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Abstract. Registration of Diffusion-Weighted MR Images (DW-MRI)
can be achieved by registering the corresponding 2nd-order Diffusion
Tensor Images (DTI). However, it has been shown that higher-order dif-
fusion tensors (e.g. order-4) outperform the traditional DTI in approxi-
mating complex fiber structures such as fiber crossings. In this paper we
present a novel method for unbiased group-wise non-rigid registration
and atlas construction of 4th-order diffusion tensor fields. To the best
of our knowledge there is no other existing method to achieve this task.
First we define a metric on the space of positive-valued functions based on
the Riemannian metric of real positive numbers (denoted by R

+). Then,
we use this metric in a novel functional minimization method for non-
rigid 4th-order tensor field registration. We define a cost function that
accounts for the 4th-order tensor re-orientation during the registration
process and has analytic derivatives with respect to the transformation
parameters. Finally, the tensor field atlas is computed as the minimizer
of the variance defined using the Riemannian metric. We quantitatively
compare the proposed method with other techniques that register scalar-
valued or diffusion tensor (rank-2) representations of the DWMRI.

1 Introduction

Group-wise image registration is a challenging task in medical imaging which
is related to the problem of computing an atlas, i.e. the image of the average
subject from a set of co-registered subjects. There are two prevalent approaches
for atlas construction. The first one is based on group-wise alignment of 3D
shapes [1, 2], while the second one is uses alignment of 3D image intensity maps.

In this paper we focus on the second category, and therefore we review only
techniques that are based on intensity map registration. Joshi et al. [3] proposed a
method for group-wise image registration and simultaneous atlas construction.
In this method the atlas is formed by minimizing the distance between the
displacement fields that warp the images and therefore it is not biased toward a
specific subject data. The estimated atlas does not belong to the set of registered
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subjects unlike the method presented in [4], which perform pair-wise registration
of all the subjects and select the least biased target as the atlas.

The aforementioned methods perform scalar-valued image registration. It has
been shown, however, that registration of diffusion tensor-valued images (DTI)
produces more accurate alignments of fibrous tissues [5]. In this approach the
tensors should be re-oriented appropriately after the warping of the DTI images
in order to preserve the micro-structural geometry in the subjects. One way to
avoid the tensor re-orientation is to register rotation invariant quantities or other
highly structured features extracted from DTI [6]. A DTI similarity measure that
uses the full information in the tensors and performs their re-orientation using
locally affine transformations was employed in [7]. Furthermore, two methods
for diffeomorphic non-rigid DTI registration were proposed in [8] and [9] both
of which use analytic derivatives of the reorientation term in the corresponding
energy functions.

All the above techniques perform pair-wise DTI registration. Multi-subject
registration for DTI atlas construction was proposed in [10] by extending the
scalar-image framework in [3]. Another group-wise DTI registration technique
which unfolds the manifold described by the Geodesic-Loxodromes metric on
diffusion tensors and produces vector-valued images that are being warped in
order to estimate the DTI atlas was recently proposed in [11].

Although the methods for DTI registration and atlas construction yield richer
representations than the corresponding scalar-image based techniques, they fail
in regions of fiber crossings and other complex tissue geometries since 2nd-order
tensors cannot account for multiple peaks in the diffusivity function. This prob-
lem can be resolved by using 4th−order tensor fields and registering them using
the recently proposed method in [12]. In their work, it was shown that the align-
ment of 4th − order tensor fields produces more accurate results compared to
those obtained by DTI registration. This technique performs tensor comparison
using Hellinger’s distance, which is however defined between probabilities. Since
diffusion tensors are not probabilities, Hellinger’s distance is not a suitable mea-
sure, unless we perform tensor normalizations which are unnatural and we avoid
in this paper. Furthermore, the method in [12] performs pair-wise tensor field
registration and hence cannot be directly employed for group-wise registration
or statistical atlas construction.

In this paper we present a novel method for unbiased 4th-order tensor field
atlas construction. Our method (significantly) generalizes the unbiased diffeo-
morphic scalar image atlas construction framework in [3] to the case of symmet-
ric positive definite higher-order tensors. The atlas is computed simultaneously
with the non-rigid deformation fields using a functional minimization procedure.
We define a novel cost function using the Riemannian metric on positive valued
functions which is a generalization of the Riemannian metric on R

+. This met-
ric appropriately handles the positive nature of the symmetric positive-definite
high-order tensors and their re-orientation is performed analytically using the
Gram-Schmidt orthogonalization process of the local Jacobian matrices. The



method is validated using synthetic and real DW-MRI data from isolated hu-
man hippocampi.

The key contributions of this work are: To the best of our knowledge, this is
the first report in literature for higher-order tensor field atlas construction. Our
method outperforms the existing methods that register derived scalar images
or 2nd-order tensor fields from DWMRI, both of which fail to accurately warp
datasets with complex local tissue structures such as fiber crossings. Further-
more, we employ a novel metric based on the Riemannian geometry of positive-
valued spherical functions and we show that it produces more accurate results
compared to the standard Euclidean metric. Finally, our cost function has an-
alytic derivatives with respect to the unknown transformation parameters that
lead to an efficient and easily scalable implementation of our framework.

2 Riemannian Metric for Positive-Valued Real Functions

Assume a, b ∈ R
+, i.e. are elements of the space of positive real numbers. The

Logarithmic map at location a is given by Loga(x) = log(x/a) and corresponds
to the local tangent vector toward x. Its inverse function is the Exponential map,
which is given by Expa(t) = exp(t)a and projects the tangent t ∈ R back to the
space R

+. The corresponding Riemannian distance between a and b ∈ R
+ is

given by the length of the tangent
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which satisfies scale invariance, i.e. dist(sa, sb) = dist(a, b) ∀a, b, s ∈ R
+, addi-

tionally to the properties of distance measures.
The Riemannian metric in R

+ can also be used to define distances between
positive-valued functions fa(x) and fb(x) x ∈ Ω as follows: dist2(fa, fb) =
∫

Ω
dist2(fa(x), fb(x))dx. In the particular case of parametric spherical functions

d(g;D1) and d(g;D2), where g ∈ S2 and D1 and D2 are the corresponding
parameter vectors, the distance is given by
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dg. (2)

Note that the integral in Eq. 2 is over S2, i.e. the space of unit vectors g.
This distance function is invariant with respect to 3D rotations and scale, i.e.
dist(sR ◦ D1, sR ◦ D2) = dist(D1,D2) ∀s ∈ R+ and R ∈ SO3.

Similarly, the distance between ordered n-tuples whose elements are positive
real numbers can be defined using the Riemannian metric in R

+. In this case
the distance between A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} ai, bi ∈ R

+

is given by dist2(A, B) =
∑N

i=1 dist2(ai, bi). This can also be seen as a discrete
approximation of Eq. 2 by taking ai = d(gi;D1) and bi = d(gi;D2), where gi is
a predefined set of vectors in S2.

In the next section we will employ the above distance measure in order to
achieve simultaneous group-wise registration and atlas construction of fields of
spherical functions modeled using Cartesian tensor bases of order 4.



3 Groupwise Registration of 4th-Order Tensor Fields

Cartesian tensor bases of various orders have been used for approximating phys-
ical quantities computed from DW-MRI datasets. 4th-order tensors d(g;D) =
∑

i,j,k,l Di,j,k,lgigjgkgl have been employed to approximate the diffusivity func-
tion in generalized diffusion tensor images [13], and the kurtosis component of
the diffusion in diffusion kurtosis images [14].

In the case of 4th-order generalized diffusion tensors, the diffusivity is a
positive-valued function and can be computed using the parametrization in [15].
This produces fields of positive-valued spherical functions whose processing can
be achieved using the Riemannian metric presented in Sec. 2.

The problem of group-wise registration of N tensor-fields and simultaneous
atlas estimation can be formulated as a functional minimization problem. By
using Eq. 2 the energy function to be minimized is given by

E(φn,Dµ) =

N
∑

n=1

∫

Ω

∫

S2

(

log
d(g;Dn ◦ φn)

d(g;Dµ)

)2

dgdx +

N
∑

n=1

∫

Ω

cost(φn)dx (3)

where Dµ is the 4th-order tensor coefficients of the estimated atlas, φn is the
estimated deformation to be applied to the nth tensor field, and cost() is a cost
function that adds smoothing constraints to the estimated deformations.

Note that the tensor coefficients are dependent on the local rotation of the
coordinate system [12]. Hence, given a deformation φn the transformed spherical
function field at location x can be computed as

d(g;Dn ◦ φn) =
∑

i,j,k,l

Di,j,k,l
n (x ◦ φn)(Rxg)i(Rxg)j(Rxg)k(Rxg)l (4)

where Rx is the rotation of deformation φn at location x, and the notation
(Rxg)i represents the ith component of the rotated vector g.

The deformation can be parametrized as a time varying vector field such
that ∂φn(x, t)/∂t = vn(x, t), t ∈ [0, 1], where vn(x, t) is the velocity field at time
t. In this formulation the estimated deformation is given by φn = φn(x, 1) =
∫ 1

0 vn(x, t)dt. Furthermore, the cost() function in Eq. 3 can be defined as
∫ 1

0 ‖
Lvn(x, t) ‖2 dt, where L is a differential operator on the velocity fields [3].

We will minimize the energy function (Eq. 3) by evolving the deformation
fields φn using a greedy iterative scheme which approximates the solution to the
above minimization problem, similar to the technique in [3]. For this purpose we
will construct a field of forces by computing the first order variation of the first
term in Eq. 3 with respect to the transformation parameters as follows

Fn = −2

∫

S2

log

(

d(g;Dn ◦ φn)

d(g;Dµ)

)

[∇trans + ∇rot]log(d(g;Dn ◦ φn))dg (5)

where the variation ∇trans is related with the local translation (i.e. variation of
Di,j,k,l

n (x◦φn) in Eq. 4) and ∇rot is related with the local rotation (i.e. variation



of (Rxg)i(Rxg)j(Rxg)k(Rxg)l in Eq. 4). The computation of these terms is
discussed in Sec. 3.1.

After the estimation of the fields of forces Fn, n = 1 . . .N we compute the
update vector fields vn =

∫

Ω
K(x)Fn(x)dx, where K is a kernel applied to the

field of forces. In our experiments we employed the kernel K(x) = η(x)G(x),
where G is a Gaussian kernel centered at x and η is a smooth function that takes
zero value at the boundaries and therefore imposes zero boundary conditions on
the kernel K as was done in [8]. Note that the integration of K with Fn is
a convolution that becomes multiplication in the frequency domain, hence it
can be efficiently computed using the discrete Fourier transform [16]. Then, the
deformation fields are updated as φnew

n = φold
n (x + εvn) using a small step ε.

Finally, the tensor coefficients of the atlas can be updated by also minimizing
the first term in Eq. 3 with respect to the parameters of a positive definite 4th-
order tensor using the parametrization in [15].

3.1 Implementation Details

In general, the integral over the sphere in Eq. 5 cannot be computed analytically
when the Cartesian tensor parametrization is used for modeling the diffusivity
function. On the other hand the Riemannian space of ordered n-tuples (see Sec.
2) leads to analytic calculations and therefore we used it in our implementation.
We constructed an m-tuple space by using a set of unit vectors gm m = 1 . . .M
uniformly distributed on the sphere. This set of vectors can be constructed by
tessellating the icosahedron and then projecting the vectors on the unit hemi-
sphere (we consider only a hemisphere due to antipodal symmetry of diffusivity
functions). We use this set of vectors in order to evaluate the spherical functions
In,m = log(d(gm;Dn ◦φn)), m = 1 . . .M and n = 1 . . .N . This creates N vector
valued images In, whose vectors contain the M elements of the m-tuples. Note
that in this m-tuple space the integrals over the sphere in Eqs. 3 and 5 become
summations over m.

The above discretization helps us also in reducing the time complexity of
atlas computation, which can now be efficiently computed by

dµ(gm) = exp(
1

N

N
∑

n=1

log(d(gm;Dn ◦ φn))) (6)

where dµ(gm) is also in the form of a vector valued image, whose vectors contain
M elements. Note that log(d(gm;Dn◦φn)) is an already computed image (In,m),
and therefore there is no need to re-deform the images and re-compute the log
maps. The corresponding driving forces in Eq. 5 are now computed as follows

Fn = −2

M
∑

m=1

Lm,n(x)∇In,m +
∑

|y−x|=1

Lm,n(y)
∇Rygm

d(gm;Dn(y ◦ φn))

d(gm;Dn(y ◦ φn))
∇Rygm

(7)

where Lm,n = log
(

In,m(x)
d(gm;Dµ(x◦φn))

)

, ∇ In,m is simply the spatial gradient of a



Fig. 1. Comparison of the 4th-order tensor atlases computed by various metrics: a)
Euclidean mean, b) Riemannian mean (computed in the space presented in Sec. 2).

scalar valued image and the second term in Eq. 7 correspond to the gradient
related to the tensor re-orientation. In this term the rotation Ry at location
’y’ can be efficiently computed by the Gram-Schidt algorithm as in [8]. Using
this orthogonalization technique the components of the rotation matrix are ex-
pressed as functions of the displacement vectors in φn, hence we can easily com-
pute analytic derivatives with the unknown transformation parameters denoted
as ∇Rygm. The computed derivatives are non zero for those voxels ’y’ which
are in the neighborhood of our current voxel ’x’. Furthermore, the gradient of
the tensor with respect to the rotation is given by ∇Rygm

d(gm;Dn(y ◦ φn)) =
4

∑

i,j,k Di,j,k,l
n (y ◦ φn)(Ryg)i(Ryg)j(Ryg)k.

Finally, after the termination of the iterative minimization procedure, the
4th-order tensor coefficients can be computed by fitting the tensorial model to
the estimated values dµ(gm) using the positive-definite parametrization in [15].

4 Experimental Results

In order to compare the Riemannian metric presented in Sec. 2 with a Euclidean
metric in terms of fiber orientation accuracy of the atlas estimated by each
metric, we performed the following experiment. We synthesized a 2-fiber crossing
DW-MRI dataset (in a single voxel) using the realistic adaptive kernel model
shown in Fig.3 of [17] (81 gradient directions and b = 1250s/mm2). We computed
a 4th-order tensor (shown in Fig. 1 upper left) from the synthetic dataset using
the algorithm in [15]. Then we generated 100 more datasets by applying small
rotations to the simulated crossing and by adding outliers (few of them are shown
in Fig. 1 left). The computed atlases (average tensors) are compared in the bar
chart of Fig. 1. As expected, the Riemannian mean outperforms the Euclidean
mean since the physical space of the data is that of positive-valued functions.

To motivate the use of 4th-order tensors in registering DW-MRI, we also
simulated a fiber crossing dataset and synthesized a deformation field (Fig. 2).
Then we computed the corresponding FA, DTI and 4th-order tensor fields and
their deformed images as well. We registered the obtained datasets using the
scalar image registration method in [3], its DTI modification [10], and the 4th-



Fig. 2. Comparison of registration methods using a synthetic fiber crossing dataset.
The errors were measured by evaluating Eq. 2 on the whole field (blue).

order tensor field algorithm in [12] respectively as well as our proposed method.
After that, the displacement field produced by each algorithm was used to warp
the deformed 4th-order tensor field and it was then compared to the ground
truth field shown in Fig. 2(left) using Eq. 2. The results demonstrate that our
method produced more accurate mappings and registered successfully the data.

Finally, we computed the 4th-order tensor field atlas from four hippocampal
datasets. Each dataset consists of 21 diffusion-weighted images collected with
a 415 mT/m diffusion gradient (Td =17 ms, δ = 2.4ms, b = 1250 s/mm2).
Figure 3 shows the original misalignment of the corresponding S0 images and
the aligned images after applying our method. The 4th-order tensor field atlas
is depicted at the bottom of this figure and contains all the known structures
of the hippocampal anatomy. The variations in the dataset can be explored by
observing the standard deviation field computed by the proposed Riemannian
metric (shown in an ROI on the bottom left).

Fig. 3. Real datasets from hippocampus before and after alignment using our method.
The constructed 4th-order tensor field atlas is shown at the bottom. The field of stan-
dard deviations can show the variations in the dataset.



5 Conclusions

In this paper we presented a novel groupwise registration and atlas construction
algorithm for DWMRI data sets each of which is represented by a 4th order
tensor field. To the best of our knowledge, there is no existing literature on this
topic. The key contribution of this work is the definition of a novel metric for
positive valued spherical functions which was then used in the unbiased group-
wise registration and atlas construction. Experimental results on comparisons
with scalar and DTI registration techniques are favourable to our method.
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