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Abstract

A novel method for estimating a field of fiber orientation diaition (FOD) based on signal de-convolution from a
given set of difusion weighted magnetic resonance (DW-MR) images is ptedeWe model the FOD by higher
order Cartesian tensor basis using a parametrization tpécigly enforces the positive semi-definite property he t
computed FOD. The computed Cartesian tensors, dubbeds@arfBensor-FOD (CT-FOD), are symmetric positive
semi-definite tensors whose d¢beients can be féciently estimated by solving a linear system with non-niegat
constraints. Next, we show how to use our method for comgtiigher-order dfusion tensors to CT-FODs, which
is an essential task since the maxima of higher-order terdminot correspond to the underlying fiber orientations.
Finally, we propose a ffusion anisotropy index computed directly from CT-FODs gsiigher order tensor distance
measures thus consolidating the whole analysis pipelirgiffafsion imaging solely using CT-FODs. We evaluate
our method qualitatively and quantitatively using simethDW-MR images, phantom images, and human brain real
dataset. The results conclusively demonstrate the sujterid the proposed technique over several existing multi-
fiber reconstruction methods.

Keywords: diffusion tensor imaging, higher order tensors, fiber oriemtadistribution functions, anisotropy
measures

1. Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) is a mvasive imaging technique that measures the
self-diffusion of water molecules in the body, thus capturing the esitucture of the underlying tissues. Second
order symmetric positive definite (SPD) tensors have contynbeen used to model theftlisivity profile at each
voxel with the assumption of a single coherent fiber tractvoeel. Under this assumptionflisivity in the direction
g was defined as

d@=9g'Dg (1)

whereg = (g1, 02, 03)" is the difusion weighting magnetic gradient vector abds the 2¢ order SPD tensor to be
estimated from a set of flusion weighted magnetic resonance (DW-MR) images. Thisaha@spite its simplicity
and robustness, has been shown to be incorrect in regiotaimioy intra-voxel orientational heterogeneity such as
crossing and merging of fiber bundles (Agan;j et al., 2010xat&ler et al., 2002; Descoteaux et al., 2006, 2007; Tuch
etal., 1999, 2003).

Several methods have been proposed to overcome the singlefibntation limitation of second order tensors.
In (Tuch et al., 1999), Tuch et al. proposed the use fitidion imaging with difusion weighting gradients applied
along many directions distributed almost isotropicallytbe surface of the unit sphere, a method known as high
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angular resolution diusion imaging (HARDI). In contrast to rank 2 tensors, thistmoe does not assume any a
priori knowledge about the flusivity profile. A number of approaches have been proposedrpute the ensemble-
average dfusion propagator P(r, t) of HARDI data. These methods irelgeball imaging (QBI) (Tuch, 2004),
diffusion spectrum imaging (DSI) (Wedeen et al., 2005), afidisibn orientation transform (DOTPgarslan et al.,
2006). These methods, collectively known as g-space ingaigichniques, identify multiple fibers components by
calculating the probability distribution function (PDF) e diffusion process in each voxel based on the Fourier
transform relationship between the PDF dfd$ion displacement and theftlision weighted signal attenuation in g-
space. DSI performs a discrete Fourier transform to olR&it), which requires a time intensive Cartesian sampling
in g-space and hence is impractical for routine clinical. U381 method takes measurements on a g-space ball and
approximates the radial integral of the displacement gridiba distribution function by the spherical Funk-Radon
transform. One problem with QBI is that the estimateffiugion orientation distribution function(ODF) is moduldte
by a zeroth-order Bessel function that induces spectradaning of the dfusion peaks. DOT computes PDF at a
fixed radius by expressing the Fourier transform in spheciwaerdinates and evaluating the radial part of the integral
analytically assuming signals decay can be described bgreit mono or a multi-exponential modélzarslan et al.
show that PDF values on a fixed radius can be reconstructeer efirectly or parametrically in terms of a Laplace
series and claim that their technique can be regarded aasidreation of difusivity to probability profiles whose
peaks correspond to distinct fiber orientations. When sggdatay is assumed is described by multi-exponential
model, this technique requires data acquisition over plelitoncentric spheres, a time consuming proposition.

An important limitation of g-space imaging techniques iattthey do not enforce the estimated ODF to be non-
negative; which can cause the estimated ODF to have negaiives, a situation that does not obey the underlying
principle of ditusion.

To overcome this limitation, Goh et al. proposed the use bespal harmonic representation to pose the ODF
estimation problem as a convex optimization problem andimizing the cost function with coordinate descent
method (Goh et al., 2009). While the authors claim that thesthod results to sharp filision ODFs, constrains
the estimated ODF to be non-negative, and constrains tiaagetl ODF to be proper PDF (sum up to one); it
remains to be seen how this method may be extended to mudtipteell reconstruction method such as the one
proposed in (Aganj et al., 2010). Similarly, Tournier et(@burnier et al., 2004, 2007) proposed constrained spdieric
deconvolution method to directly estimate the fiber origatedistribution (FOD) from Dffusion-Weighted MRI data
and reduced the occurrence of negative values, albeit mapletely eliminating them.

Of course, a careful distinction needs to be made betweetwihdifferent concepts of ffusion ODF and fiber
FOD functions although both have similar acronyms and aneesiones used interchangeably in DT-MRI research
community. While g-space imaging techniques model thiusion ODF, which is the radial marginal distribution
of the ditusion PDF or ensemble average propagator (EAP) which inisutme Fourier Transform of the filision
signal; the technique by Tournier et al. (Tournier et alg2®007) models FOD based on deconvolution ofugion
signal with a response function. ODF model holds true onlgmvthe signal is acquired using short gradient pulse
assumption and it does not really indicate fiber orientatiount rather the primary fiusion orientations. Moreover,
ODF is known to have broad peaks partially due to the modwnaif the Bessel function which is a concept from the
g-space formalism that establishes the Fourier relatiprisétween the diusion signal and the fiusion PDF. The
FOD on the other hand is a deconvolution dfasion signal with a response function that indicates fibiembations
and needs to make no assumptions such as the narrow gradisetip the acquisition process and neither does it
require a Fourier relationship between thidiion signal and the flusion PDF. Our method is therefore an extension
the de-convolution definition (Tournier et al., 2004) and the ODF (Tuch, 2004).

Another approach for multi-fiber reconstruction is to désethe apparent ffusion codficient (ADC) by higher
order difusion tensors (e.g.Mand é") that generalize the"d order tensors and have the ability to approximate multi-
lobed functions (Ozarslan and Mareci, 2003). Several nustiave been proposed for estimatifyatder tensors
with positive semi-definite constraints (Barmpoutis et 2009; Barmpoutis and Vemuri, 2010; Ghosh et al., 2009)
as well as for processing higher order tensor fields (YassiwdeMcGraw, 2009). This approach is attractive not only
because the rich set of processing and analysis algoritleredaped for second order tensor fields can be extended
for higher order tensors, but also the local maxima of higiider tensors can be easily computed due to their simple
polynomial form. The polynomial form of spherical functorepresented as higher order tensors gives a significant
algorithmic benefit from using the polynomial represewtadito compute the local maxima and minima compared
to the equivalent spherical harmonics basis that need iggobs 1 such as finite fierence method, spherical Newtons
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method or Powells method. With the exception of the finiteedénce method, whose accuracy is limited to the mesh
size, these methods are numerical minimization problerdslaumns care must be taken to avoid small local maxima
and to ensure convergence (Bloy and Verma, 2008; Schult&aittl, 2008; Ghosh et al., 2011). Unfortunately, the
use of higher order dusion tensors has been confined to the estimation of tens@ pgiDfiles, although the local
maxima of ADC profiles estimated using higher order tensersegally do not match the underlying fiber bundle
orientations for the intravoxel crossing fibers (Alexandeal., 2002; Von dem Hagen and Henkelman, 2002; Zhan
et al., 2004).

In this paper, we extend our previous work (Weldeselass@.eP010) where we developed the use of higher
order symmetric positive semi-definite (PSD) Cartesiasdesnito model FOD profiles and presented a novel method
for estimating the tensor field of FOD profiles from a givenafddW-MR images. In our technique the FOD is mod-
eled by Cartesian tensor basis using a parametrizatiorexmdititly enforces the positive semi-definite property to
the computed FOD functions. The computed Cartesian ter@DsKCT-FODs) are PSD tensors whoseftioents
can be éiciently estimated by solving a linear system with non-niegatonstraints. We evaluate our method qual-
itatively and quantitatively to demonstrate the supetyoof the proposed technique over several existing mulé«fib
reconstruction methods. Moreover, we use a distance neé&suhigher order tensors in order to derivéfasion
anisotropy index computed directly from CT-FODs.

There are three main contributions in this paper:

e We present a novel method for positive semi-definite CT-FGidvetion from DW-MR images. To the best of
our knowledge there is no existing FOD model in literatuia tmposes explicitly the positivity property to the
estimated FOD, which is naturally a positive-valued satafiunction.

e We present a useful application of our method for convertifgher-order dfusion tensor ADC profiles to
CT-FODs. We should emphasize that this is an essential las& the maxima of higher-order tensors do not
correspond to the underlying fiber orientations. On the rotfaend, our method computes Cartesian Tensor
FODs whose maxima can be computed analytically and comelsfaothe true dtusion orientations.

e \We derive a rotationally invariant anisotropy index witimga [0,1) defined directly on CT-FODs which con-
solidates the whole analysis pipeline offdsion imaging using solely CT-FODs.

In addition to these features of the proposed method, olinprary work (Weldeselassie et al., 2010) has also
been recently extended by Jiao et al. (Jiao et al., 2011)enner authors not only demonstrated that the proposed
CT-FOD model accurately detects crossings in white matberdi but also estimating positive semi-definite fourth
order tensor FODs can be achieved by minimizing an objedtigetion subject to linear constraints by solving a
linear programming problem that enforces non-negatiatydmputed ODFs.

2. Method

2.1. Symmetric Positive Semi-Definite Cartesian Tensdeven Orders
Any spherical functiorf (g) can be approximated dy— th order Cartesian tensor as:

3 3 3
f(g) ~ ZZ"'Zghgiz "'giLCil,izw,iL (2)

i1=11ip=1 iL=1

whereg; is thei —th component of the 3-dimensional unit vecgpiandC;, , .., are the cofficients of arL —th order
tensor.

When approximating certain spherical functions in DT-MRg are interested in tensors of even orders with full
symmetry, due to the antipodal symmetric nature of the DW-ditival acquisition. In this case of symmetry, those
tensor co#icients which correspond to the same monorgi%qggg are equal to each other (e.G2221 = C2212 =
Cz122 = C1222, Since they all correspond to the monorrgaj;g).

Notation:- The Einstein’s notation of £th order tensors as G, ..., has been commonly used in literature. But in
this notation, one needs to explicitly specify the constsadf symmetry as in the case of1 = Cp212 =Co122 =
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Ci222 above. In order to avoid such explicit specification of sytnyneonstraints, we will adopt an alternative
notation that incorporates such symmetry constraints materally. In this new notation, the cfigient of a L th
order tensor corresponding to the monomigblpk is denoted by a single term; G with i + j + k = L and the
spherical function in Eqg. 2 can more naturally be written as:

f@~ > dgdiCix ke (01..1) @3)
i+j+k=L
Using this alternative notation, the fifteen unique ficeents of fourth order PSD tensors a0, Cs10, Cso1,
C220, Co11, Co02, C130, C121, C112, C103, Coso, Coz1, Co22, Co13, andCqos. Their Corresponding terms using Einstein’s
notation areCi111, Cr112, C1113 Ci122, Cr123, Ci1133, Ci1222, Ci223 Cr233 Ci333 Co222 Co223, Co233, Cos3z, and Caass
respectively. More importantly, note the correspondehee @; j, = 4!/(i! j!k)Ci,i,....i. . ExampleCago = Cxxxx but
that Cy39 = 4Cyyyy etc.

Furthermore, if the approximated functidifg) is a positive-valued function, the Cartesian tensor sihdod
positive-definite, i.e. f(g) > 0V g € S,. Therefore Eq. 3 needs to be re-parametrized such that disisvity
property is adhered to. In order to achieve this goal, weluiséigher-order positive semi-definite tensor parametriza
tion that has been recently proposed in (Barmpoutis and ¥er@010) and theoretically justified in (Barmpoutis
et al., 2012). According to this parametrization, any negative spherical function can be approximated by a pos-
itive semi-definiteL™ order homogeneous polynomial in 3 variables expressed asiatsquares ofl(/2)" order
homogeneous polynomiaf%0;, g2, gs; U), whereu is a vector that contains the polynomial @oaents.

M
f(@) = > ;p(01, &2, 33 uj)? (@)
j=1
The parameters; in Eq. 4 are non-negative weights. This parametrizatiorr@pmates any given symmetric
positive function and the approximation accuracy dependh® ordet. and on how well the set of vectoug sample
the space of unit vectors It has been shown that by constructing a large enough setlbsampled vectoraj, we
can achieve any desired level of accuracy (Barmpoutis antl¥ie 2010; Barmpoutis et al., 2012).

2.2. Positive Semi-Definite Cartesian Tensor FOD (CT-FORYiRes
The DW-MR signal for a given magnetic gradient orientatipand gradient weighting, can be modeled using
the standard multi-fiber reconstruction framework as fedo

S(g,b) = f; w(Vv)B(v, g, b)dv (5)

where the integration is over all unit vectorsB(v, g, b) is a basis function, and/(v) is a non-negative spherical
function that can be seen as a mixiwgighting function. There have been several proposed mddelthe basis
function B() such as a Rigaut-type function (Jian et al., 2007), vonelHBisher distribution (Kumar et al., 2008)
and others. The main problem with all of these models is thairitegral in Eq. 5 cannot be computed analytically.
Therefore, one needs to approximate the space of unit wactny a discrete set of vectors, - - -, vk in which case
Eq. 5is correctly discretized (g, b) = ZL(:l Wi B(vk, g, b) if and only if there are at mo#€ underlying neural fibers
that are oriented necessarily along the vectgraAnother problem with the aforementioned discretizat®thiat the
functionw() is no more continuous over the sphere (it equalsitéor vy and it is zero everywhere else).

The main idea in this paper is to avoid the above unnaturatetigation of the space of orientations, by using a
blending functionw(), which can be appropriately decomposed so that:

1. w() is positive semi-definite, and
2. w() is continuous over the sphere.

In this work, we model such blending function as®order PSD tensor (say™ by plugging Eq. 4 into Eq. 5 as
follows

M
S(g, b) :fs Z/lj p(V1, V2, V3; U;j)?B(V, g, b)dv (6)
2 121
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wherevs, vy, vz are the three components of the unit vestor

Given a data set of DW-MR signal attenuati@®$Sy associated with magnetic gradient orientatignand difu-
sion weighting b-valué, the codficients of a_" order positive semi-definite CT-FOD can be estimated bymiizing
the following energy function with respect to the unknowiypomial-weighting cofficients;

N M
E= (S50~ D45 [ pva.vavsiu?BOv. g by ™

i=1 =1 S2

In order for the basis functioB() to reflect the signal attenuation of a single and highlgiwoted fiber response,
we require the basis function to be a Gaussian that repeeentifusion process which is highly restricted perpen-
dicular to the orientation. A common choice is the single fiber response which is desdrily the bipolar Watson
function (Cook et al., 2004)

B(v.g.b) = lim g9’ (8)

Here we should emphasize that the model in Eq. 8 agrees vétpritperties of the DW-MR signal response,
i.e. it takes maximum and minimum values foffdsion sensitizing gradient orientatiogghat are perpendicular
and parallel to the underlying fiber orientatiemespectively. Moreoves = cb wherec is a positive scalar captures
information aboub and mean dfusivity and can be adjusted by altering eitleor c. So this ‘symmetry’ can be
simplified by using onlys in Eqg. 8. In computer implementation, due to finite precistafculations, Eq. 8 can be
well approximated by setting delta to a very large constant.

In order to compute the CT-FOD, we need to solve the mininangproblem Eg. 7 fort's. This problem can
be rewritten into an equivalent linear system probBr=y wherex is an M-dimensional vector of the unknown
4j, y is an N-dimensional vector containing the given signal atterunetS/S; and B is a matrix of sizeN x M
with the elements; ; = fs p(V1, V2, v3; Uj)?B(V, gi, b)dv. This linear system is solved for the non-negativesing
the dficient non-negative feast squares (NNLS) algorithm giveflawson and Hanson, 1995). We can then easily
compute the CT-FOD cdicients by multiplying the solution vector with a mattik (i.e. Ux), where the matrixJ

is of size & x M that contains monomials formed by the vectoys Note thatL is the order of the CT-FOD and

2[0)
2L is the number of the unique ciieients in anL™-order Cartesian tensor. In the case Bf@rder CT-FODs, the

I
rﬁbl)tiplication Ux gives the 15 unique cdigcients of a positive semi-definite tensor.

An interesting property of the NNLS optimization algorithisthat it produces sparse solution vectors and the
sparsity depends on the rank of the basis matrix. In ourqdati case, although the problem seems significantly
unconstrained; the solution vector contains at most as manyzero weights as the unknown tensorfiomnts,
which corresponds to the rank of our polynomial basis maffixerefore if the finitely-generated set of polynomial
basis contains a few thousands bases, the NNLS algorithrefinitétbn will select only up to 6, 15, 28 for tensors of
order 2, 4, and 6 respectively. Moreover the number of nan-zeights in the solution vector equals to the number of
the unigue unknown parameters of the symmetric tensor imease. The sparsity of NNLS in comparison with other
optimization techniques for modeling theffdision-weighted MR signal has also been studied in (Jian amauy,
2007). Therefore the degrees of freedom of our method isl égtlae number of unknown tensor déeients and it
does not increase by the number of polynomial bsisut by the number of the unknown tensor fiméents.

We applied our proposed method for estimatiffgatder CT-FODsI( = 4), using a set oM = 321 polynomial
codficientsu; ands = 200. Regarding the parameigrwe performed several experiments usinfiestient values
6 > 100 and we obtained similar fiber orientations density psfilvhich shows that our method is not sensitive to
the selection of the value of

2.3. Computing CT-FOD from higher-order fpision Tensor

Now, we present an application of our proposed frameworlcéonputing the cocients of a CT-FOD from a
given higher-order diusion tensor and ffusion weighting b-valué, which is an essential task since the maxima of
higher-order tensors do not correspond to the underlyireg bientations. Given a higher-ordeffdsion tensor, the
codficients of the corresponding CT-FOD are computed by usingeittenique we presented in the previous section
as follows

UB lex-bGt) (9)
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where the matriceld andB are as defined in the previous sectiGnis of sizeN x (g(ﬁ! and contains only monomials

constructed fronN unit vectorsg; uniformly distributed on the unit sphere, ainid a vector of sizégz“T';))! that contains
the unique coficients of the given higher-orderfilision tensor. For example, in the case Bfa¥der tensors, the
15 unique cofficients are given in the vectoy andG is of sizeN x 15. Also notice thaB is not a square matrix
and the matrix inversB~1 corresponds to the solution provided by the NNLS algoritmah therefore is a specifically
non-negative constrained solution, in contrast to the gagpseudo-inverse solution.

3. Distance and Anisotropy measures of CT-FOD

3.1. Distance Measure

After estimating CT-FODs, it is important that we define atalice measure between pairs of CT-FODs, for
example, in order to impose smoothness across image latttoecompute anisotropy measures. Since our CT-FODs
are modeled as higher order (sdydrder) PSD tensors which are isomorphic to homogeneouspwiial functions
of same order, one way to get a distance measure between D$-€QCandC; is to define the distance as the
distance between the corresponding spherical functiggsand f;(g) as follows:

#(C.C) = 4 [ (10~ f(@)dg (10

wherefi(g) and fj(g) are defined as given in Eq. 3 and the integral is over all wetGtorsg, i.e., the unit sphers,.

Observe that this distance measure has the same mathdrfaticas the tensor distance measure defined be-
tween higher order tensors in (Barmpoultis et al., 2009) wighand fj(g) are substituted with usivity functions.
Denoting the fifteen components Gf — C; by Ay, we get

1
d%(Ci,Cj) = 315 (Aa00 + Aoao + Aooa + Azz0 + Aoz + Azgn)® +

A[(Aaoo + A220)* + (Aaoo + A202)® + (Aoso + Agz0)® +
(Aoao+ Ao22)? + (Aooa + Ao22)” + (Aooa + A2o2)] +
24(Ajo0 + Adao+ Ados) — 6(Ad0 + Adyy + Adyp) +
2(Aa00 + Moo + Aooa) + (Az11 + Aozt + Ao1a)” +
(Ar21+ Agor + A103) + (Ar12 + Azo + Ar30)” +
2[(As10+ A130) + (Asor + A103)” + (Aozy + Aora)] +

2 2 2 2 2 2
2(A310+ A301 + Afg + Aday + Aoz + Ag1a) (11)

3.2. Closest Isotropy

Given a CT-FODC, its closest isotropic CT-FOTs, is defined such that the distand€C, Ciso) is minimum
among all isotropic CT-FODs. The conditions for isotropyhe case of fourth order CT-FOD is:

Ciso = als 12)

for somed € R* and wherel® is a totally symmetric fourth order identity tensor (Moakh2008). In terms of
componentsl,® is given by

S S S

[%400 = 17040 = 1"004 =1

15500 = 15502 = 15920 = 2 13
220 = 17202 = 1022 = (13)

and all remaining components equal to zero. Using this tesual minimizing the distancd(C, Cis,) with respect to
A, we obtain (Moakher and Norris, 2006)
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A= E(C4oo + Coao+ Coog) + 1—5(C220 + Co02+ Coz2) (14)
Observe thatl is actually the mean FOD of the CT-FODwhich is the same as saying the zeroth order CT-FOD

that is closest t€.

3.3. Anisotropy Measure

We now present an anisotropy measure derived from fourtbrad-FODs. This is important in order to consol-
idate the work of dfusion tensor imaging towards CT-FODs. Similar to the dediniof fractional anisotropy (FA)
for second order tensors, we propose the use of the disthaagiveen a CT-FOD from its closest isotropy normalized
by the norm of the CT-FOD as our anisotropy index. Definingrtbem of a given CT-FOD as its2 distance from
ZERO, we see that the non-negative functidiC, Ciso)/d(C, 0) can be used to infer anisotropy index. It is easy to
see that this expression takes its minimum value of O whénisotropic. In order to find its upper bound, ittBaes
to look at the limiting, but physically impossible, case afi@n-zero difusivity in only one direction, say along the
directionv = (1,0,0)" but zero difusivities along all directions perpendicularyto In this case, all components of
C exceptCygo Will be zero and its mean FOD will b€40/5 resulting an upper bound of 8. In order to have an
anisotropy index in the range,[0), we would like to find a monotonic function that will map thterval [Q ‘g‘) to
[0,1). While several mapping functions can achieve this, in Wosk we choose a linear mapping and define our
anisotropy measure as

(15)

Al = g(d(C, Ciso))

d(C,0)
We simulated several synthetididision profiles comprising of isotropic, planar, linear anaksing fibers profiles
in order to to see the behavior of this anisotropy measurecantpare it with existing measures. Fig. 1, shows

1 1 1
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Diffusion Profile: Isotropic to Linear Diffusion Profile: Isotropic to Crossing Diffusion Profile: Planar to Crossing

Figure 1: Comparison of FA, GA and our Al adfiision profiles range from isotropic to linedef), isotropic to two perpendicular crossing fibers
(middle, and planar to two crossing fibers on the planght).

anisotropy measures as obtained by our anisotropy indeanB&yeneralized anisotropy (GA) as defined in (Ozarslan
et al., 2005). The DW signals for these simulations were gead using the realistic fflusion MR simulation model
proposed in (Bderman and@hsson, 1995). For the case of isotropic to linedfudion profile (Fig. lleft), we
started with 321 crossing fiber orientations that uniforsdynple the unit hemisphere with equaffuivities and
then gradually i6 100 time stepsrestricted the diusion in all directions but along one fiber orientation. listh
configuration, while both FA and our anisotropy measuresvsimonotonically increasing values as we move from
isotropic to linear difusion, GA however shows little changes at both isotropic amdotropic regions with larger
changes in the intermediate regions. As a result while therast of GA is concentrated in the gray matter, the contrast
in both FA and our anisotropy measures is more or less uniédratl regions. Similarly, for the case of isotropic to
two crossing fibers (Fig. iniddle), we started with the same 321 fiber orientations with eqiflislvities and then
gradually restricted dliusion in all directions but two perpendicular fiber orieitias. The important observation in
this case is the fact that both GA and our anisotropy measueerige to larger values for crossing fibers while FA
does not, which highlights the limitation of second orderster model in crossing fibers regions. Finally in the case
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of planar to two crossing fibers (Fig.right), we started with 16 crossing fiber orientations on a plaaétample a
circle uniformly and then restrictedftlision in all but two perpendicular directions on the plane eApected not only
does FA gave rise to more or less uniform values in this cordigpn, but surprisingly both GA and our anisotropy
measures did so too, albeit with higher values. In other sjogden though both fourth order tensor ADC and FOD
models are able to model two crossing fibers, they do notngjsish as such between only two or more than two
crossing fibers. This is of course the limitation 8fdrder tensor model when there are more than two crossingfiber
From tractography point of view, where anisotropy indexsedifor seeding and stopping criteria, however unlike FA
both GA and our anisotropy measure will be good indicatoggre$ence of fibrous structures because they show high
anisotropy value in such regions (close to 0.7).

4. Experimental Results

In this section, we present experimental results of the@sed method applied to simulated as well as real DW-
MR image from a human brain dataset.

I II l/ // // // AL e il o —
§3 &7 69 69 o® o o® o° o0 o0 oo
PP P PR oo

(a) Noise free. Top to bottom: schematic diagram of orientatid\DC profiles and FOD
profiles.

I II l/ // // // AL e o e —
& 1 (9 6 & o o od 09 90 00
SLPPLPOP P oo oo =

(b) Rician noise, std. dev0.02. Top to bottom: schematic diagram of orientations, ADC
profiles and FOD profiles.

Figure 2: Alignment of maxima of estimated ADC and CT-FOD profiléth underlying fiber orientations.

4.1. Synthetic Dataset

In order to highlight the accuracy with which the maxima diraated CT-FOD profiles coincide with the actual
underlying fiber orientations, we first present qualitatiesults for the case of a synthetic dataset comprising of two
crossing fiber bundles modeled as fourth order CT-FODs asrsi Fig. 2. Included is also the results of ADC
profiles modeled as fourth order tensors in order to highligh performance of CT-FODs over ADC tensors of same
order. In this experiment, we start with two fiber bundlesssing at 90 degrees and then rotate one of the fiber
orientations gradually until it aligns with the second fibeientation resulting to a single fiber. The DW-MR signals
for this simulated experiment were generated by simuldtiedVR signals using the realisticfilision MR simulation
model in ($derman anddhsson, 1995) with—value= 1500s/mn¥ and 81 gradient directions. Fig. 2(a) shows the
result for a noise free case and Fig. 2(b) shows the resultgsnatdl when a Rician noise with std. dev.0.02 is
added to the simulated DW-MR signals. It is evident from ¢hessults that not only do CT-FOD profiles model the
underlying structure better but also have better noise inityu

Next, we present quantitative results by presenting th&atlem angles of the maxima of estimated CT-FODs with
respect to the actual underlying fiber orientations. We icienghe case of two crossing fibers whose orientations are
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Table of errors (deg.)
noise st. dev=0.08
Method | Mean | St. dev.

QBlI 9.125 | +4.545

.
o
T

©
T

o f DOT 6.645 | +3.720
MOVMF | 5.624 | +3.514
ar ] MOW 5.010 | +2.955

CT-FOD | 4.793 | +2.873

Estimated CT-ODFs fiber orientation error (deg.)

o 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Standard deviation of Riccian noise in data

Figure 3: Deviation angle between actual fiber orientatiand maxima of estimated CT-FODs using a simulated 2-fiber crpsiata with
orientations (cos 20 sin20, 0) and (cos 100 sin 100, 0) at diferent levels of Rician noise.

(cos 20, sin20, 0) and (cos 10Q sin 100, 0) and the DW-MR signals are generated as described aboweedén

to compare our results with spherical deconvolution tespes, we also include the results obtained using MOW (Jian
etal., 2007), QBI (Tuch, 2004), DODgarslan et al., 2006) and MOVMF (Kumar et al., 2008) mettidsomputing

the maxima of either the PDF or FOD profiles of the correspagdiethods. Six distinct Rician noise levels were
added to the simulated data and for each noise level the imxgreis were repeated 100 times. Fig. 3 shows a plot
of the means and standard deviations of deviation anglegecket the actual fiber orientations and the maxima of
estimated CT-FODs. For the particular noise level with skel. = 0.08 the deviation angles for all the methods are
reported in the adjacent table. Also notice that in this expent the deviation angle of the computed orientations
is compared to its closest actual fiber orientation becauserossing fibers are weighted equally in generating the
MR signals. The results demonstrate the superiority of topgsed method over QBI, DOT, MOVMF and MOW
methods.

(a) Generalized anisotropy. (b) 4M-order CT-FOD.

Figure 4: Generalized anisotropy arfi-érder CT-FOD for fibercup phantom data. Crossing of fibezmtstions is clearly depicted as expected.

4.2. Phantom Dataset

Here, we present our results for the publicly available HARBantom dataset whose ground truth fibers are
known and was used in the MICCAI 2009 Fiber Cup contest (Powgical., 2008). The dataset consisted of 64
diffusion weighted images and o8g volume acquired in two dierent spatial resolutionsx3x3mn?# and &6x6mmn?
and three dferent b-values: 650,1500 and 263Ms2. We used thex@x3mn? resolution dataset with a b-value of
650¢mm2. Fig. 4(a) shows generalized anisotropy while Fig. 4{i®s a zoomed in visualization of fourth order CT-



s FODs computed for the box shown in red. Clearly the fourtteo@T-FOD correctly depicts the fiber organization
of crossings as well as single fiber orientations.
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Figure 5: &-order CT-FOD and ADC tensor fields computed from human bréde sind their corresponding anisotropy measures.

289

20 4.3. Real Dataset

201 Next, we present CT-FODs computed from a real dataset ¢oms@f a human brain dataset. The dataset consists
22 0f 63 continuous slices of 2..mthickness with a field of view (FOV) of 25& 256nmn? and pixel size of 2

2 2mnt. 10 images were collected withoutidision weighting i ~ 0s/mn¥) which were averaged during the CT-FOD
204 reconstruction for a single avera§eimage and 99 diusion weighted images are acquired in 99 gradient diregtion
»s Each of these image sets useffetient difusion gradients with approximatevalues of 3006/mn?. Fig. 5 shows

26 fourth order CT-FODs computed using our method along wighgtoposed anisotropy index. Included is also fourth
27 order difusion tensors and generalized anisotropy images. As caerlied in the anisotropy images; the branching,
28 bending and crossing of tracts are better depicted by theuated CT-FODs as compared to théfasion tensors.

20 Moreover unlike generalized anisotropy map which revdaswhite matter region with higher contrast but fails to
a0 distinguish the gray matter from the background, the pregamisotropy map reveals both white matter and gray
1 Mmatter regions more clearly, albeit with less contrast.
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Based on our preliminary CT-FOD results (Weldeselassig. €2@10) and in conjunction with their techniques,
Jiao et al. (Jiao et al., 2011) have already shown that theogerl CT-FOD model improves tractography results and
accurately detects fiber crossings, splits and kisses. hengiotential fiber tracking algorithm that may be used in
conjunction with CT-FOD is the spin glass based frameworktiangle fiber crossing (Cointepas et al., 2002).

4.4. Tissue discrimination with GA and Al

Finally, we present a quantitative comparison of the amgytindex derived from CT-FOD with generalized
anisotropy in discriminating €fierent tissue classes in a brain image. For the task of dis@ating between two
tissue classes, a measure dffwlion anisotropyA, can be evaluated using a detectability index Alexandet.et a

(2000),
d:<A1>—<A2> (16)
2 2

o0,

where € A; >, o-f) and & Ay >, ag) are the means and variances of the anisotropy values fomihdissue
classes. The anisotropy measure with the greatest deitégtatalex should be close to optimum for the specified
task. In order to compare GA and Al in discriminating tisslgsses, we calculated the detectability indices of
these anisotropy measures for the dataset described iorsdc3 above. The brain was parcellated using a publicly
available while matter parcellation map (JHNI_SSWMPM _Typel) downloaded from Johns Hopkins Medical
Institute Laboratory of Brain Anatomical MRI. The GA and Alaps of our dataset were registered to the white
matter parcellation map using FA map that was came with theeflation map and was already registered to it. An
affine registration was performed using théiBoMap software downloaded from the same source. Figurew8ssho
the publicly available FA map with five regions of interesgisented. Our tissue detectability results for the regions
of interest are presented in Table 1 where the valudsbbwn in bold face indicate that the anisotropy index given o
that row performs best in discriminating tissue classesercbrresponding column. We observe that our anisotropy
index generally performs better in detectingfeliences among tissues presented.

Figure 6: Single slice of FA map from JHMNI_SS DTl dataset with corresponding regions of interest setgderusing
JHU_MNI _SSWMPM _Typel white matter parcellation map: GE&Corpus Callosum, IG Internal Capsule, TH Thalamus, HG= Hippocampus,
and PT= Putamen

Table 1: Tissue detectability using GA and Al
Al\ | CCvs | CCvs | CCvs | CCvs | ICvs IC vs ICvs | THvs | THvs | HCvs
ROI IC TH HC PT TH HC PT HC PT PT
GA | 0.6931| 0.7361| 0.5330| 0.7686| 0.4210 | 0.2045 | 0.5422| 0.3897 | 0.3575| 0.5578
Al | 0.8080 | 1.4826 | 0.7314 | 0.9621 | 0.0938| 0.1794| 0.5861 | 0.0662| 0.4429 | 0.6329
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5. Conclusions

We presented a novel technique to estimate FODs modelediakiBS order tensors from DW-MR images. The
performance of the proposed method is compared againgasexésting FOD measures on a synthetic dataset with
different noise levels and outperformed the other methods. ¥dedeimonstrated the use of our method on a real
DT-MR image obtained from a human brain dataset. Our reslderly demonstrate the superiority with which the
organizational structure of an underlyingfdsion process is neatly modeled with CT-FODs as comparedjbteh
order difusion tensors and the fact that crossing, merging and begrafiibers are correctly depicted with CT-
FODs. By deriving anisotropy map directly from CT-FOD pre$) we have attempted to consolidate the analysis of
diffusion imaging towards the use of solely CT-FODs. Future vilnckudes processing of fliision images such as
segmentation and registration tasks with the proposed @D-fields.
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