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Abstract

In this paper, we present a novel and robust spline ap-
proximation algorithm given a noisy symmetric positive def-
inite (SPD) tensor field. Such tensor fields commonly arise
in the field of Medical Imaging in the form of Diffusion Ten-
sor (DT) MRI data sets. We develop a statistically robust
algorithm for constructing a tensor product of B-splines –
for approximating and interpolating these data – using the
Riemannian metric of the manifold of SPD tensors. Our
method involves a two step procedure wherein the first step
uses Riemannian distances in order to evaluate a tensor
spline by computing a weighted intrinsic average of dif-
fusion tensors and the second step involves minimization
of the Riemannian distance between the evaluated spline
curve and the given data. These two steps are alternated
to achieve the desired tensor spline approximation to the
given tensor field. We present comparisons of our algorithm
with four existing methods of tensor interpolation applied to
DT-MRI data from fixed heart slices of a rabbit, and show
significantly improved results in the presence of noise and
outliers. We also present validation results for our algo-
rithm using synthetically generated noisy tensor field data
with outliers. This interpolation work has many applica-
tions e.g., in DT-MRI registration, in DT-MRI Atlas con-
struction etc. This research was in part funded by the NIH
ROI NS42075 and the Department of Radiology, University
of Florida.

1. Introduction

Data processing and analysis of matrix-valued image
data is becoming quite common as imaging sensor technol-
ogy advances allow for the collection of matrix-valued data
sets. In Medical Imaging, in the last decade, it has become
possible to collect magnetic resonance image (MRI) data
that measures the apparent diffusivity of water in tissue in
vivo. A 2-tensor has been commonly used to approximate
the diffusivity profile at each lattice point of the image lat-
tice [2]. This approximation yields a diffusion tensor (DT-

MRI) data set which is a matrix-valued image. These ten-
sors are elements of the space of the 3x3 positive-definite
matrices denoted by P (3). Mathematically, these positive
definite Diffusion Tensors belong to a Riemannian Sym-
metric space, where a Riemannian metric assigns an inner
product to each point of this space. By using this metric,
one can compute geodesic distances between the elements
of this space (diffusion tensors) and compute various statis-
tics on this space [4, 6, 9, 10].

Processing of DT-MRI data sets has scientific signifi-
cance for health, information and other sciences. Most of
the applications require preprocessing of the DT-MRI data
which more often than not involves interpolation of the
diffusion tensor fields. Directly performing interpolation
of the coefficients of the Diffusion Tensor matrices, does
not preserve most of the properties, such as the values of
the determinant and eigenvalues etc., of the Diffusion Ten-
sors. Thus, it motivates one to seek alternative methods to
achieve interpolation.

In [4], a Riemannian metric was proposed for geodesic
computation between two tensors. Having a tensor field,
e.g. a volume image of DT-MRI, we can use the geodesic
curves between spatially consecutive tensors in order to in-
terpolate the dataset. However, this geodesic curve com-
putation between tensors (in [4]) did not impose higher or-
der smoothness constraints in achieving the interpolation.
Thus, although there is continuity of the obtained interpo-
lated dataset, higher order continuity is lacking.

Recently, a Log-Euclidean metric was proposed in [1]
for computing with tensors. In their work, the elements
from the space of positive definite tensorsP (3), are mapped
to their tangent space, Sym(3), using the matrix logarith-
mic mapping. The tangent space forms a vector space of
dimension �6 for diffusion tensors in �3. Therefore, one
can use the Euclidean norm for computations in this tangent
space and finally by using the inverse mapping, the data are
mapped back to the space of positive definite matricesP (3).
More recently, a similar approach for interpolation of ten-
sor fields was proposed in [3]. In their work, the tensors are
mapped to the tangent space of a reference tensor, using the
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Figure 1. Tangent space of the manifold M of diffusion tensors at
point p1. The tangent vector X points to the direction of geodesic
γ(t) between the points p1 and p2 .

Riemannian Logarithmic mapping. The elements of the tan-
gent space are treated as vectors, which are interpolated us-
ing radial basis functions and finally are mapped back using
the inverse mapping. Both frameworks are quite interesting
and have advantages due to their high computational effi-
ciency in comparison to the geodesic distance framework.
However, a statistically robust version of these frameworks
need to be developed and although the geodesics obtained
by such procedures are “similar” to those obtained by us-
ing the Riemannian metric, quantitatively they are not the
same. This is because by mapping the data to the tangent
space, we lose the information about the curvature of the
Riemannian manifold of diffusion tensors.

Interpolation of matrix-valued images can be done by fil-
tering such datasets using various regularization methods.
Regularization of matrix-valued images can be achieved
using a PDE-based approach proposed in [12]. Although
this approach can be used for denoising and interpolation
of matrix-valued images, the lack of use of an appropriate
metric that is defined on the space of positive definite ten-
sors could lead to undesirable limitations in the solution.
Another tensor field regularization method was proposed in
[13] using Normalized Convolution and Markov Random
Fields (MRF) in a Bayesian Framework. The SPD tensors
are treated as vectors in 6D and their components are treated
independently. This can lead to inaccuracies in the regular-
ized solution.

In this paper, we present a novel and robust spline ap-
proximation algorithm given a noisy diffusion tensor field.
We develop a robust algorithm for constructing a tensor
product of B-splines using the Riemannian metric of the
manifold of symmetric positive definite tensors. We present
comparisons of our algorithm with four existing methods
of interpolation for Diffusion Tensor MRI data from fixed
heart slices of a rabbit, and show much improved results in
the presence of noise and outliers. We also present valida-
tion results for our algorithm using synthetically generated
noisy tensor field data with outliers.

The rest of the paper is organized into the following sec-
tions: In section 2, we present the geometry of the space
of Diffusion Tensors and the related mathematical back-
ground. In section 3, we make a brief review of B-splines.
This is followed by the presentation of a novel algorithm

for computing splines on a given symmetric positive defi-
nite tensor field in section 3. Next, we present tensor splines
using the Log-Euclidean metric as an improvement over re-
cent work in [1]. Then, we present a robust tensor spline
approximation algorithm. Finally, in section 4, comparisons
of our algorithm with four existing methods of interpolation
for DT MRI data are presented. Validation results using
synthetically generated noisy tensor field data with outliers
are also presented.

2. The space of Diffusion Tensors

In this section we present the geometry of the space
of Diffusion Tensors and the related mathematical back-
ground that is required for doing computations in this space.
More detailed expositions on this material maybe found in
[9, 6, 4]. The space of Diffusion Tensors can be formu-
lated as a Riemannian Symmetric space [5], where a Rie-
mannian metric assigns an inner product to each point of
this space. By using this metric we can compute geodesic
distances between diffusions tensors and calculate statistics
on this space [4, 6, 9].

A symmetric positive definite 2-tensor is a nxn matrix
that belongs to the space of all symmetric positive-definite
matrices denoted by P (n). DT-MRI datasets are a field of
such tensor usually in two or three-dimensions. P (n) space
is a connected Riemannian manifold [5]. The Lie group
GL+(n) of all nxn real matrices g with |g| > 0 acts on
P (n) and smoothly maps its elements back to P (n) via the
group action φ(g,p) = gpgT.

At each point p of P (n) the Riemannian
metric is given by the following inner product
〈X,Y〉p =trace(g−1Xp−1Yg−T ), where g ∈ GL+(n)

and p = ggT and X,Y ∈ Sym(n) are two tangent
vectors at the point p ∈ P (n). At any point p ∈ P (n) the
tangent space is defined by the space of the nxn symmetric
matrices.

In figure 1, p1 is a point in P (n) and X is a tangent vec-
tor at p1. There is a unique geodesic γ(t) starting at p1 for
t = 0 and having γ′(0) = X. The point on the geodesic
γ(t) at t = 1 can be computed by using the Riemannian ex-
ponential map γ(1) = Expp1

(X). The Riemannian expo-
nential map Expp(X) at a point p ∈ P (n) maps a tangent
vector X at p to γ(1), where γ(t) is the geodesic starting at
γ(0) = p having γ′(0) = X. Expp(X) can be computed
using

Expp(X) = (gv)exp(Σ)(gv)
T (1)

where g ∈GL+(n) and p=ggT . Let Y=g−1Xg−T , then v

and Σ are the matrix of eigenvectors and the diagonal ma-
trix of eigenvalues of Y respectively. Therefore in equation
(1) exp(Σ) is the matrix exponential map which is given
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by,

exp(X) =
∑∞

i=0

1

i!
Xi. (2)

The inverse map is the Riemannian Logarithmic map
Logp1

(p2), which maps p2 ∈ P (n) to a tangent vector X

at p1, such that if γ(0) = p1 and γ(1) = p2 then X=γ′(0).
Logp1

(p2) can be computed using,

Logp1
(p2) = (gu)log(Λ)(gu)

T (3)

where, g ∈ GL+(n) and p1 = ggT. Let y = g−1p2g
−T ,

then u and Λ are the matrix of eigenvectors and the diago-
nal matrix of eigenvalues of y respectively. The distance be-
tween the two tensors p1 and p2 equals to ‖ Logp1

(p2)‖p1

where ‖.‖p1
is the Riemannian norm at the point p1.

For any real number t the point γ(t) in the geodesic be-
tween p1 and p2 can be computed as

γ(t) = (gu)Diag(Λt)(gu)T (4)

where g, u and Λ are the same as in the equation of Rie-
mannian Logarithmic map, and Diag(X) are the diagonal
elements of symmetric matrix X. Equation 4 can be easily
derived from γ(t) = Expp(X, t) = (gv)exp(Σt)(gv)T

[4] and 3.
Using the Riemannian metric one can also compute

statistics of Diffusion Tensors [4, 6, 9]. The average ten-
sor of a set of Diffusion Tensors, can now be computed as
that tensor which minimizes the sum of squared Rieman-
nian distances between itself and the given set of tensors.

In the following section the Riemannian exponential and
logarithmic maps and the equation of a geodesic between
two diffusion tensors will be used in order to define and
compute tensor splines.

3. Tensor Spline Approximation

In this section we present a novel and robust spline ap-
proximation algorithm given a noisy symmetric positive
definite tensor field. Our algorithm involves the use of
the Riemannian distance between SPD tensors in order to
evaluate a tensor spline by computing a weighted intrin-
sic average of tensors. By intrinsic average, we mean, an
average that minimizes the Riemannian distance between
the unknown average and the members of the population
whose average is being sought. This module is then used
in a robust tensor product B-spline fitting method involving
the minimization of the Riemannian distance between the
spline function and the data.

This section has three subsections. First we make a brief
review of B-splines. Next, we present a novel algorithm for
computing splines on a given symmetric positive definite
tensor field. After that we present tensor splines using the
Log-Euclidean metric (described earlier). Finally a robust
tensor spline approximation technique is presented.

3.1. B-splines

The equation for k-1 degree B-spline with n+1
control points (c0, c1, ..., cn) and n+k+1 knots
(t−k+1, t−k+2, ..., tn+1), is

S(t) =

n∑
i=0

Ni,k(t)ci (5)

where t0 ≤ t ≤ tn+1−(k−1). Each control point is associ-
ated with a basis functionNi,k where

Ni,1 =

{
1 if ti ≤ t < ti+1

0 otherwise
(6)

and

Ni,k(t) = Ni,k−1(t)
t− ti

ti+k−1 − ti
+Ni+1,k−1(t)

ti+k − t

ti+k − ti+1
(7)

Ni,k(t) functions are polynomials of degree k-1. Cubic
basis functions Ni,4 can be used for a 3rd degree B-spline.
Knots must be series of monotonic increasing numbers.

One useful property of the functions Ni,k(t) is that

Ni,k(t) ≥ 0, for all i and
∑
i=0

Ni,k(t) = 1. Considering

the above properties, functions Ni,k(t) behave as blending
functions and eq. 5 is a weighted average of the control
points ci.

3.2. Tensor Splines

In the symmetric positive definite tensor space P (n), a
tensor γ(t), where t ∈ R is a scalar, that lies on the geodesic
between two tensors p1 and p2 is given by equation (4).
By definition, a geodesic curve is the shortest path between
two points. Having a dataset of tensors, e.g., a volume of
DT-MRI, we can use the geodesic curves between spatially
consecutive tensors in order to interpolate the dataset. How-
ever, a geodesic curve does not contain information about
the neighborhood of the two interpolating points. Thus, al-
though there is continuity of the interpolated dataset, there
is lack of higher degree of continuity. It is more natural to
have a higher degree of continuity in the interpolant within
smoothly varying regions. Recent work in [7], on continu-
ous tensor field approximation achieves smoothness, how-
ever, a Riemannian framework is not employed for tensor
calculations. In this section we define tensor splines which
are curves in the input space P (n)×�m, (P (3)×�2 in the
case of a 2D diffusion tensor field) constructed using the
geometry of the space of symmetric positive definite ten-
sors. Note that doing spline interpolation on P (n) is not
meaningful in itself, in this context, as there is no ordering
of points (matrices) on P (n), which reflects the ordering
imposed by the lattice in 2D/3D. Hence, interpolation on
P (3)×�2 or P (3)×�3 is the right thing to do because the
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Figure 2. A 3rd degree tensor spline S(t), that passes through 5
given tensors pi of a 1-D tensor field. The given points pi and
the points of the tensor spline S(t) are SPD matrices, elements
of the Riemannian manifold M . However the tensor spline is in
P (n) × � since the tensors lie on a 1-D lattice. 7 control points
ci are required and 11 knots ti. The association between basis
functions Ni,4(t), knots ti and given data points pi are displayed
in this figure.

tensors in DTI are defined on a lattice in 2D or 3D. Another
issue to keep in mind is that we are defining tensor-splines
by doing weighted intrinsic averages on P (n) and choosing
the weight functions to be B-splines. As an illustration of
interpolation on a 1D grid of tensors, figure (2) depicts the
idea of using weight functions (B-splines here) to perform
weighted average of tensors using the Riemannian metric.
This weighted averaging leads to the desired degree spline
interpolant of the diffusion tensor data. Applications of ten-
sor splines are numerous e.g., higher order interpolation be-
tween diffusion tensors, smoothing and filtering diffusion
tensor data sets, and compression of such data sets.

Let us assume that we have a set of N diffusion ten-
sors (p0,p1, ...,pN−1) on a one dimensional grid, and we
want to interpolate between them. Linear (1st degree) in-
terpolation on the tensor space can be achieved by com-
puting points on the geodesics connecting two consecu-
tive diffusion tensors. Higher degree interpolation can be
done by using a set of control points and a knots vector.
A k-1 degree tensor spline that fits to our data requires
N -1+k-1 control points (c0, c1, ..., cN−1+k−2) which are
also tensors and N+2(k-1) monotonically increasing knots
(t−k+1, t−k+2, ..., tN−1+k−1). A tensor S(t), where t ∈
[tj , tj+1), which is a point on a tensor spline, can be now
computed by generalizing the equation (5) to the space of
tensors. We can compute the value S(t) of the k-1 de-
gree B-spline of tensors for a particular t value, by cal-
culating a weighted intrinsic average,

∑̃
, of the control

tensors ci, where the weights equal to the basis functions
wi = Ni,k(t), discussed earlier.

S(t) =
∑̃n

i=0
wici (8)

The intrinsic weighted average of tensors is defined using

Riemannian distance instead of Euclidean, and it is the min-
imizer of the function

min
μ∈P (n)

ρ(μ) = min
μ∈P (n)

1

2

n∑
i=0

widist(μ, ci)
2 (9)

where dist(., .) is the Riemannian geodesic distance. The
weighted average can be computed using a gradient descent
algorithm which is an extension of the algorithm described
by Pennec [8] for computing the mean of tensors. The gra-
dient of ρ(μ) is given by

∇μρ = −
∑n

i=0
wiLogμ(ci) (10)

Thus the intrinsic weighted average of a set of diffusion ten-
sors can be computed by the following procedure:

input : c1, ..., cN ∈ P (n)
w1, ..., wN weights

output: μ ∈ P (n), the weighted mean
μ0 ← I ;
i← 0 ;
while ‖ Xi ‖> e do

Xi ← −∇μi
ρ;

μi+1 ← Expμi
(Xi) ;

end

Algorithm 1: Intrinsic Weighted Mean of Tensors

In order to fit a tensor spline to the diffusion tensor data,
we have to approximate the control tensors of such a spline.
A tensor spline that fits to our data, minimizes the Rieman-
nian distance of the given tensors from the tensor spline
curve.

E =
1

2N

N−1∑
i=0

dist(S(ti),pi)
2 (11)

In this energy expression, the Riemannian metric should be
used for the distance calculation, since the tensor space,
where the data and control points belong, is a Rieman-
nian manifold. We need to find a set of control points
(c0, c1, ..., cN−1+k−2) that form the spline S(t) which
minimizes the energy E. The gradient of E with respect
to cj is then given by,

∇cj
E =

1

2N

∑N−1

i=0
∇S(ti)dist(S(ti),pi)

2
∇cj

S(ti)

(12)
The gradient of the square distance between S(ti) and pi

with respect to S(ti) equals,

∇S(ti)dist(S(ti),pi)
2

= −2LogS(ti)(pi) (13)

whereLogS(ti)(pi) is the Riemannian logarithmic map (eq.
1). However, LogS(ti)(pi) is a tangent vector at S(ti).
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Since, the gradient of the energy (eq. 12) is with respect
to cj , we need to express the gradient of eq. 13 by us-
ing tangent vectors at point cj . Taking this into consid-
eration, equation 13 can be approximated by the formula
Λcj

(pi, S(ti)) = Logcj
(pi)− Logcj

(S(ti)), so we obtain

∇S(ti)dist(S(ti),pi)
2
≈ −2Λcj

(pi, S(ti)) (14)

Furthermore, the gradient of S(ti) with respect to cj in the
equation 12 is

∇cj
S(ti) = Nj,k(ti) (15)

Using equations 15 and 14 in 12 we obtain

∇cj
E = −

1

N

∑N−1

i=0
Λcj

(pi, S(ti))Nj,k(ti) (16)

Starting with an initial guess of the control tensors, we can
update them by using the gradient descent technique. The
new values c′j of control tensors will be

c′j = Expcj

(
1

N

∑N−1

i=0
Λcj

(pi, S(ti))Nj,k(ti)

)
(17)

where Exp.(.) is the Riemannian exponential map (eq. 1).
The initial guess of the control tensors can be either the
given data or the average tensor of the given tensors. The
gradient descent algorithm is summarized below:

input : N tensors (p0, ...,pN−1),
N+2(k-1) monotonically increasing
knots (t−k+1, ..., tN−1+k−1)
k, and a small value e

output: N -1+k-1 control tensors
(c0, ..., cN−1+k−2)

‖ X0 ‖ ← e+1;

while
∑

j

‖ Xj ‖> e do

for j=0 to N-1+k-2 do
Xj ← zero matrix ;
for i=0 to N-1 do

Xj ←Xj+
Λcj

(pi, S(ti))Nj,k(ti) ;
end
c′j ← Expcj

Xj ;
end
c← c′ ;

end

Algorithm 2: Control Tensors estimation

The error introduced by the approximation of equation
14 can be large, if the tensor spline approximation S(ti) is
far from the target pi. While S(ti) moves closer to pi dur-
ing the spline fitting procedure, the error introduced by the

approximation of equation 14 moves to zero. By setting a
small number e, the outer loop of algorithm 2 will be iter-
ated enough times in order the error of equation 14 to be as
small as we need. Hence the control tensors cj , which are
obtained as the output of algorithm 2, are estimated without
the assumption that there is no curvature in the manifold of
SPD matrices. On the contrary, this assumption was used in
[1] and [3].

The knot sequence can be parameterized by different
ways that preserve the monotonically increasing property
of the knots series. In the experiments we used the series of
integer numbers 1,2,3... as the knot sequence.

Tensor Splines can be fit to higher dimensional tensor
fields, by simply extending the presented algorithms to the
new dimensionality. For example consider the case of a 2D
N × M tensor field. In this case we are doing interpola-
tion on P (n) × �2. A k − 1 degree tensor spline that fits
on our data requires (N − 1 + k − 1)x(M − 1 + k − 1)
control tensors and (N + 2(k − 1))x(M + 2(k − 1))
monotonically increasing in both the dimensions, the knots
(t−k+1,−k+1, ..., tN−1+k−1,M−1+k−1). Note that in this
case the knots are vectors with 2 elements, one for each
parametric dimension. Finally the new basis functions are
formed by the tensor product of 1-dimensional basis func-
tions Ni,j,k([t1t2]) = Ni,k(t1)Nj,k(t2).

3.3. Log-Euclidean Splines

Recently, in [1], Arsigny et. al., proposed a new Log-
Euclidean metric for tensor calculations. By using this
metric, the diffusion tensors are mapped, with the matrix
logarithmic map to the space of the symmetric matrices
Sym(n). Therefore, we can make Euclidean calculations
in this space and finally by using the matrix exponential
mapping, the data are mapped back to the space of posi-
tive definite matrices P (n). Although the tensors obtained
by this procedure are “similar” to those obtained by using
the Riemannian metric, quantitatively they are not the same.
This is because by mapping the data to the tangent space, we
lose the information about the curvature of the Riemannian
manifold of diffusion tensors.

Using the Log-Euclidean metric we can also fit a spline
to the logarithmically mapped data into the symmetric
space, and after that we can map the interpolated tensors
back to the tensor space using the exponential mapping. In
the section 4, we provide a quantitative comparison between
tensor splines and Log-Euclidean Splines.

3.4. Robust Tensor Splines

The presence of outliers is common in DT-MRI data due
to noise in the original data obtained from the DT-MRI sen-
sors [11]. A robust interpolation algorithm should detect
these outlier tensors and reject them from further consider-
ation in any processing algorithms applied to the dataset.
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(a) The FA map and Gaussian el-
lipsoids of the subsampled synthetic
tensor field

(b) The tensor field of fig. 3(a) with
10% outliers

(c) The tensor field of fig. 3(a) with
noise

Figure 3. Synthetic tensor fields used in the experiments.

A robust function can be used in the energy function, in
order to weight the given data pi appropriately. We need
to use a robust function that assigns weights in the interval
[0, 1], where weights which are almost zero imply rejection
of the corresponding data point. Furthermore, high weights
should be assigned to the data points whose distance from
the corresponding points on the unknown spline curve is
small and on the other hand lower weights should be as-
signed to the data points whose distance from the corre-
sponding points on the unknown spline is larger. Let us con-
sider the following function φ(x) = −se−

x
s . The derivative

of this function is ψ(x) = e−
x
s and it has the aforemen-

tioned properties. By using the above functionφ, the energy
function that we are going to minimize can be written as

E =
1

2N

∑N−1

i=0
φ(dist(S(ti),pi)

2
) (18)

The gradient of the energy with respect to the control
tensors now becomes

∇cj
E = −

1

N

∑N−1

i=0
ψ(dist(S(ti),pi)

2
)

×Λcj
(pi, S(ti))Nj,k(ti)

In the above equation the quantity ψ(dist(S(ti),pi)
2),

weights the given data points pi, leading to a spline ap-
proximation that is robust to outliers. The distance function
dist(., .), as it was previously mentioned, measures the Rie-
mannian distance between the tensors.

4. Experimental results

In this section, we present several experiments with
noisy synthetic as well as real diffusion tensor data. We
also present comparisons with four other existing methods
to demonstrate the performance of our proposed algorithm.

We synthesized a tensor field on a 2D lattice of size
33x33 (see fig. 4(a)). For the generation of this field, we
chose four diffusion tensors which were then positioned at
the corners of the given rectangular lattice. These diffu-
sion tensors were arbitrarily selected from a real DT-MRI
data set of a fixed rabbit heart. The tensors at the rest of
the lattice points were obtained via geodesic interpolation
using the methods described earlier. The left plate of figure
4(a) depicts the Fractional Anisotropy (FA) map (see [2] for
definition of FA) and the right plate depicts the dominant
eigenvector field. The x, y, z components of the dominant
eigenvectors of the tensors were assigned Red-Green-Blue
(RGB) colors respectively for visualization purposes.

We then subsampled the tensor field by a factor of four
and figure 3(a) is a depiction of the same. The Gaussian el-
lipsoids that represents the diffusion tensors of the synthetic
tensor field are shown in the right plate of this figure, and
the FA map is shown in the left plate. Then, we generated
two noisy tensor fields by adding noise to the subsampled
tensor field. The first noisy tensor field (fig. 3(b)) contains
10% outliers which were also arbitrarily selected from a set
of outlier diffusion tensors that were contaminating the pre-
viously mentioned data set.

For the generation of the second noisy tensor field (fig.
3(c)) a 3x3 symmetric matrix Xi,j was randomly generated
from a Gaussian distribution, for every lattice point of the
subsampled tensor field pi,j . These matrices were used as
vectors in the tangent space of SPD matrices. Then the
noisy tensor field of fig. 3(c) was obtained by applying the
Riemannian Exponential map Exppi,j

(Xi,j).

Finally we interpolated the noisy tensor fields by a fac-
tor of 4, using the four existing methods a) Riemannian
geodesic interpolation [4], b) Log-Euclidean linear interpo-
lation [1], c) Tangent space interpolation [3], d) PDE-based
anisotropic non-linear diffusion/interpolation [12], e) our
robust tensor spline method with degree 3 (cubic) and also
using our own modification of the Log-Euclidean metric,
namely, f) a Log-Euclidean spline. The results are presented
in figure 4. We use two methods to measure the distance
of the estimated tensor fields from the ground truth tensor
field of figure 4(a); a) the Riemannian metric and b) the
length of the error vector defined as the difference between
the ground truth and the estimated dominant eigenvector of
the diffusion tensors respectively. These errors are com-
puted at each voxel and the mean and standard deviation of
these errors are reported in table 1 for the two noisy data
sets. As evident and expected, the error is much smaller
for our algorithm in comparison to the others. Moreover,
since our method is robust to the presence of outliers in the
data, its performance is least affected among all the meth-
ods as the corrupting mechanism of the original tensor field
was changed. This conclusively demonstrates superior in-
terpolation performance of our algorithm over other exist-
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(a) FA map and principal eigenvec-
tor field of the synthetic tensor field

(b) Riemannian interpolation of the
noisy tensor field of fig. 3(c)

(c) Tangent space interpolation of
the noisy tensor field of fig. 3(c)

(d) PDE non-linear anisotropic dif-
fusion of the noisy tensor field of fig.
3(c)

(e) Cubic Tensor Spline interpola-
tion of the noisy tensor field of fig.
3(c)

(f) Log-Euclidean spline interpola-
tion of the noisy tensor field of fig.
3(c)

Figure 4. Comparison of interpolation methods.

ing methods.
In figure 5, the first row depicts three images. (a) Shows

a slice of a T2-weighted MR image obtained using a zero
gradient field. A white box has been used to identify the re-
gion of interest (ROI) containing a reasonably noisy section
in the DT-MRI slice. The rest of the plates in this figure
depict the processing limited to this ROI. Figure (b) depicts
the FA map of the data. Higher brightness indicates higher
FA values in this depiction. Note the random changes in
brightness values in this image caused due to the presence
of noise and outliers in the tensor field. Figure (c) depicts
the FA computed after applying tensor spline approxima-
tion. Note the relatively smooth appearance in brightness
corresponding to the FA values, which is biologically more
consistent in the shown ROI. The part (d) of the same figure
depicts an ellipsoidal visualization (in color) of the original
tensor field in the ROI. Note the presence of the outliers in
the bottom right part of this image. Image (e) of the same
figure shows the result after applying our tensor spline ap-
proximation. Notice that all of the outliers have been re-
jected and the field has been interpolated smoothly.

Finally figure 6 shows another real data example. In this
figure the proposed Tensor Spline approximation algorithm
is compared with the recently proposed Log-Euclidean
geodesic interpolation [1], discussed earlier. The vector
field of the dominant eigenvector of the original data is de-
picted in 6(b). Note that the data contain noise and out-
liers. Figures 6(c) and 6(d) show the interpolation results

Interpolation errors of the tensor field of fig. 3(b)
Riem. μ Riem. σ SSD μ SSD σ

Riem. Geodesic 0.3097 0.4765 0.5107 0.4443
Log-Euc Geodesic 0.3126 0.4809 0.6848 0.3556
Tangent space int. 0.4624 0.5719 0.6414 0.3957
PDE interpolation 0.2374 0.4285 0.2022 0.4545

Log-Euc Spline 0.4628 0.5714 0.6553 0.3839
Tensor Spline 0.0008 0.0003 0.0018 0.0494

Interpolation errors of the tensor field of fig. 3(c)
Riem. μ Riem. σ SSD μ SSD σ

Riem. Geodesic 0.9744 0.4881 0.6462 0.4235
Log-Euc Geodesic 0.9855 0.4976 0.6917 0.3657
Tangent space int. 1.2321 0.5998 0.6680 0.3917
PDE interpolation 0.8394 0.5129 0.5265 0.5084

Log-Euc Spline 1.2315 0.5996 0.5894 0.3764
Tensor Spline 0.2487 0.0917 0.3003 0.5453

Table 1. Mean error and standard deviation for the two noisy syn-
thetic tensor fields

(a) (b) (c)

(d) The original Diffusion Tensor
field.

(e) The interpolated Diffusion Ten-
sor field after the fitting of a tensor
spline in the data

Figure 5. a)A DT-MRI slice of a rabbit heart. The next figures
come from the marked region of this image. b)The Fractional
Anisotropy (FA) map of the original data. c)The FA map after
the fitting of a cubic tensor spline in the data. d) and e) show the
ellipsoid visualization of the corresponding tensor fields.

of Log-Euclidean geodesic and Tensor Spline algorithm re-
spectively. Since the Log-Euclidean method is not robust
the interpolation result still contains a large amount of the
outliers seen in the original data. Notice that in the Ten-
sor Spline approximation results these outliers have been
rejected. Figure 6(a) depicts the FA map of the original and
the interpolated data. In the case of Tensor Spline approxi-
mation (6(a) bottom) the FA map of the approximated data,
has also been interpolated smoothly.
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(a) (b)

(c)

(d)

Figure 6. Real DTI from a rabbit heart: a) FA map of the original
data (top), after Log-Euclidean interpolation (middle), after cubic
Tensor Spline approximation (bottom). The rest of the plates in
this figure depict the dominant eigenvector field of (b) the original
data, (c) Log-Euclidean interpolation, (d) Tensor Spline approxi-
mation.

5. Conclusions

In this paper, we presented a novel and robust spline ap-
proximation algorithm that we dub, tensor-splines, given a
noisy symmetric positive definite tensor field. We presented
comparisons of our algorithm with four existing methods
of interpolation for Diffusion Tensor MRI data from fixed
heart slices of a rabbit, and presented significantly improved
results in the presence of noise and outliers. We also pre-
sented validation results for our algorithm using syntheti-

cally generated noisy tensor field data with outliers. Our
future work will be focused on applying this algorithm as a
module in applications such as registration of DT-MRI data
sets, tractography etc. [15, 14].
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