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Abstract. In this paper we present a novel method for estimating a
field of asymmetric spherical functions, dubbed tractosemas, given the
intra-voxel displacement probability information. The peaks of tractose-
mas correspond to directions of distinct fibers, which can have either
symmetric or asymmetric local fiber structure. This is in contrast to the
existing methods that estimate fiber orientation distributions which are
naturally symmetric and therefore cannot model asymmetries such as
splaying fibers. We propose a method for extracting tractosemas from a
given field of displacement probability iso-surfaces via a diffusion process.
The diffusion is performed by minimizing a kernel convolution integral,
which leads to an update formula expressed in the convenient form of a
discrete kernel convolution. The kernel expresses the probability of dif-
fusion between two neighboring spherical functions and we model it by
the product of Gaussian and von Mises distributions. The model is vali-
dated via experiments on synthetic and real diffusion-weighted magnetic
resonance (DW-MRI) datasets from a rat hippocampus and spinal cord.

1 Introduction

The estimation of neuronal fiber orientations from diffusion-weighted MR im-
ages (DW-MRI) and the reconstruction of complex structures such as splaying
and decussating fibers are problems whose solutions contribute toward achieving
tractography in regions of the brain such as the optic chiasm, the hippocampus,
the brain stem and others.

The local orientation of a single fiber bundle can be estimated easily from
diffusion tensor images (DTI). In DTI datasets, a 2nd-order tensor has been
commonly employed to approximate the local diffusivity [1]. However, it is known
that 2nd-order tensors fail to approximate more complex fiber structures such
as crossings, splaying and kissing structures [2].
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More than one distinct fiber tract structure within a voxel can be estimated by
employing more sophisticated models for reconstruction of the diffusion-weighted
MR signal. Some of the models that have been proposed in literature include
discrete [3] and continuous [4] mixture of Gaussians, higher-order tensors [5], and
the spherical harmonic transformation [6]. After reconstruction of the signal, one
has to compute its Fourier transform in order to obtain the displacement prob-
ability whose peaks correspond to distinct fiber orientations. The displacement
probability profiles can also be computed by transforming the diffusivity profiles
using the diffusion orientation transform (DOT) [7]. Multiple fiber orientations
can also be estimated by reconstructing the orientation distribution function
(ODF) [8] using the so called Q-ball imaging [9]. Most of the above techniques
([1,3,8,4]) can be expressed as a special case of a more generalized method in
which the DW-MR signal can be expressed as the convolution over the sphere
of a fiber bundle response function with the ODF [10,11]. In this spherical de-
convolution approach there is no limitation regarding the number of the distinct
fiber populations in the estimated ODF.

The result produced by all the above models is in the form of a spherical
function representing either an ODF or an iso-surface of the displacement prob-
ability profile. In both cases the estimated spherical function characterizes the
intra-voxel fiber structure without taking into consideration any inter-voxel in-
formation. As a result, the computed function is always anti-podally symmetric
and therefore it can only model either single fiber tracts or symmetric crossings
of multiple fiber tracts. However, it is well known that neural fiber tracts can also
form asymmetric local structures such as in sprouting fibers [2]. To date there

are no existing methods in literature for estimating locally asymmetric fiber ori-

entation functions and one has to resort to an existing fiber tracking procedure
that can accommodate for multiple fibers at a voxel [12,13,2], in order to infer
the presence of a sprouting or anti-symmetric crossing structures.

In this paper we present a novel method for estimating an intra-voxel asym-
metric spherical function that can model complex local fiber structures using
inter-voxel information. The peaks of the estimated spherical function corre-
spond to directions that point to distinct local fiber tracts and are appropriately
dubbed tractosemas. Tractosema is a pointer/sign used here for neural tracts
and has its roots in the Greek word sēma (sign). In our work here, we extract a
field of tractosemas from a given field of ODFs or displacement probabilities by
following asymmetric and orientation depended diffusion of spherical functions.
The kernel that controls the diffusion process between two elements (in our case
spherical functions) is defined as a function over the spatial location (ℜ3) and
the domain (S2 unit sphere) of the two elements, which leads us to the space
(ℜ3 × S2) × (ℜ3 × S2). We construct the diffusion kernel as a tensor product of
the von Mises and Gaussian probability distributions and by using it we derive
an update formula for the field of tractosemas which is expressed in the form of
a discrete kernel convolution.

The main contribution of this paper is that the tractosemas can depict com-
plex asymmetric fiber structures without the need for fiber tracking. To the best
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of our knowledge, it is the first method that estimates a field of asymmetric
spherical functions for modeling splaying fibers and other asymmetric as well as
symmetric structures. Furthermore, the estimated field of tractosemas can be
used as input by any existing fiber tracking algorithm for finding fiber junctions
and branches without the need for multiple seeds (a common requirement in
many existing methods [12,14,15,2]). Finally, the experimental results demon-
strate the robustness and accuracy of our model in estimating fiber orientations
in the presence of varying amount of noise as demonstrated via simulation ex-
periments with realistic MR data synthesis [16].

2 Estimation of Tractosemas from DW-MRI

In this section we present our method on extracting tractosemas from a given
field of displacement probability iso-surfaces.

2.1 Displacement Probability Estimation

The water molecule displacement probability is given by the Fourier integral

P (r0r) =

∫
S(q)

S0
e−2πiqT

rr0dq (1)

where q is the reciprocal space vector, S(q) is the DW-MRI signal value asso-
ciated with vector q, S0 the zero gradient signal and r and r0 is the direction
and magnitude respectively of the displacement vector [17]. There are several
existing methods for computing P (r0r) in which we either first reconstruct the
signal S(q) and then evaluate Eq. 1 [4], or we directly estimate the displacement
probability from given diffusion-weighted MR data [7,18]. Also, one may obtain
an alternative representation called the fiber orientation distribution (from the
Q-Ball images) from which one can find the optimal fiber orientations [13,19].

In order to estimate the orientations of the underlying distinct fiber bundles
a spherical function p(r) is extracted from the volume of P (r0r) by either fixing
r0 [7] or by integrating over r0 [3]. Then the orientations that correspond to the
maxima of p(r) are estimated and are used either for neural fiber tracking or
further analysis [20,13,21].

S(q) is naturally modeled by an anti-podally symmetric function and there-
fore its Fourier transform exhibits antipodal symmetry as well. As a result the
estimated probability iso-surface p(r) in a single voxel can not model asymmetric
local neural structures such as splaying fibers. Using inter-voxel information it
is possible to estimate tractosemas – which are spherical functions that are not
necessarily symmetric – by diffusing a field of probability iso-surfaces. The peaks
of tractosemas point to directions of distinct fiber tracts and we can extract them
by employing the method presented in the following section.

2.2 Extracting Tractosemas by Diffusing Probability ISO-Surfaces

After having estimated the displacement probability px(r) ∀x ∈ ℜ3, where x is
the lattice index, we use the obtained spherical function field in the following
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diffusion process. In this process the spherical functions are updated iteratively
by diffusing the displacement probability field. In general, diffusion can be seen
as a smoothing process which can be performed by minimizing a smoothness
measure. In our case, we minimize the following function with respect to px(r).

E(px(r)) =

∫
ℜ3

∫
S2

K(x,y, r,v)dist(px(r), py(v))dvdy (2)

Eq. 2 is expressed in the form of a kernel integration, where dist(.) can be any
norm or “edge-stopping ”function [22], the kernel K(.) is a function of x,y, r,v,
and the integration is over all vectors y and unit vectors v. In our particular
application, the kernel is a probability function expressing the probability of dif-
fusion between the elements px(r) and py(v). The kernel we seek should exhibit
the following properties: a) the probability of diffusion between locations x and
y decreases with their distance, b) the probability of diffusion between orienta-
tions r and v decreases with the angle between them, and c) the probability of
diffusion is larger at the locations along the maxima of px(r). These properties
are satisfied by single peaked distributions. One such function used here is,

K(x,y, r,v) = Kdist(‖ y−x ‖)Korient(r ·v)Kfiber(r · (y − x)/ ‖ y − x ‖)). (3)

The first property mentioned above is imposed by defining Kdist using a mul-
tivariate Gaussian distribution.

Kdist(‖ y − x ‖) =
1

(2πσ)3/2
e−

‖y−x‖2

2σ3 (4)

The most natural way to impose the last two properties is to employ the single
peaked von Mises distribution for both Korient and Kfiber, given by,

Korient(cos(φ)) = Kfiber(cos(φ)) =
κeκcos(φ)

4πsinh(κ)
(5)

where φ is the angle between r and v, and the angle between r and (y − x) in
Korient and Kfiber respectively. The distribution parameters σ and κ in Eq. 4
and 5 respectively control the sharpness of the kernel.

Having a discrete lattice of probabilities px(r) the integral over ℜ3 in Eq. 2
becomes summation over the lattice. Furthermore, since the Gaussian part of
the kernel takes its largest values in the region around its center (at location x),
we can define a set N(x) that contains the lattice indices in the neighborhood
of x. Furthermore, we discretize the space of unit vectors by using a 4th order
subdivision of the icosahedral tessellation of the unit sphere. By using the above
discretization, Eq. 2 can be written in the following form

E(px(r)) =
∑

y∈N(x)

∑
v∈S

K(x,y, r,v)dist(px(r), py(v)) (6)

By setting for simplicity dist(a, b) = (a − b)2 and taking the derivative of
Eq. 6 with respect to px(r) and setting it equal to zero, we derive the following
update formula for the field of spherical functions (tractosemas)

p′
x
(r) =

∑
y∈N(x)

∑
v∈S

K(x,y, r,v)py(v) (7)
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Fig. 1. Synthetic data example: a) Simulated data, b) The field of computed tractose-
mas, c) Tractosemas in ROI under varying noise, d) Plot of fiber orientation errors

Eq. 7 is expressed in the form of a discrete kernel convolution and it is applied
iteratively to all indices x and vectors r on the discretized S2. This method
produces very efficient implementations since only kernel multiplications are in-
volved in the evaluation of Eq. 7, which is a fully parallelizable process. Further-
more, only few iterations (2 to 3) are required to observe visually the diffused
asymmetric tractosemas. Finally, choosing a different dist (e.g. L1 norm), would
lead to more anisotropic solutions, something we are currently investigating.

3 Experimental Results

In the experiments presented in this section, we tested the performance of our
method using simulated diffusion-weighted MR signal and real HARDI data sets
from an isolated rat hippocampus and an excised rat spinal cord.

For the validation of tractosemas we synthesized a dataset representing splay-
ing fiber bundles, whose orientations were taken to be tangent to two ellipsoids
centered at the two lower corners of the image. The data set was of size 16×16×16
and was generated by simulating the diffusion-weighted MR signal using the re-
alistic simulation model in [16] (b-value=1250s/mm2, 81 gradient directions).
After that, we estimated the displacement probability field (Fig. 1a) from the
simulated signal by using the method in [18] (one can also use any other method).

The above obtained field of probability functions was then input to our pro-
posed method for extracting tractosemas (σ = 1, κ = 10, 3 iterations). Fig. 1b
shows the field of tractosemas computed by our technique. By observing the
figure, we can see that our method estimated correctly single fiber distributions
in the lower part of the image and splaying fibers in the central region of the
field, which demonstrates the effectiveness of our technique. Note the smooth
transition from single fiber to splaying structure in the ROI, and the expected
anti-aliasing effect observed in the voxels close to the splaying fibers.

Furthermore, to quantitatively test the performance of our method in estimat-
ing fiber orientations we added varying amounts of Riccian noise (SNR between
20:1 and 3.3:1) to the data. We applied our method to these noise corrupted
data sets and then computed the estimated fiber orientation errors. Figure 1d
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Fig. 2. Real hippocampal data. Left: The data set shown in 3D (top) and the region
of interest shown enlarged (bottom). The rest of the plates depict the displacement
probability profiles (bottom) and the orientations corresponding to their maxima shown
as tubes (top) obtained by using: a) DTI, b) fourth order tensors, and c) Tractosemas.

depicts a plot of the mean and the standard deviation of the angle error between
computed and ground truth orientations (in degrees). These results validate the
accuracy of our model and demonstrate its robustness to noise.

The proposed method was also applied to a real DW-MRI from an isolated
rat hippocampus (Fig. 2 left). The dataset consists of 22 images acquired using
a pulsed gradient spin echo pulse sequence with TR=1.5 s, TE= 28.3 ms, G=
415 mT/m, δ= 2.4 ms, ∆= 17.8 ms, Tδ= 17 ms and b ≃ 1250s/mm2.

Figure 2 shows a region of interest (ROI) in the hippocampus containing
mixture of CA3 stratum pyramidale, stratum lucidum and part of the hilus.
The rest of the images in this figure show a comparison of the estimated local
fiber structures using a) Diffusion tensors (order-2 DTs), b) fourth order tensors,
and c) tractosemas. In the DT field we can observe two dominant orientations
one pointing to the upper left and the other to the upper right corner of the
ROI, however, the structure at the junction is lost. The junction was recov-
ered using the fourth order tensors however, they depict the two aforementioned
fiber orientations as symmetric structures. The complicated junction structure is
correctly captured in the estimated field of tractosemas with asymmetric struc-
tures that depict splaying fibers. Fig. 3 depicts fiber tracks estimated from the
hippocampal data set by following the peaks of tractosemas. The capability of
tractosemas in capturing various structures is demonstrated on the left of this
figure.

Finally, we extracted tractosemas from 2 control and 3 injured rat’s spinal
cord datasets (21 diffusion-weighted images, b ≃ 1125s/mm2). Fig. 4 shows
the Cornu Posterius region in one of the control (left) and one of the injured
(center) spinal cords. A variety of different fiber structures are shown (single
bundles, crossings, branchings). In order to compare the estimated structures
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Fig. 3. The field of tractosemas estimated from the hippocampal data set. Left: Three
zoomed voxels depicting the variability in the estimated structures. Right: The fiber
sprouting with the estimated tractosemas superimposed.

Fig. 4. Tractosemas extracted from a control (left) and an injured (center) rat’s spinal
cord dataset. Right: comparison of the number of peaks in the estimated tractosemas.

we plotted the average percentage of tractosemas with 1,2,3... peaks found in
all control and injured sets. As it was expected, we observe a decrease in the
number of peaks in the injured cords due to loss in connectivity as a result of
the injury.

4 Discussion

The key difference between the proposed tractosemas and the fiber orientation
distributions is that the first one is asymmetric, while the latter is symmetric.
The peaks of tractosema correspond to directions that if we follow we will find
the body of a distinct fiber bundle. This capability of tractosemas is due to the
intervoxel information taken into consideration during the spherical function
diffusion process. Finally, tractosemas are less sensitive to noise in the DW-MRI
data than the displacement probability or the fiber orientation distribution. This
property is evident since large amount of noise is removed by minimizing the
proposed regularization term.
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