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Abstract. A novel method for estimating a field of orientation distribu-
tion functions (ODF) from a given set of DW-MR images is presented.
We model the ODF by Cartesian tensor basis using a parametrization
that explicitly enforces the positive definite property to the computed
ODF. The computed Cartesian tensors, dubbed Cartesian Tensor-ODF
(CT-ODF), are symmetric positive definite tensors whose coefficients
can be efficiently estimated by solving a linear system with non-negative
constraints. Furthermore, we show how to use our method for convert-
ing higher-order diffusion tensors to CT-ODFs, which is an essential
task since the maxima of higher-order tensors do not correspond to the
underlying fiber orientations. We quantitatively evaluate our method us-
ing simulated DW-MR images as well as a real brain dataset from a
post-mortem porcine brain. The results conclusively demonstrate the
superiority of the proposed technique over several existing multi-fiber
reconstruction methods.

1 Introduction

Diffusion tensor imaging (DT-MRI) is a non-invasive imaging technique that
measures the self-diffusion of water molecules in the body, thus capturing the
microstructure of the underlying tissues. Second order symmetric positive defi-
nite (SPD) tensors have commonly been used to model the diffusivity profile at
each voxel with the assumption of a single coherent fiber tract per voxel. Under
this assumption diffusivity was defined as d(g) = gT Dg where g is the diffusion
weighting magnetic gradient vector and D is the 2nd order tensor to be estimated
from a set of DW-MR images. This model, despite its simplicity and robustness,
has been shown to be incorrect in regions containing intra-voxel orientational
heterogeneity such as crossing and merging of fiber bundles [1, 2].

Several methods have been proposed to overcome the single fiber orientation
limitation of second order tensors. Tuch et al. [1] proposed the use of diffusion
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imaging with diffusion weighting gradients applied along many directions dis-
tributed almost isotropically on the surface of a unit sphere; a method known as
high angular resolution diffusion imaging (HARDI). In contrast to rank 2 ten-
sors, this method does not assume any a priori knowledge about the diffusivity
profile. A number of approaches have been proposed to compute the ensemble-
average diffusion propagator P(r, t) of HARDI data. These methods include
q-ball imaging (QBI) [3], diffusion spectrum imaging (DSI) [4], and diffusion
orientation transform (DOT) [5]. These methods, collectively known as q-space
imaging techniques, identify multiple fibers components by calculating the prob-
ability distribution function (PDF) of the diffusion process in each voxel, based
on the Fourier transform relationship between the PDF of diffusion displace-
ment and the diffusion weighted signal attenuation in q-space. DSI performs
a discrete Fourier transform to obtain P(r,t), which requires a time intensive
Cartesian sampling in q-space and hence is impractical for routine clinical use.
QBI method takes measurements on a q-space ball and approximates the radial
integral of the displacement probability distribution function by the spherical
Funk-Radon transform. One problem with QBI is that the estimated diffusion
orientation distribution function(ODF) is modulated by a zeroth-order Bessel
function that induces spectral broadening of the diffusion peaks. DOT computes
ODF at a fixed radius by expressing the Fourier transform in spherical coordi-
nates and evaluating the radial part of the integral analytically assuming signals
decay can be described by either a mono or a multi-exponential model, where
the latter requires data acquisition over multiple concentric spheres, a time con-
suming proposition.

Another approach for multi-fiber reconstruction is to describe the apparent
diffusion coefficient (ADC) by higher order diffusion tensors (e.g. 4th and 6th)
that generalize the 2nd order tensors and have the ability to approximate multi-
lobed functions [6]. Several methods have been proposed for estimating 4th order
tensors with positive definite constraints [7–9] as well as for processing higher
order tensor fields [10]. This approach is attractive not only because the rich set
of processing and analysis algorithms developed for second order tensor fields can
be extended for higher order tensors but also unlike spherical harmonics basis,
the local maxima of higher order tensors can be easily computed [11, 12] due to
their simple polynomial form. Unfortunately, the use of higher order diffusion
tensors has been confined to the estimation of tensor ADC profiles, although
it is now known that the local maxima of ADC profiles estimated using higher
order tensors generally can not be used to directly represent the orientations for
the intravoxel crossing fibers [2, 13, 14].

In this paper, we propose the use of higher order SPD Cartesian tensors to
model ODF profiles and present a novel method for estimating tensor field of
ODF profiles from a given set of Diffusion-Weighted MR images. In our tech-
nique the ODF is modeled by Cartesian tensor basis using a parametrization that
explicitly enforces the positive definite property to the computed distribution
functions. The computed Cartesian tensor ODFs (CT-ODFs) are SPD tensors
whose coefficients can be efficiently estimated by solving a linear system with
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non-negative constraints. We quantitatively evaluate our method and demon-
strate the superiority of the proposed technique over several existing multi-fiber
reconstruction methods.

There are two main contributions in this paper: 1) We present a novel method
for positive-definite CT-ODF estimation from DW-MRI. To the best of our
knowledge there is no existing ODF model in literature that imposes explicitly
the positivity to the estimated ODF, which is naturally a positive-valued spher-
ical function. 2) We present a use full application of our method for converting
higher-order diffusion tensor ADC profiles to CT-ODFs. We should emphasize
that this is an essential task since the maxima of higher-order tensors do not
correspond to the underlying fiber orientations. On the other hand, our method
computes Cartesian Tensor ODFs whose maxima can be computed analytically
and correspond to the true axonal orientations.

2 Method

2.1 Symmetric positive-definite Cartesian tensors of even orders

Any spherical function f(g) can be approximated by higher order Cartesian
tensors:

f(g) =

3
∑

i=1

3
∑

j=2

· · ·

3
∑

l=1

gigj · · · glCi,j,··· ,l (1)

where gi is the i− th component of the 3-dimensional unit vector g, and Ci,j,··· ,l

are the coefficients of the l − th order tensor.
When approximating certain spherical functions in DW-MRI, we are inter-

ested in tensors of even orders with full symmetry, due to the antipodal sym-
metric nature of the DW-MR signal acquisition. In this case of symmetry, those
tensor coefficients which correspond to the same monomial ga

1gb
2g

c
3 are equal to

each other (e.g. C2,2,2,1 = C2,2,1,2 = C2,1,2,2 = C1,2,2,2, since they all correspond
to the monomial g1g

3
2).

Furthermore, if the approximated function f(g) is a positive-valued function,
the Cartesian tensor should be positive-definite, i.e. f(g) > 0 ∀ g ∈ S2. Therefore
Eq. 1 needs to be re-parametrized such that this positivity property is adhered
to. In this work, we use the higher-order positive-definite tensor parametrization
that has been recently proposed in [9]. According to this parametrization, any
non-negative spherical function can be written as a positive-definite Lth order
homogeneous polynomial in 3 variables, which is expressed as a sum of squares
of (L/2)th order homogeneous polynomials p(g1, g2, g3; c), where c is a vector
that contains the polynomial coefficients.

f(g) =

M
∑

j=1

λjp(g1, g2, g3; cj)
2 (2)

The parameters λj in Eq. 2 are non-negative weights. This parametrization
approximates the space of Lth order SPD tensors and the approximation accu-
racy depends on how well the set of vectors cj sample the space of unit vectors
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c. It has been shown that by constructing a large enough set of well sampled
vectors cj , we can achieve any desired level of accuracy [9].

2.2 Positive-Definite Cartesian Tensor ODF (CT-ODF) Profiles

The Diffusion-Weighted MR signal for a given magnetic gradient orientation g
and gradient weighting b, can be modeled using the standard multi-fiber recon-
struction framework as follows

S(g, b) =

∫

S2

w(v)B(v,g, b)dv (3)

where the integration is over all unit vectors v, B(v,g, b) is a basis function, and
w(v) is a non-negative spherical function that can be seen as a mixing/weighting
function. There have been several proposed models for the basis function B()
such as a Rigaut-type function [15], von Mises-Fisher distribution [16] and oth-
ers. In all of these models, the integral in Eq. 3 cannot be computed analyt-
ically, thus one needs to approximate the space of unit vectors v by a dis-
crete set of vectors v1, · · · ,vK . In this case Eq. 3 is correctly discretized by
S(g, b) =

∑K
k=1 wkB(vk,g, b) iff there are at most K underlying neural fibers

that are oriented necessarily along the vectors vk. Another problem with the
aforementioned discretization is that the function w() is not anymore continu-
ous over the sphere (it equals to wk for vk and it is zero everywhere else).

The main idea in this paper is to avoid the above unnatural discretization
of the space of orientations, by using a blending function w(), which can be
appropriately decomposed so that: 1) it is positive-definite, and 2) is continuous
over the sphere. In this work, we model such blending function as a Lth order
SPD tensor (say 4th) by plugging Eq. 2 into Eq. 3 as follows

S(g, b) =

∫

S2

M
∑

j=1

λjp(v1, v2, v3; cj)
2B(v,g, b)dv (4)

where v1, v2, v3 are the three components of the unit vector v.
Given a data set of DW-MRI signal attenuations Si/S0 associated with mag-

netic gradient orientations gi and diffusion weighting b-value b, the coefficients
of a Lth order positive-definite CT-ODF can be estimated by minimizing the
following energy function with respect to the unknown polynomial-weighting
coefficients λj

E =

N
∑

i=1

(

Si/S0 −

M
∑

j=1

λj

∫

S2

p(v1, v2, v3; cj)
2B(v,gi, b)dv

)2

(5)

In order for the basis function B() to reflect the signal attenuation of a single
and highly oriented fiber response, we require the basis function to be a Gaussian
that represents the diffusion process which is highly restricted perpendicular to
the orientation v. This is given by

B(v,g, b) = lim
δ→+∞

e−δ(vT
g)2 (6)
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Here we should emphasize that the model in Eq. 6 agrees with the properties
of the DW-MR signal response, i.e. it takes maximum and minimum values for
diffusion sensitizing gradient orientations g that are perpendicular and parallel
to the underlying fiber orientation v respectively. Moreover, δ is such that it
captures information about b and mean diffusivity (D) and can be adjusted by
altering either b or D. So this ‘symmetry’ can be simplified by using only δ in
Eq. 6.

In order to compute the CT-ODF, we need to solve Eq. 5 for λ′

js. This
problem can be rewritten into an equivalent linear system problem Bx = y
where x is an M -dimensional vector of the unknown λj , y is an N -dimensional
vector containing the given signal attenuations S/Si and B is a matrix of size
N × M with the elements Bi,j =

∫

S2

p(v1, v2, v3; cj)
2B(v,gi, b)dv.

This linear system is solved for the non-negative x using the efficient non-
negative least squares algorithm and runs in 12ms/voxel. We can then easily
compute the CT-ODF coefficients by multiplying the solution vector with a

matrix C, (i.e. Cx), where the matrix C is of size (2+L)!
2(L!) × M that contains

monomials formed by the vectors cj . Note that L is the order of the CT-ODF

and (2+L)!
2(L!) is the number of the unique coefficients in an Lth-order Cartesian

tensor. In the case of 4th-order CT-ODFs, the multiplication Cx gives the 15
unique coefficients of a positive-definite tensor.

We applied our proposed method for estimating 4th-order CT-ODFs (L = 4),
using a set of M = 321 polynomial coefficients cj and δ = 200. Regarding the
parameter δ, we performed several experiments using different values δ > 100
and we obtained similar fiber orientations density profiles, which shows that our
method is not sensitive to the selection of the value of δ.

2.3 Computing CT-ODF from higher-order Diffusion Tensor

Now, we present an application of our proposed framework for computing the
coefficients of a CT-ODF from a given higher-order diffusion tensor and diffu-
sion weighting b-value b, which is an essential task since the maxima of higher-
order tensors do not correspond to the underlying fiber orientations. Given a
higher-order diffusion tensor, the coefficients of the corresponding CT-ODF are
computed by using the technique we presented in the previous section as follows

CB−1exp(−bGt) (7)

where the matrices C and B are as defined in the previous section, G is of size

N ×
(2+L)!
2(L!) and contains only monomials constructed from N unit vectors gi

uniformly distributed on the unit sphere, and t is a vector of size (2+L)!
2(L!) that

contains the unique coefficients of the given higher-order diffusion tensor. For
example, in the case of 4th-order tensors, the 15 unique coefficients are given in
the vector t, and G is of size N × 15.

Note that in Eq. 7 the exponential function exp() acts in an element-by-
element fashion. Furthermore, the matrix inversion in Eq. 7 should be performed
using non-negative least squares, as it has been shown in the previous section.
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3 Experimental Results

In this section, we present experimental results of the proposed method applied
to simulated as well as real DW-MRI data from a post-mortem porcine brain.

3.1 Synthetic Dataset

The proposed method was tested on a synthetic dataset by comparing the actual
fiber orientations with the maxima of estimated CT-ODFs. In order to compare
our results with spherical deconvolution techniques, included is also the results
obtained using MOW [15], QBI [3], DOT [5] and MOVMF [16] methods by
computing the maxima of either the PDF or ODF profiles of the corresponding
methods.

The data was generated by simulating the MR signal from two crossing fibers
whose orientations are (cos20◦, sin20◦, 0) and (cos100◦, sin100◦, 0) using
the realistic diffusion MR simulation model in [17] with b-value = 1500s/mm2

and 81 gradient directions. Six distinct Rician noise levels were added to the
simulated data and for each noise level the experiments were repeated 100 times.

Figure 1 shows a plot of the means and standard deviations of deviation
angles between the actual fiber orientations and the maxima of estimated CT-
ODFs. For the particular noise level with std. dev. = 0.08 the deviation angles
for all the methods are reported in the adjacent table. Also notice that in this
experiment the deviation angle of the computed orientations is compared to its
closest actual fiber orientation because the crossing fibers are weighted equally
in generating the MR signals. The results demonstrate the superiority of the
proposed method over QBI, DOT, MOVMF and MOW methods.
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Table of errors (deg.)
noise st. dev. = 0.08

Method Mean St. dev.

QBI 9.125 ±4.545

DOT 6.645 ±3.720

MOVMF 5.624 ±3.514

MOW 5.010 ±2.955

CT-ODF 4.7926 ±2.8726

Fig. 1. Deviation angle between actual fiber orientations and maxima of estimated CT-
ODFs using a simulated 2-fiber crossing data with orientations (cos20◦, sin20◦, 0) and
(cos100◦, sin100◦, 0) at different levels of Rician noise.
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3.2 Real Dataset

Here we present CT-ODFs computed from high-quality DWI on post-mortem
pig brain, which resemble the human brain in neuroanatomical complexity and
where perfusion fixation was used to ensure that tissue characterstics were com-
parable to in vivo conditions [18]. Images are acquired using a pulsed gradient
spin echo pulse sequence with echo time of 60ms, 128×128 matrix with 10 slices,
and voxel size of 0.5×0.5×0.5mm3. Three image were collected without diffusion
weighting (b ∼ 0s/mm2) and 61 DWI with gradient strength 61mT/m, gradient
duration 23ms, and gradient separation 30ms. Each of these image sets used dif-
ferent diffusion gradients with approximate b values of 3146s/mm2. Fig. 2 shows
CT-ODFs computed using our method along with generalized anisotropy and
S0 images. As can be verified in the generalized anisotropy image; the branch-
ing, bending and crossing of white matter tracts are correctly depicted by the
computed CT-ODFs.

Fig. 2. CT-ODF field estimated by the proposed technique using data from a post-
mortem porcine brain.

4 Conclusions

We presented a novel technique to estimate ODFs modeled as SPD high order
tensors from DW-MR images. The performance of the proposed method is com-
pared against several existing ODF measures on a synthetic dataset with differ-
ent noise levels and outperformed the other methods. We also demonstrated the
use of our method on a real DT-MR image obtained from a post-mortem porcine
brain. Our results clearly demonstrate that crossing and merging of fibers are
correctly depicted with CT-ODFs. Since higher order tensors have been used
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for segmentation, registration and computations of anisotropy measures for DT
images, it remains to be seen if these tasks can be performed with the proposed
CT-ODF fields as well.
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