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Abstract

A novel method for estimating a field of fiber orientation distribution (FOD) based on signal de-convolution from a
given set of diffusion weighted magnetic resonance (DW-MR) images is presented. We model the FOD by higher
order Cartesian tensor basis using a parametrization that explicitly enforces the positive semi-definite property to the
computed FOD. The computed Cartesian tensors, dubbed Cartesian Tensor-FOD (CT-FOD), are symmetric positive
semi-definite tensors whose coefficients can be efficiently estimated by solving a linear system with non-negative
constraints. Next, we show how to use our method for converting higher-order diffusion tensors to CT-FODs, which
is an essential task since the maxima of higher-order tensors do not correspond to the underlying fiber orientations.
Finally, we propose a diffusion anisotropy index computed directly from CT-FODs using higher order tensor distance
measures thus consolidating the whole analysis pipeline ofdiffusion imaging solely using CT-FODs. We evaluate
our method qualitatively and quantitatively using simulated DW-MR images, phantom images, and human brain real
dataset. The results conclusively demonstrate the superiority of the proposed technique over several existing multi-
fiber reconstruction methods.

Keywords: diffusion tensor imaging, higher order tensors, fiber orientation distribution functions, anisotropy
measures

1. Introduction1

Diffusion tensor magnetic resonance imaging (DT-MRI) is a non-invasive imaging technique that measures the2

self-diffusion of water molecules in the body, thus capturing the microstructure of the underlying tissues. Second3

order symmetric positive definite (SPD) tensors have commonly been used to model the diffusivity profile at each4

voxel with the assumption of a single coherent fiber tract pervoxel. Under this assumption diffusivity in the direction5

g was defined as6

d(g) = gTD g (1)

whereg = (g1,g2,g3)T is the diffusion weighting magnetic gradient vector andD is the 2nd order SPD tensor to be7

estimated from a set of diffusion weighted magnetic resonance (DW-MR) images. This model, despite its simplicity8

and robustness, has been shown to be incorrect in regions containing intra-voxel orientational heterogeneity such as9

crossing and merging of fiber bundles (Aganj et al., 2010; Alexander et al., 2002; Descoteaux et al., 2006, 2007; Tuch10

et al., 1999, 2003).11

Several methods have been proposed to overcome the single fiber orientation limitation of second order tensors.12

In (Tuch et al., 1999), Tuch et al. proposed the use of diffusion imaging with diffusion weighting gradients applied13

along many directions distributed almost isotropically onthe surface of the unit sphere, a method known as high14
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angular resolution diffusion imaging (HARDI). In contrast to rank 2 tensors, this method does not assume any a15

priori knowledge about the diffusivity profile. A number of approaches have been proposed tocompute the ensemble-16

average diffusion propagator P(r, t) of HARDI data. These methods include q-ball imaging (QBI) (Tuch, 2004),17

diffusion spectrum imaging (DSI) (Wedeen et al., 2005), and diffusion orientation transform (DOT) (Özarslan et al.,18

2006). These methods, collectively known as q-space imaging techniques, identify multiple fibers components by19

calculating the probability distribution function (PDF) of the diffusion process in each voxel based on the Fourier20

transform relationship between the PDF of diffusion displacement and the diffusion weighted signal attenuation in q-21

space. DSI performs a discrete Fourier transform to obtainP(r, t), which requires a time intensive Cartesian sampling22

in q-space and hence is impractical for routine clinical use. QBI method takes measurements on a q-space ball and23

approximates the radial integral of the displacement probability distribution function by the spherical Funk-Radon24

transform. One problem with QBI is that the estimated diffusion orientation distribution function(ODF) is modulated25

by a zeroth-order Bessel function that induces spectral broadening of the diffusion peaks. DOT computes PDF at a26

fixed radius by expressing the Fourier transform in spherical coordinates and evaluating the radial part of the integral27

analytically assuming signals decay can be described by either a mono or a multi-exponential model.Özarslan et al.28

show that PDF values on a fixed radius can be reconstructed either directly or parametrically in terms of a Laplace29

series and claim that their technique can be regarded as a transformation of diffusivity to probability profiles whose30

peaks correspond to distinct fiber orientations. When signals decay is assumed is described by multi-exponential31

model, this technique requires data acquisition over multiple concentric spheres, a time consuming proposition.32

An important limitation of q-space imaging techniques is that they do not enforce the estimated ODF to be non-33

negative; which can cause the estimated ODF to have negativevalues, a situation that does not obey the underlying34

principle of diffusion.35

To overcome this limitation, Goh et al. proposed the use of spherical harmonic representation to pose the ODF36

estimation problem as a convex optimization problem and minimizing the cost function with coordinate descent37

method (Goh et al., 2009). While the authors claim that their method results to sharp diffusion ODFs, constrains38

the estimated ODF to be non-negative, and constrains the estimated ODF to be proper PDF (sum up to one); it39

remains to be seen how this method may be extended to multipleq-shell reconstruction method such as the one40

proposed in (Aganj et al., 2010). Similarly, Tournier et al.(Tournier et al., 2004, 2007) proposed constrained spherical41

deconvolution method to directly estimate the fiber orientation distribution (FOD) from Diffusion-Weighted MRI data42

and reduced the occurrence of negative values, albeit not completely eliminating them.43

Of course, a careful distinction needs to be made between thetwo different concepts of diffusion ODF and fiber44

FOD functions although both have similar acronyms and are sometimes used interchangeably in DT-MRI research45

community. While q-space imaging techniques model the diffusion ODF, which is the radial marginal distribution46

of the diffusion PDF or ensemble average propagator (EAP) which in turnis the Fourier Transform of the diffusion47

signal; the technique by Tournier et al. (Tournier et al., 2004, 2007) models FOD based on deconvolution of a diffusion48

signal with a response function. ODF model holds true only when the signal is acquired using short gradient pulse49

assumption and it does not really indicate fiber orientations but rather the primary diffusion orientations. Moreover,50

ODF is known to have broad peaks partially due to the modulation of the Bessel function which is a concept from the51

q-space formalism that establishes the Fourier relationship between the diffusion signal and the diffusion PDF. The52

FOD on the other hand is a deconvolution of diffusion signal with a response function that indicates fiber orientations53

and needs to make no assumptions such as the narrow gradient pulse in the acquisition process and neither does it54

require a Fourier relationship between the diffusion signal and the diffusion PDF. Our method is therefore an extension55

the de-convolution definition (Tournier et al., 2004) and not the ODF (Tuch, 2004).56

Another approach for multi-fiber reconstruction is to describe the apparent diffusion coefficient (ADC) by higher57

order diffusion tensors (e.g. 4th and 6th) that generalize the 2nd order tensors and have the ability to approximate multi-58

lobed functions (Ozarslan and Mareci, 2003). Several methods have been proposed for estimating 4th order tensors59

with positive semi-definite constraints (Barmpoutis et al., 2009; Barmpoutis and Vemuri, 2010; Ghosh et al., 2009)60

as well as for processing higher order tensor fields (Yassineand McGraw, 2009). This approach is attractive not only61

because the rich set of processing and analysis algorithms developed for second order tensor fields can be extended62

for higher order tensors, but also the local maxima of higherorder tensors can be easily computed due to their simple63

polynomial form. The polynomial form of spherical functions represented as higher order tensors gives a significant64

algorithmic benefit from using the polynomial representations to compute the local maxima and minima compared65

to the equivalent spherical harmonics basis that need techniques such as finite difference method, spherical Newtons66
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method or Powells method. With the exception of the finite difference method, whose accuracy is limited to the mesh67

size, these methods are numerical minimization problems and thus care must be taken to avoid small local maxima68

and to ensure convergence (Bloy and Verma, 2008; Schultz andSeidel, 2008; Ghosh et al., 2011). Unfortunately, the69

use of higher order diffusion tensors has been confined to the estimation of tensor ADC profiles, although the local70

maxima of ADC profiles estimated using higher order tensors generally do not match the underlying fiber bundle71

orientations for the intravoxel crossing fibers (Alexanderet al., 2002; Von dem Hagen and Henkelman, 2002; Zhan72

et al., 2004).73

In this paper, we extend our previous work (Weldeselassie etal., 2010) where we developed the use of higher74

order symmetric positive semi-definite (PSD) Cartesian tensors to model FOD profiles and presented a novel method75

for estimating the tensor field of FOD profiles from a given setof DW-MR images. In our technique the FOD is mod-76

eled by Cartesian tensor basis using a parametrization thatexplicitly enforces the positive semi-definite property to77

the computed FOD functions. The computed Cartesian tensor FODs (CT-FODs) are PSD tensors whose coefficients78

can be efficiently estimated by solving a linear system with non-negative constraints. We evaluate our method qual-79

itatively and quantitatively to demonstrate the superiority of the proposed technique over several existing multi-fiber80

reconstruction methods. Moreover, we use a distance measure for higher order tensors in order to derive diffusion81

anisotropy index computed directly from CT-FODs.82

There are three main contributions in this paper:83

• We present a novel method for positive semi-definite CT-FOD estimation from DW-MR images. To the best of84

our knowledge there is no existing FOD model in literature that imposes explicitly the positivity property to the85

estimated FOD, which is naturally a positive-valued spherical function.86

• We present a useful application of our method for convertinghigher-order diffusion tensor ADC profiles to87

CT-FODs. We should emphasize that this is an essential task since the maxima of higher-order tensors do not88

correspond to the underlying fiber orientations. On the other hand, our method computes Cartesian Tensor89

FODs whose maxima can be computed analytically and correspond to the true diffusion orientations.90

• We derive a rotationally invariant anisotropy index with range [0,1) defined directly on CT-FODs which con-91

solidates the whole analysis pipeline of diffusion imaging using solely CT-FODs.92

In addition to these features of the proposed method, our preliminary work (Weldeselassie et al., 2010) has also93

been recently extended by Jiao et al. (Jiao et al., 2011) where the authors not only demonstrated that the proposed94

CT-FOD model accurately detects crossings in white matter fibers but also estimating positive semi-definite fourth95

order tensor FODs can be achieved by minimizing an objectivefunction subject to linear constraints by solving a96

linear programming problem that enforces non-negativity to computed ODFs.97

2. Method98

2.1. Symmetric Positive Semi-Definite Cartesian Tensors ofEven Orders99

Any spherical functionf (g) can be approximated byL − th order Cartesian tensor as:100

f (g) ≈
3
∑

i1=1

3
∑

i2=1

· · ·

3
∑

iL=1

gi1gi2 · · · giL Ci1,i2,···,iL (2)

wheregi is thei − th component of the 3-dimensional unit vectorg, andCi1,i2,···,iL are the coefficients of anL− th order101

tensor.102

When approximating certain spherical functions in DT-MRI, we are interested in tensors of even orders with full103

symmetry, due to the antipodal symmetric nature of the DW-MRsignal acquisition. In this case of symmetry, those104

tensor coefficients which correspond to the same monomialga
1gb

2gc
3 are equal to each other (e.g.C2,2,2,1 = C2,2,1,2 =105

C2,1,2,2 = C1,2,2,2, since they all correspond to the monomialg1g3
2).106

107

Notation:- The Einstein’s notation of L− th order tensors as Ci1,i2,···,iL has been commonly used in literature. But in108

this notation, one needs to explicitly specify the constraints of symmetry as in the case of C2,2,2,1 = C2,2,1,2 = C2,1,2,2 =109
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C1,2,2,2 above. In order to avoid such explicit specification of symmetry constraints, we will adopt an alternative110

notation that incorporates such symmetry constraints morenaturally. In this new notation, the coefficient of a L− th111

order tensor corresponding to the monomial gi
1g j

2gk
3 is denoted by a single term Ci, j,k with i + j + k = L and the112

spherical function in Eq. 2 can more naturally be written as:113

f (g) ≈
∑

i+ j+k=L

gi
1g j

2gk
3Ci, j,k i, j, k ∈ {0,1, ..., L} (3)

Using this alternative notation, the fifteen unique coefficients of fourth order PSD tensors areC400, C310, C301,114

C220, C211, C202, C130, C121, C112, C103, C040, C031, C022, C013, andC004. Their corresponding terms using Einstein’s115

notation areC1111, C1112, C1113, C1122, C1123, C1133, C1222, C1223, C1233, C1333, C2222, C2223, C2233, C2333, andC3333116

respectively. More importantly, note the correspondence that Ci, j,k = 4!/(i! j!k!)Ci1,i2,···,iL . ExampleC400 = Cxxxx but117

that C130 = 4Cxyyy etc.118

119

Furthermore, if the approximated functionf (g) is a positive-valued function, the Cartesian tensor should be120

positive-definite, i.e. f (g) > 0 ∀ g ∈ S2. Therefore Eq. 3 needs to be re-parametrized such that this positivity121

property is adhered to. In order to achieve this goal, we use the higher-order positive semi-definite tensor parametriza-122

tion that has been recently proposed in (Barmpoutis and Vemuri, 2010) and theoretically justified in (Barmpoutis123

et al., 2012). According to this parametrization, any non-negative spherical function can be approximated by a pos-124

itive semi-definiteLth order homogeneous polynomial in 3 variables expressed as a sum of squares of (L/2)th order125

homogeneous polynomialsp(g1,g2,g3; u), whereu is a vector that contains the polynomial coefficients.126

f (g) =
M
∑

j=1

λ j p(g1,g2,g3; u j)
2 (4)

The parametersλ j in Eq. 4 are non-negative weights. This parametrization approximates any given symmetric127

positive function and the approximation accuracy depends on the orderL and on how well the set of vectorsu j sample128

the space of unit vectorsu. It has been shown that by constructing a large enough set of well sampled vectorsu j , we129

can achieve any desired level of accuracy (Barmpoutis and Vemuri, 2010; Barmpoutis et al., 2012).130

2.2. Positive Semi-Definite Cartesian Tensor FOD (CT-FOD) Profiles131

The DW-MR signal for a given magnetic gradient orientationg and gradient weightingb, can be modeled using132

the standard multi-fiber reconstruction framework as follows133

S(g,b) =
∫

S2

w(v)B(v, g,b)dv (5)

where the integration is over all unit vectorsv, B(v, g,b) is a basis function, andw(v) is a non-negative spherical134

function that can be seen as a mixing/weighting function. There have been several proposed models for the basis135

function B() such as a Rigaut-type function (Jian et al., 2007), von Mises-Fisher distribution (Kumar et al., 2008)136

and others. The main problem with all of these models is that the integral in Eq. 5 cannot be computed analytically.137

Therefore, one needs to approximate the space of unit vectors v by a discrete set of vectorsv1, · · · , vK in which case138

Eq. 5 is correctly discretized byS(g,b) =
∑K

k=1 wkB(vk, g,b) if and only if there are at mostK underlying neural fibers139

that are oriented necessarily along the vectorsvk. Another problem with the aforementioned discretization is that the140

functionw() is no more continuous over the sphere (it equals towk for vk and it is zero everywhere else).141

The main idea in this paper is to avoid the above unnatural discretization of the space of orientations, by using a142

blending functionw(), which can be appropriately decomposed so that:143

1. w() is positive semi-definite, and144

2. w() is continuous over the sphere.145

In this work, we model such blending function as aLth order PSD tensor (say 4th) by plugging Eq. 4 into Eq. 5 as146

follows147

S(g,b) =
∫

S2

M
∑

j=1

λ j p(v1, v2, v3; u j)
2B(v, g,b)dv (6)
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wherev1, v2, v3 are the three components of the unit vectorv.148

Given a data set of DW-MR signal attenuationsSi/S0 associated with magnetic gradient orientationsgi and diffu-149

sion weighting b-valueb, the coefficients of aLth order positive semi-definite CT-FOD can be estimated by minimizing150

the following energy function with respect to the unknown polynomial-weighting coefficientsλ j151

E =
N
∑

i=1

(

Si/S0 −

M
∑

j=1

λ j

∫

S2

p(v1, v2, v3; u j)
2B(v, gi ,b)dv

)2
(7)

In order for the basis functionB() to reflect the signal attenuation of a single and highly oriented fiber response,152

we require the basis function to be a Gaussian that represents the diffusion process which is highly restricted perpen-153

dicular to the orientationv. A common choice is the single fiber response which is described by the bipolar Watson154

function (Cook et al., 2004)155

B(v, g,b) = lim
δ→+∞

e−δ(v
T g)2

(8)

Here we should emphasize that the model in Eq. 8 agrees with the properties of the DW-MR signal response,156

i.e. it takes maximum and minimum values for diffusion sensitizing gradient orientationsg that are perpendicular157

and parallel to the underlying fiber orientationv respectively. Moreover,δ = cb wherec is a positive scalar captures158

information aboutb and mean diffusivity and can be adjusted by altering eitherb or c. So this ‘symmetry’ can be159

simplified by using onlyδ in Eq. 8. In computer implementation, due to finite precisioncalculations, Eq. 8 can be160

well approximated by setting delta to a very large constant.161

In order to compute the CT-FOD, we need to solve the minimization problem Eq. 7 forλ′j s. This problem can162

be rewritten into an equivalent linear system problemBx = y wherex is an M-dimensional vector of the unknown163

λ j , y is an N-dimensional vector containing the given signal attenuations S/Si and B is a matrix of sizeN × M164

with the elementsBi, j =
∫

S2
p(v1, v2, v3; u j)2B(v, gi ,b)dv. This linear system is solved for the non-negativex using165

the efficient non-negative least squares (NNLS) algorithm given in(Lawson and Hanson, 1995). We can then easily166

compute the CT-FOD coefficients by multiplying the solution vector with a matrixU, (i.e. Ux), where the matrixU167

is of size (2+L)!
2(L!) × M that contains monomials formed by the vectorsu j . Note thatL is the order of the CT-FOD and168

(2+L)!
2(L!) is the number of the unique coefficients in anLth-order Cartesian tensor. In the case of 4th-order CT-FODs, the169

multiplicationUx gives the 15 unique coefficients of a positive semi-definite tensor.170

An interesting property of the NNLS optimization algorithmis that it produces sparse solution vectors and the171

sparsity depends on the rank of the basis matrix. In our particular case, although the problem seems significantly172

unconstrained; the solution vector contains at most as manynon-zero weights as the unknown tensor coefficients,173

which corresponds to the rank of our polynomial basis matrix. Therefore if the finitely-generated set of polynomial174

basis contains a few thousands bases, the NNLS algorithm by definition will select only up to 6, 15, 28 for tensors of175

order 2, 4, and 6 respectively. Moreover the number of non-zero weights in the solution vector equals to the number of176

the unique unknown parameters of the symmetric tensor in each case. The sparsity of NNLS in comparison with other177

optimization techniques for modeling the diffusion-weighted MR signal has also been studied in (Jian and Vemuri,178

2007). Therefore the degrees of freedom of our method is equal to the number of unknown tensor coefficients and it179

does not increase by the number of polynomial basisM but by the number of the unknown tensor coefficients.180

We applied our proposed method for estimating 4th-order CT-FODs (L = 4), using a set ofM = 321 polynomial181

coefficientsu j andδ = 200. Regarding the parameterδ, we performed several experiments using different values182

δ > 100 and we obtained similar fiber orientations density profiles, which shows that our method is not sensitive to183

the selection of the value ofδ.184

2.3. Computing CT-FOD from higher-order Diffusion Tensor185

Now, we present an application of our proposed framework forcomputing the coefficients of a CT-FOD from a186

given higher-order diffusion tensor and diffusion weighting b-valueb, which is an essential task since the maxima of187

higher-order tensors do not correspond to the underlying fiber orientations. Given a higher-order diffusion tensor, the188

coefficients of the corresponding CT-FOD are computed by using thetechnique we presented in the previous section189

as follows190

UB−1exp(−bGt) (9)
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where the matricesU andB are as defined in the previous section,G is of sizeN× (2+L)!
2(L!) and contains only monomials191

constructed fromN unit vectorsgi uniformly distributed on the unit sphere, andt is a vector of size(2+L)!
2(L!) that contains192

the unique coefficients of the given higher-order diffusion tensor. For example, in the case of 4th-order tensors, the193

15 unique coefficients are given in the vectort, andG is of sizeN × 15. Also notice thatB is not a square matrix194

and the matrix inverseB−1 corresponds to the solution provided by the NNLS algorithm and therefore is a specifically195

non-negative constrained solution, in contrast to the general pseudo-inverse solution.196

3. Distance and Anisotropy measures of CT-FOD197

3.1. Distance Measure198

After estimating CT-FODs, it is important that we define a distance measure between pairs of CT-FODs, for199

example, in order to impose smoothness across image latticeor to compute anisotropy measures. Since our CT-FODs200

are modeled as higher order (say 4th order) PSD tensors which are isomorphic to homogeneous polynomial functions201

of same order, one way to get a distance measure between CT-FODs Ci andC j is to define the distance as theL2202

distance between the corresponding spherical functionsfi(g) and f j(g) as follows:203

d2(Ci ,C j) =
1
4π

∫

S2

( fi(g) − f j(g))2dg (10)

where fi(g) and f j(g) are defined as given in Eq. 3 and the integral is over all unit vectorsg, i.e., the unit sphereS2.204

Observe that this distance measure has the same mathematical form as the tensor distance measure defined be-205

tween higher order tensors in (Barmpoutis et al., 2009) whenfi(g) and f j(g) are substituted with diffusivity functions.206

Denoting the fifteen components ofCi −C j by ∆xyz, we get207

d2(Ci ,C j) =
1

315

[

(∆400+ ∆040+ ∆004+ ∆220+ ∆022+ ∆202)
2 +

4[(∆400+ ∆220)
2 + (∆400+ ∆202)

2 + (∆040+ ∆220)
2 +

(∆040+ ∆022)
2 + (∆004+ ∆022)

2 + (∆004+ ∆202)
2] +

24(∆2
400+ ∆

2
040+ ∆

2
004) − 6(∆2

220+ ∆
2
022+ ∆

2
202) +

2(∆400+ ∆040+ ∆004)
2 + (∆211+ ∆031+ ∆013)

2 +

(∆121+ ∆301+ ∆103)
2 + (∆112+ ∆310+ ∆130)

2 +

2[(∆310+ ∆130)
2 + (∆301+ ∆103)

2 + (∆031+ ∆013)
2] +

2(∆2
310+ ∆

2
301+ ∆

2
130+ ∆

2
031+ ∆

2
103+ ∆

2
013)
]

(11)

3.2. Closest Isotropy208

Given a CT-FODC, its closest isotropic CT-FODCiso is defined such that the distanced(C,Ciso) is minimum209

among all isotropic CT-FODs. The conditions for isotropy inthe case of fourth order CT-FOD is:210

Ciso = λ̄ Is (12)

for someλ̄ ∈ R
+ and whereIs is a totally symmetric fourth order identity tensor (Moakher, 2008). In terms of211

components,Is is given by212

Is
400 = Is

040 = Is
004 = 1

Is
220 = Is

202 = Is
022 = 2 (13)

and all remaining components equal to zero. Using this result and minimizing the distanced(C,Ciso) with respect to213

λ̄, we obtain (Moakher and Norris, 2006)214
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λ̄ =
1
5

(C400+ C040+ C004) +
1
15

(C220+ C202+ C022) (14)

Observe that̄λ is actually the mean FOD of the CT-FODC which is the same as saying the zeroth order CT-FOD215

that is closest toC.216

3.3. Anisotropy Measure217

We now present an anisotropy measure derived from fourth order CT-FODs. This is important in order to consol-218

idate the work of diffusion tensor imaging towards CT-FODs. Similar to the definition of fractional anisotropy (FA)219

for second order tensors, we propose the use of the distance of a given a CT-FOD from its closest isotropy normalized220

by the norm of the CT-FOD as our anisotropy index. Defining thenorm of a given CT-FOD as itsL2 distance from221

ZERO, we see that the non-negative functiond(C,Ciso)/d(C, 0) can be used to infer anisotropy index. It is easy to222

see that this expression takes its minimum value of 0 whenC is isotropic. In order to find its upper bound, it suffices223

to look at the limiting, but physically impossible, case of anon-zero diffusivity in only one direction, say along the224

directionv = (1,0,0)T but zero diffusivities along all directions perpendicular tov. In this case, all components of225

C exceptC400 will be zero and its mean FOD will beC400/5 resulting an upper bound of 4/5. In order to have an226

anisotropy index in the range [0,1), we would like to find a monotonic function that will map theinterval [0, 4
5) to227

[0,1). While several mapping functions can achieve this, in thiswork we choose a linear mapping and define our228

anisotropy measure as229

AI =
5
4

(d(C,Ciso)
d(C, 0)

)

(15)

We simulated several synthetic diffusion profiles comprising of isotropic, planar, linear and crossing fibers profiles230

in order to to see the behavior of this anisotropy measure andcompare it with existing measures. Fig. 1, shows
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Diffusion Profile: Planar to Crossing
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Figure 1: Comparison of FA, GA and our AI as diffusion profiles range from isotropic to linear (left), isotropic to two perpendicular crossing fibers
(middle), and planar to two crossing fibers on the plane (right).

231

anisotropy measures as obtained by our anisotropy index, FAand generalized anisotropy (GA) as defined in (Ozarslan232

et al., 2005). The DW signals for these simulations were generated using the realistic diffusion MR simulation model233

proposed in (S̈oderman and J̈onsson, 1995). For the case of isotropic to linear diffusion profile (Fig. 1left), we234

started with 321 crossing fiber orientations that uniformlysample the unit hemisphere with equal diffusivities and235

then gradually (in 100 time steps) restricted the diffusion in all directions but along one fiber orientation. In this236

configuration, while both FA and our anisotropy measures show monotonically increasing values as we move from237

isotropic to linear diffusion, GA however shows little changes at both isotropic andanisotropic regions with larger238

changes in the intermediate regions. As a result while the contrast of GA is concentrated in the gray matter, the contrast239

in both FA and our anisotropy measures is more or less uniformat all regions. Similarly, for the case of isotropic to240

two crossing fibers (Fig. 1middle), we started with the same 321 fiber orientations with equal diffusivities and then241

gradually restricted diffusion in all directions but two perpendicular fiber orientations. The important observation in242

this case is the fact that both GA and our anisotropy measure give rise to larger values for crossing fibers while FA243

does not, which highlights the limitation of second order tensor model in crossing fibers regions. Finally in the case244
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of planar to two crossing fibers (Fig. 1right), we started with 16 crossing fiber orientations on a plane that sample a245

circle uniformly and then restricted diffusion in all but two perpendicular directions on the plane. As expected not only246

does FA gave rise to more or less uniform values in this configuration, but surprisingly both GA and our anisotropy247

measures did so too, albeit with higher values. In other words, even though both fourth order tensor ADC and FOD248

models are able to model two crossing fibers, they do not distinguish as such between only two or more than two249

crossing fibers. This is of course the limitation of 4th order tensor model when there are more than two crossing fibers.250

From tractography point of view, where anisotropy index is used for seeding and stopping criteria, however unlike FA251

both GA and our anisotropy measure will be good indicators ofpresence of fibrous structures because they show high252

anisotropy value in such regions (close to 0.7).253

4. Experimental Results254

In this section, we present experimental results of the proposed method applied to simulated as well as real DW-255

MR image from a human brain dataset.

(a) Noise free. Top to bottom: schematic diagram of orientations, ADC profiles and FOD
profiles.

(b) Rician noise, std. dev.=0.02. Top to bottom: schematic diagram of orientations, ADC
profiles and FOD profiles.

Figure 2: Alignment of maxima of estimated ADC and CT-FOD profileswith underlying fiber orientations.

256

4.1. Synthetic Dataset257

In order to highlight the accuracy with which the maxima of estimated CT-FOD profiles coincide with the actual258

underlying fiber orientations, we first present qualitativeresults for the case of a synthetic dataset comprising of two259

crossing fiber bundles modeled as fourth order CT-FODs as shown in Fig. 2. Included is also the results of ADC260

profiles modeled as fourth order tensors in order to highlight the performance of CT-FODs over ADC tensors of same261

order. In this experiment, we start with two fiber bundles crossing at 90◦ degrees and then rotate one of the fiber262

orientations gradually until it aligns with the second fiberorientation resulting to a single fiber. The DW-MR signals263

for this simulated experiment were generated by simulatingthe MR signals using the realistic diffusion MR simulation264

model in (S̈oderman and J̈onsson, 1995) withb−value= 1500s/mm2 and 81 gradient directions. Fig. 2(a) shows the265

result for a noise free case and Fig. 2(b) shows the results obtained when a Rician noise with std. dev.= 0.02 is266

added to the simulated DW-MR signals. It is evident from these results that not only do CT-FOD profiles model the267

underlying structure better but also have better noise immunity.268

Next, we present quantitative results by presenting the deviation angles of the maxima of estimated CT-FODs with269

respect to the actual underlying fiber orientations. We consider the case of two crossing fibers whose orientations are270
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Table of errors (deg.)
noise st. dev.= 0.08

Method Mean St. dev.
QBI 9.125 ±4.545
DOT 6.645 ±3.720

MOVMF 5.624 ±3.514
MOW 5.010 ±2.955

CT-FOD 4.793 ±2.873

Figure 3: Deviation angle between actual fiber orientationsand maxima of estimated CT-FODs using a simulated 2-fiber crossing data with
orientations (cos 20◦, sin 20◦, 0) and (cos 100◦, sin 100◦, 0) at different levels of Rician noise.

(cos 20◦, sin 20◦, 0) and (cos 100◦, sin 100◦, 0) and the DW-MR signals are generated as described above. Inorder271

to compare our results with spherical deconvolution techniques, we also include the results obtained using MOW (Jian272

et al., 2007), QBI (Tuch, 2004), DOT (Özarslan et al., 2006) and MOVMF (Kumar et al., 2008) methodsby computing273

the maxima of either the PDF or FOD profiles of the corresponding methods. Six distinct Rician noise levels were274

added to the simulated data and for each noise level the experiments were repeated 100 times. Fig. 3 shows a plot275

of the means and standard deviations of deviation angles between the actual fiber orientations and the maxima of276

estimated CT-FODs. For the particular noise level with std.dev. = 0.08 the deviation angles for all the methods are277

reported in the adjacent table. Also notice that in this experiment the deviation angle of the computed orientations278

is compared to its closest actual fiber orientation because the crossing fibers are weighted equally in generating the279

MR signals. The results demonstrate the superiority of the proposed method over QBI, DOT, MOVMF and MOW280

methods.

(a) Generalized anisotropy. (b) 4th-order CT-FOD.

Figure 4: Generalized anisotropy and 4th-order CT-FOD for fibercup phantom data. Crossing of fiber orientations is clearly depicted as expected.

281

4.2. Phantom Dataset282

Here, we present our results for the publicly available HARDI phantom dataset whose ground truth fibers are283

known and was used in the MICCAI 2009 Fiber Cup contest (Poupon et al., 2008). The dataset consisted of 64284

diffusion weighted images and oneSo volume acquired in two different spatial resolutions: 3x3x3mm3 and 6x6x6mm3
285

and three different b-values: 650,1500 and 2650 s/mm2. We used the 3x3x3mm3 resolution dataset with a b-value of286

650s/mm2. Fig. 4(a) shows generalized anisotropy while Fig. 4(b)gives a zoomed in visualization of fourth order CT-287
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FODs computed for the box shown in red. Clearly the fourth order CT-FOD correctly depicts the fiber organization288

of crossings as well as single fiber orientations.

(a) Proposed anisotropy (b) 4th-order CT-FOD

(c) GA (d) 4th-order ADC

Figure 5: 4th-order CT-FOD and ADC tensor fields computed from human brain slice and their corresponding anisotropy measures.

289

4.3. Real Dataset290

Next, we present CT-FODs computed from a real dataset consisting of a human brain dataset. The dataset consists291

of 63 continuous slices of 2.0mm thickness with a field of view (FOV) of 256× 256mm2 and pixel size of 2×292

2mm2. 10 images were collected without diffusion weighting (b ∼ 0s/mm2) which were averaged during the CT-FOD293

reconstruction for a single averageS oimage and 99 diffusion weighted images are acquired in 99 gradient directions.294

Each of these image sets used different diffusion gradients with approximateb values of 3000s/mm2. Fig. 5 shows295

fourth order CT-FODs computed using our method along with the proposed anisotropy index. Included is also fourth296

order diffusion tensors and generalized anisotropy images. As can be verified in the anisotropy images; the branching,297

bending and crossing of tracts are better depicted by the computed CT-FODs as compared to the diffusion tensors.298

Moreover unlike generalized anisotropy map which reveals the white matter region with higher contrast but fails to299

distinguish the gray matter from the background, the proposed anisotropy map reveals both white matter and gray300

matter regions more clearly, albeit with less contrast.301
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Based on our preliminary CT-FOD results (Weldeselassie et al., 2010) and in conjunction with their techniques,302

Jiao et al. (Jiao et al., 2011) have already shown that the proposed CT-FOD model improves tractography results and303

accurately detects fiber crossings, splits and kisses. Another potential fiber tracking algorithm that may be used in304

conjunction with CT-FOD is the spin glass based framework tountangle fiber crossing (Cointepas et al., 2002).305

4.4. Tissue discrimination with GA and AI306

Finally, we present a quantitative comparison of the anisotropy index derived from CT-FOD with generalized307

anisotropy in discriminating different tissue classes in a brain image. For the task of discriminating between two308

tissue classes, a measure of diffusion anisotropy,A, can be evaluated using a detectability index Alexander et al.309

(2000),310

d =
< A1 > − < A2 >
√

σ2
1 − σ

2
2

(16)

where (< A1 >, σ2
1) and (< A2 >, σ2

2) are the means and variances of the anisotropy values for thetwo tissue311

classes. The anisotropy measure with the greatest detectability index should be close to optimum for the specified312

task. In order to compare GA and AI in discriminating tissue classes, we calculated the detectability indices of313

these anisotropy measures for the dataset described in section 4.3 above. The brain was parcellated using a publicly314

available while matter parcellation map (JHUMNI SSWMPM TypeI) downloaded from Johns Hopkins Medical315

Institute Laboratory of Brain Anatomical MRI. The GA and AI maps of our dataset were registered to the white316

matter parcellation map using FA map that was came with the parcellation map and was already registered to it. An317

affine registration was performed using the DiffeoMap software downloaded from the same source. Figure 6 shows318

the publicly available FA map with five regions of interest segmented. Our tissue detectability results for the regions319

of interest are presented in Table 1 where the values ofd shown in bold face indicate that the anisotropy index given on320

that row performs best in discriminating tissue classes on the corresponding column. We observe that our anisotropy321

index generally performs better in detecting differences among tissues presented.

Figure 6: Single slice of FA map from JHUMNI SS DTI dataset with corresponding regions of interest segmented using
JHU MNI SS WMPM TypeI white matter parcellation map: CC=Corpus Callosum, IC= Internal Capsule, TH= Thalamus, HC=Hippocampus,
and PT= Putamen

Table 1: Tissue detectability using GA and AI

AI\ CC vs CC vs CC vs CC vs IC vs IC vs IC vs TH vs TH vs HC vs
ROI IC TH HC PT TH HC PT HC PT PT
GA 0.6931 0.7361 0.5330 0.7686 0.4210 0.2045 0.5422 0.3897 0.3575 0.5578
AI 0.8080 1.4826 0.7314 0.9621 0.0938 0.1794 0.5861 0.0662 0.4429 0.6329

322
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5. Conclusions323

We presented a novel technique to estimate FODs modeled as PSD high order tensors from DW-MR images. The324

performance of the proposed method is compared against several existing FOD measures on a synthetic dataset with325

different noise levels and outperformed the other methods. We also demonstrated the use of our method on a real326

DT-MR image obtained from a human brain dataset. Our resultsclearly demonstrate the superiority with which the327

organizational structure of an underlying diffusion process is neatly modeled with CT-FODs as compared to higher328

order diffusion tensors and the fact that crossing, merging and bending of fibers are correctly depicted with CT-329

FODs. By deriving anisotropy map directly from CT-FOD profiles, we have attempted to consolidate the analysis of330

diffusion imaging towards the use of solely CT-FODs. Future workincludes processing of diffusion images such as331

segmentation and registration tasks with the proposed CT-FOD fields.332
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