by the training procedure described in [11]. The weights define the hyperbox;
therefore its volume can be directly calculated from the weights. We can repeat
the process by varying appropriately the matrix Rk , until the volume of the
hyperbox reaches a maximum.

The matrix Rk is a rotation matrix, i.e. it rotates the vector X. A variation
of this matrix dR is also a rotation matrix. A new rotation matrix R′

k can
be obtained by multiplying Rk with matrix dR, (R′

k = RkdR). A variation
matrix dR can be easily constructed by using the following equation:

dR = exp(tS) (3.6)



3 Orthonormal Basis Lattice Neural Networks 49

where S is a randomly generated skew symmetric matrix, and t is a scalar
value. Note that the exponential is the matrix exponential. Note also that the
matrix exponential of a skew symmetric matrix is always a rotation matrix.
The smaller the absolute value of t is, the smaller the variation, which is caused
by the matrix dR, is. A brief review of the properties of matrix exponential
and skew-symmetric matrices can be found in the appendix at the end of this
article.

By using the above, any cost minimization method can be used in order to
minimize the negative of the hyperboxes volume (or to maximize its volume)
in steps 2 and 7 of Algorithm 1. Simulated annealing [15] and greedy searching
for experiments in 2D are the methods used in the experiments presented in
Section 3.4, in order to find the matrix Rk that gives the maximum hyperboxes
volume.

The training algorithm of an OB-LNN morphological perceptron is sum-
marized below. This algorithm is an extension, in the space of OB-LNN, of the
training algorithm for morphological perceptron proposed in [11]. The algo-
rithm is presented for the case of 2 classes only, but it can be easily extended
to problems with a larger number of classes. A more detailed description of
the training algorithm in the case of SB-LNN is presented in [11].

input : N training samples Xi, and N outputs di = 0 or 1 for class
C1 or C2, respectively, i = 1, ..., N

output : The number of generated dendrites L, their weights Wj and
their orthonormal basis Rj , j = 1, ..., L

Step 1: L ← 1 ;
Step 2: Find the size W and orientation R of the smallest possible
hyperbox containing all the samples of C1 ;
Step 3: Assign the result of step 2 to W1 and R1 ;
Step 4: If there are misclassified points of C2, go to step 5 ;
else go to step 10 ;
Step 5: Pick arbitrarily a misclassified point ξ of C2 ;
Step 6: L ← L + 1 ;
Step 7: Find the size W and orientation R of the biggest hyperbox
that contains ξ, but it does not contain any point of C1 ;
Step 8: Assign the result of step 7 to WL and RL ;
Step 9: Go to step 4 ;
Step 10: Terminate the algorithm and report the results ;

Algorithm 1: Training an orthonormal basis lattice neural network

It can be easily shown that the time complexity of this algorithm is equal
to OOBLNN = OSBLNN ×OMin where OSBLNN is the time complexity of the
training algorithm in the case of SB-LNN and OMin is the time complexity of
the minimization process used in steps 2 and 7. Therefore, in order to obtain



50 Barmpoutis and Ritter

improved learning capability we loose in speed performance. The improve-
ment in speed performance will be one of the research topics in our future
work. Practically we can use efficiently this algorithm for problems defined
in 2 dimensions, e.g. image processing related problems and problems defined
in 3 dimensions, e.g. point set processing and 3D volume image processing
problems.

More specifically, in 2-dimensional problems the orthonormal basis is de-
fined by a 2× 2 rotation matrix R. For the storage of this matrix we need to
store only 1 real number, which is either the only lower triangular element of a
2×2 skew-symmetric matrix (see in the Appendix to this chapter), or the rota-
tion angle of the orthonormal system around the origin. In the 3-dimensional
case, the orthonormal basis is defined by a 3×3 rotation matrix, which can be
stored using only 3 real number storage units. Similarly to the 2D case these
3 numbers are the three lower triangular elements of a 3× 3 skew-symmetric
matrix A such that R = exp(A). Generally in the n-dimensional case, we
need n(n− 1)/2 real number storage units in order to store the orthonormal
basis.

The difference between the training algorithm of an orthonormal basis
lattice neural network and the training algorithm of a standard basis lattice
neural network, is in the processes performed in steps 2 and 7. For the standard
basis case these two steps find only the size W and not the orientation R of
the new dendrite. The standard orthonormal basis (expressed by the identity
matrix) is employed for every dendrite. As a result of this difference between
the orthonormal basis and the standard basis algorithms, the orthonormal
basis algorithm generally produces more compressed neural networks, i.e. with
smaller number of dendrites compared to those in the standard basis case. This
property is discussed in more details by the following lemma and its proof.

Lemma 1. The number of dendrites generated by training an orthonormal
basis lattice neural network LO is smaller or equal to the number of dendrites
obtained by training on the same dataset a standard basis lattice neural net-
work LS (LO ≤ LS).

The proof of the lemma involves understanding of the process performed in
step 7 of Algorithm 1. Without loss of generality we will assume that in step 5
the same misclassified point ξ is arbitrarily selected for both orthonormal basis
and standard basis lattice neural network training. Let assume that for one
particular ξ the SB-LNN algorithm creates a hyperbox of volume A. The OB-
LNN algorithm will create a hyperbox with the maximum possible volume,
say B. Therefore A ≤ B, and the equality holds in the case that the standard
basis hyperbox happens to have the maximum possible volume. Hence the
number of the training points included in volume A must be smaller or equal
to those included in volume B. As a consequence the number of iterations
performed by the orthonormal basis training algorithm is smaller or equal to
those performed by the standard basis training algorithm. This proves the
lemma since LO ≤ LS .



3 Orthonormal Basis Lattice Neural Networks 51

3.4 Experimental Results

In this section, validation experimental results are presented which demon-
strate superior learning performance of OB-LNNs over SB-LNNs. The exper-
iments were performed using synthetic 2-dimentional datasets and the well
known Iris flower dataset.

The first dataset was synthetically generated and it forms two 2D spirals.
The points of the two spirals obey the equations

[x1(θ), y1(θ)] = [2θcos(θ)/π, 2θsin(θ)/π] (3.7)

and
[x2(θ), y2(θ)] = [−x1(θ),−y1(θ)] (3.8)

respectively. Several versions of this datasets were generated with a) 130,
b) 258, c) 514, d) 770, e) 1026, f) 1538 samples. The largest dataset (2538
samples) was used for the testing dataset. The samples of the smallest dataset
(130 samples) are presented in Fig. 3.5. Small circles denote the samples of
the one spiral, and small crosses denote the samples of the other one.

Fig. 3.5. This figure shows some of the hyperboxes formed by a SB-LNN (left) and
a OB-LNN(right). The 130 training samples are denoted by circles and crosses and
they are forming two spirals. The hyperboxes presented here for comparison, are the
9 smallest of each case.

Two neural networks were trained in the previously described datasets: a)
a Standard Basis Lattice Neural Network and b) the proposed Orthonormal
Basis Lattice Neural Network. Both networks were lattice based morphological
perceptrons with dendritic structure [11] so that their performance could be
compared directly. In the case of the OB-LNN perceptron, the dendrites were
Orthonormal Basis dendrites, which were trained in order to maximize the
volume of the hyperboxes that they formed.



52 Barmpoutis and Ritter

Table 3.1 presents the classification errors of the trained neural networks
for different sizes of the training datasets (column 1). The size of the testing
dataset for all the experiments was 1538 samples. In all cases, the classification
errors made by the OB-LNN are significantly smaller than these made by the
SB-LNN. This conclusively demonstrates superior training performance of the
proposed neural network over the standard basis lattice neural networks.

Table 3.1. This Table presents classification errors and number of dendrites needed
for the training of an OB-LNN and a SB-LNN, using different sizes of training
samples (see column 1). The 2nd and 4th columns present the number of dendrites
needed for the correct classification of the training samples. The 3rd and 5th columns
show the percentage of misclassified samples using always 1538 testing samples. The
last column shows the quantity equals to one minus the ratio of the 3rd column over
the 5th column.

Training OB-LNN OB-LNN SB-LNN SB-LNN 1-Ratio
samples Dendrites Error Dendrites Error of errors

130 12 14.0 % 14 18.34 % 23.45 %
258 14 6.5 % 17 9.69 % 32.20 %
514 15 3.2 % 19 4.55 % 28.57 %
770 16 2.3 % 19 3.20 % 26.88 %
1026 15 1.5 % 20 2.54 % 40.94 %

Furthermore, the number of the dendrites, which are required to form the
decision boundaries between some populations, measures the learning ability
of a neural network. Table 3.1 also presents the final number of dendrites
required by the lattice neural networks in order to classify correctly all the
training samples (columns 2 and 4). In all cases, the number of dendrites
trained by the OB-LNN is smaller than the number of dendrites trained by a
standard basis LNN. This means that the OB-LNN compresses automatically
its size.

Fig. 3.5 shows most of the hyperboxes formed by the dendrites of the Stan-
dard basis (left) and the Orthonormal basis LNNs (right). These hyperboxes
were formed by the training process using 130 training samples. By observing
this figure we can see the differences between the decision boundaries formed
by the OB-LNN and those formed by the SB-LNN. The hyperboxes generated
by the Orthonormal basis LNN have bigger volume (area in the 2D domain)
than those generated by the standard basis LNN. In the case of OB-LNN each
hyperbox is rotated appropriately because of the fact that it is working on a
different orthonormal basis than the other dendrites.

As it was discussed earlier in Section 3.3, each hyperbox contains informa-
tion about the local orientation of the classes. This property is illustrated in
Fig. 3.6. In this figure the decision boundaries between the two spirals gen-
erated by a SB-LNN (left) and an OB-LNN (right) are presented. On each



3 Orthonormal Basis Lattice Neural Networks 53

Fig. 3.6. Decision boundaries formed by a SB-LNN (left) and a OB-LNN (right).
On each hyperbox several ellipses are plotted. The sizes of the principal axes of each
ellipse are proportional to the sizes (length and width) of the relative hyperbox.

hyperbox several ellipses are plotted. The sizes of the principal axes of each
ellipse are proportional to the size (length and width) of the relative hyperbox.
The dominant axis of each ellipse is also plotted, forming a vector field.

Observing the vector field generated by the SB-LNN (top) and this gen-
erated by the OB-LNN (bottom), one can conclude that the hyperboxes of
the OB-LNN contain information about the local orientation of the classes.
In the case of SB-LNN this property cannot be generally observed.

Another set of experiments was held by using the Iris flower dataset. The
Iris Flower dataset is a popular multivariate dataset that was introduced by
R.A. Fisher as an example for discriminant analysis. The data reports on
four characteristics of the three species of the Iris Flower, sepal length, sepal
width, petal length, and petal width. The goal of a discriminant analysis is to
produce a simple function that, given the four measurements, will classify a
flower correctly.

Several experiments were performed by using randomly different amounts
of the Iris flower samples as testing samples (1st column of Table 3.2). The
following three neural networks were trained: a) an OB-LNN perceptron, b)
a SB-LNN perceptron and c) a multilayer perceptron (MLP) with one hidden
layer. Several different architectures were used for the MLP with 1 hidden
layer, and the results of Table 3.2 are the best obtained. The whole Iris data
set were used as the testing data set. The classification errors of the three
neural networks are presented in Table 3.2. In all cases, the classification
errors made by the OB-LNN are significantly smaller.

Finally, another experiment was also held in order to compare the sizes of
the trained neural networks. A synthetic dataset was generated forming two
classes; one within an ellipse (Fig. 3.7 left) and the other one outside of it.
The sample points of the two classes were picked up randomly using uniform
distribution.



54 Barmpoutis and Ritter

Table 3.2. This Table presents classification errors of the three neural networks for
different amounts of training samples.

Training samples OB-LNN SB-LNN Perceptron

50 % 8.33 % 10.67 % 13.33 %
60 % 6.41 % 10.00 % 12.21 %
70 % 4.20 % 6.33 % 7.34 %
80 % 3.12 % 3.67 % 6.54 %
90 % 2.01 % 3.33 % 6.38 %
100 % 0 % 0 % 3.67 %

Fig. 3.7. Left: This dataset forms an ellipse. Right: Plot of the misclassified points
over the number of dendrites required by a OB-LNN and a SB-LNN during the
training process.

The same two lattice neural networks with dendritic structure were used:
a) an OB-LNN perceptron and b) a SB-LNN perceptron. The right plate of
Fig. 3.7 shows the plot of the number of misclassified sample points over the
number of dendrites generated by the two neural networks during the training
process. The final number of dendrites required by the OB-LNN in order to
classify correctly all the training samples is significantly smaller than the
number of dendrites trained by a standard basis LNN. This also conclusively
demonstrates superior learning performance of OB-LNNs over SB-LNNs.

3.5 Conclusion

A novel model, namely Orthonormal Basis Lattice Neural Network, was pre-
sented. Comparisons of the proposed model with the standard basis model
of Lattice neural networks were shown. Validation experimental results were
also presented demonstrating the advantages of the proposed model. Our fu-
ture work will be focused on applying this model in applications for face and
object localization, Auto-Associative memories and color images retrieval and
restoration, in which areas the standard basis lattice neural networks have
been applied [3, 9, 10, 18, 19, 20]. Extension of the proposed model in the
area of Fuzzy Lattice Neurocomputing [5, 6] and improvement in speed per-
formance will also be some of our future research topics.



3 Orthonormal Basis Lattice Neural Networks 55

References

1. Eccles J (1977) The Understanding of the Brain. McGraw-Hill, New York
2. Gallier J, Xu D (2003) Computing exponentials of skew-symmetric matrices

and logarithms of orthogonal matrices. Intl J of Robotics and Autom 18:10–20
3. Grana M, and Raducanu B (2001) Some applications of morphological neural

networks. In: Proc Intl Joint Conf Neural Networks 4:2518–2523
4. Horn RA, Johnson CR (1991) Topics in Matrix Analysis. Cambridge University

Press
5. Kaburlasos V, Petridis V (2000) Fuzzy lattice neurocomputing (FLN) models.

Neural Networks 13(10):1145–1170
6. Petridis V, Kaburlasos V (1998) Fuzzy lattice neural network (FLNN): a hybrid

model for learning. IEEE Transactions on Neural Networks 9(5):877–890
7. Petridis V, Kaburlasos V (2001) Clustering and classification in structured

data domains using fuzzy lattice neurocomputing (FLN). IEEE Transactions
on Knowledge and Data Engineering 13(2):245–260

8. Petridis V, Kaburlasos V, Fragkou P, Kehagias A (2001) Text classification
using the σ-FLNMAP neural network. In: Proc Intl Joint Conference on Neural
Networks 2:1362–1367

9. Raducanu B, Grana M (2001) Morphological neural networks for vision based
self-localization. In: Proc IEEE Intl Conference on Robotics and Automation
2:2059–2064

10. Ritter GX, Iancu L (2004) A morphological auto-associative memory based on
dendritic computing. In: Proc IEEE Intl Joint Conference on Neural Network
2:915–920

11. Ritter GX, Iancu L, Urcid G (2003) Morphological perceptrons with dendritic
structure. In: Proc IEEE Intl Conference on Fuzzy Systems 2:1296–1301

12. Ritter GX, Schmalz M (2006) Learning in lattice neural networks that em-
ploy dendritic computing. In: Proc IEEE World Congress on Computational
Intelligence pp 7–13

13. Ritter GX, Sussner P (1996) An introduction to morphological neural networks.
In: Proc Intl Conference on Pattern Recognition 4:709–717

14. Ritter GX, Urcid G (2007) Learning in lattice neural networks that employ
dendritic computing. This volume, chapter 2

15. Saul A, Teukolsky S, Flannery B, Press W, Vetterling B (2003) Numerical
Recipes Example Book (C++). Cambridge University Press

16. Segev I (1988) Dendritic processing. In: Arbib MA (ed) The Handbook of Brain
Theory and Neural Networks pp 282–289. MIT press

17. Sussner P (1998) Morphological perceptron learning. In: Proc IEEE
ISIC/CIRA/ISAS Joint Conference pp 477–482

18. Sussner P (2004) Binary autoassociative morphological memories derived from
the kernel method and the dual kernel method. In: Proc Intl Joint Conference
on Neural Networks 1:236–241

19. Sussner P (2004) A fuzzy autoassociative morphological memory. In: Proc Intl
Joint Conference on Neural Networks 1:326–331

20. Yun Z, Ling Z, Yimin Y (2004) Using multi-layer morphological neural network
for color images retrieval. In: Proc World Congress on Intelligent Control and
Automation 5:4117–4119



56 Barmpoutis and Ritter

Chapter 3 Appendix

In this section we review briefly some of the mathematical preliminaries
related to the methods presented in this article.

The matrix exponential of a square n× n matrix A is defined as

exp(A) =
∑∞

i=0

Ai

i!
= I + A +

A2

2
+

A3

6
+ ... (3.9)

where I is the n× n identity matrix. The summation of the infinite terms of
Eqn. (3.9) does converge and the obtained result is a n × n positive definite
matrix. Similarly to the matrix exponential we can define the matrix logarithm
as the inverse operation. The matrix logarithm of a n×n positive definite real
valued matrix A gives a n × n real valued matrix. Both exp and log matrix
operations are invariant to rotations, i.e. for every n× n orthogonal matrix v
we have exp(vAvT ) = vexp(A)vT and log(vAvT ) = vlog(A)vT .

A skew-symmetric matrix A is a n × n matrix whose negative is also
the transpose of itself (i.e. AT = −A). A skew-symmetric matrix has all
its diagonal elements zero, and the rest of the elements satisfy the property
Ai,j = −Aj,i.

The matrix exponential of a skew-symmetric matrix is an orthogonal ma-
trix R = exp(A), where R is an orthogonal matrix and it is also a positive
definite matrix because it is expressed as the matrix exponential of a matrix.
The zero n× n matrix is an example of a skew-symmetric matrix. By evalu-
ating Eqn. (3.9) it turns out that the matrix exponential of the zero matrix is
the n×n identity matrix (i.e. I = exp(0)), which is also an orthogonal matrix.
The n × n identity matrix I can be seen as the zero rotation matrix of the
n-dimensional space. Generally, the matrix operation exp(λA), where λ is a
scalar which is close to zero, produces an orthogonal matrix which is close to
the identity and rotates slightly the n-dimensional space.

lim
λ→0

exp(λA) = I (3.10)

A random small rotation of the n-dimensional space can be generated
from Eqn. (3.10) by using a randomly generated skew-symmetric matrix A
and a scalar λ which is close to zero. A random skew-symmetric matrix can
be generated by using the multivariate Gaussian distribution for the lower
triangular elements of the matrix. If we set the rest of the elements (diagonal
and upper triangular) to be zero, we can obtain a randomly generated skew-
symmetric matrix by subtracting the transpose of this lower triangular matrix
from itself.

Computing exponential of a n× n skew-symmetric matrix has time com-
plexity O(n3). A detailed discussion on computing exponentials of skew-
symmetric matrices and logarithms of orthogonal matrices was presented in
[2]. Finally, a more detailed study on the matrix exponential, skew-symmetric
matrices and the related theory can be found in [4].


