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Abstract

In this paper we propose a method for reconstructing the

Diffusion Weighted Magnetic Resonance (DW-MR) signal

at each lattice point using a novel continuous mixture of von

Mises-Fisher distribution functions. Unlike most existing

methods, neither does this model assume a fixed functional

form for the MR signal attenuation (e.g. 2nd or 4th order

tensor) nor does it arbitrarily fix important mixture param-

eters like the number of components. We show that this con-

tinuous mixture has a closed form expression and leads to a

linear system which can be easily solved. Through extensive

experimentation with synthetic data we show that this tech-

nique outperforms various other state-of-the-art techniques

in resolving fiber crossings. Finally, we demonstrate the ef-

fectiveness of this method using real DW-MRI data from rat

brain and optic chiasm.

1. Introduction

Since the first publication of the derivation for the effect

of a time-dependent magnetic field gradient on the spin-

echo experiment by Stejskal and Tanner [30] in 1965 to

measure the diffusional attenuation of the MR signal, nu-

merous methods have been proposed to model the MR sig-

nal and the associated displacement probability. Much of

this interest stems from the fact that even today, DW-MRI

is the only non-invasive and in-vivo imaging method that

allows examination of neural tissue architecture at a mi-

croscopic scale. By providing quantitative data sugges-

tive of water molecule motion in brain tissue, DW-MRI

has helped in elucidating white matter fiber directions (e.g.

[19], [26]) and, through tractography, in inferring connec-

tivity between brain regions (e.g. [38], [9], [22]).
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The recovery of local (intra-voxel) fiber orientations gen-

erally involves three steps, first is the modeling of the MR

signal, second is estimation of water displacement prob-

ability distribution function (PDF) from the signal via its

fourier transform [26] and the third is the radial integral (or

radial iso-surface computation) of the displacement prob-

ability function to obtain the fiber orientation distribution

function (ODF), directions of whose maxima give the lo-

cal fiber orientations. In the past, various models for fiber

orientation recovery have been suggested which target dif-

ferent stages of this process. In this paper, we present a

novel technique for fiber orientation recovery which uses a

mixture of von Mises-Fisher distributions to model the MR

signal attenuation. Before providing details of our model,

we present a survey of the existing methods which attempt

to solve the problem of fiber orientation recovery.

The Diffusion Tensor MRI (DT-MRI) model assumes

the diffusivity function to be a rank 2 tensor and its dis-

placement probability is characterized by an oriented Gaus-

sian distribution. Though this model, which uses multi-

directional DW-MRI data [8], has been effective in mod-

eling regions with high white-matter coherence, it has the

major limitation that it cannot cope with complex local fiber

geometries and can only model a single fiber orientation at

a voxel.

To overcome this limitation of the DTI model, High An-

gular Resolution Diffusion Imaging (HARDI) was proposed

by Tuch [33]. This high resolution data allowed model-

ing of the the diffusivity function in Stejskal-Tanner mono-

exponential signal attenuation model [30] using generalized

high order Cartesian tensors ([25], [6]) and spherical har-

monics expansion ([15], [2]). Though these methods are

capable of handling more complex local geometry of the

diffusivity function than DT-MRI, they do not necessarily

yield the correct fiber orientations as the peaks of diffusiv-

ity function within a voxel does not necessarily align with

the local fiber orientations [26].
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This led to the development of model independent tech-

niques which directly estimated fiber PDF (mentioned

above as the stage two of the fiber orientation recovery

process). In the Q-ball imaging (QBI) technique ODF

is approximated by the spherical Funk-Radon transform

([34],[36]) and more recently using spherical harmonic ba-

sis for Funk-Radon transform ([4],[14][16]). The problem

with these methods is that they only yield the displacement

probability convolved with the zeroth order Bessel func-

tion. Diffusion spectrum imaging (DSI), which presents it-

self as an alternative to Q-ball suffers from time-intensive

sampling requirements [37].

More recently, Ozarslan et al. [26] introduced diffusion

orientation transform (DOT), by evaluating the radial part

of the Fourier integral (mentioned as stage 2 in the general

process) analytically. Their proposal suffers from the fact

that the obtained displacement probability is corrupted by

a convolution with a non-analytical function, unless a more

data intensive bi-exponential model is used.

At a contrast to the models mentioned above are the

multi-compartmental models, which attempt to model the

MR signal or ODF as a mixture of some basis functions

in order to resolve intra-voxel orientation heterogeneity

(IVOH). Tuch et al. [35] used a finite mixture of Gaussian

densities to estimate the diffusion signal. Similar attempts

to resolve multiples fibers were presented in [5] and [10].

A finite mixture of von Mises-Fisher distributions (used in

conjunction with DOT [26]) was presented in [24] for mod-

eling ODF. These methods suffer from the two major prob-

lems. First, the number of components in the mixture is

arbitrarily fixed (this is the all important model selection

problem) and second, these methods use non-linear fitting

methods to find the unknown parameters which can be un-

stable in the case of multiple fiber crossings (as the number

of parameters increases).

To address the problems of multi-compartmental mod-

els, spherical deconvolution was applied by Tournier et al.

[31], which assumes a distribution of fiber at each voxel.

This method does not assume any fixed number of fiber ori-

entations at each voxel and leads to linear systems which

can be solved efficiently. Recently variants of this technique

were proposed in [1], [4] and [32]. Bhalerao et al. [11] pro-

posed a method for modeling HARDI data using a mixture

of hyperspherical von Mises-Fisher distributions and em-

ployed EM algorithm for parameter estimation. They used

Akaike information criterion for estimating the number of

components in the mixture.

More recently, using the spherical deconvolution method

and a mixture of Wishart distributions, Jian et al. [17], [19]

showed that the MR signal is the Laplace transform of a

continuous mixing distribution of diffusion tensor. Since

each diffusion tensor is a positive definite matrix, the mix-

ing distribution was chosen to be a mixture of Wishart dis-

tributions. The seminal contribution of this work was the

analytical derivation of the Rigaut type asymptotic frac-

tal expression [27] which so far, has only been fitted phe-

nomenologically to the diffusion weighted MR data[20].

Our work presented in this paper uses a continuous mix-

ture of von Mises-Fisher (vMF) distribution functions to es-

timate the MR signal. In this continuous mixture, we use a

mixture of von Mises-Fisher as the mixing density. Once

the signal has been modeled, we use the method proposed

in [7] to recover the displacement probability (one can also

use any of the other published methods) from which orien-

tations of fibers are extracted by fixing the radius magni-

tude [36] (radial integration as proposed in [26] can also be

used). In our mixture model we preserve the advantages that

spherical deconvolution based methods have over multi-

compartmental methods as in our method, neither the num-

ber of components be pre-decided nor any non-linear opti-

mization technique be used to obtain the mixture weights.

Further, as our method is based on direct discretization of

S2, unlike [19], we do not need to make assumptions to

transform the discretization problem from P3 to S2.

The rest of the paper is organized as follows. In Sec. 2

we describe our framework for modeling the MR signal and

recovering fiber orientations from it. In Sec. 3 extensive ex-

perimental results are presented, and in Sec. 4 we conclude

with a summary of our contribution.

2. Theory

Since we seek a probabilistic model for the MR signal,

which is defined over a sphere, S2, use of a distribution

which is defined over this domain is natural. Of the vari-

ous distributions defined on a sphere, we picked von Mises-

Fisher because it is the analog of Gaussian distribution on a

sphere and is parameterized by only a few variables - prin-

cipal direction and a concentration parameter.

2.1. Paired von Mises­Fisher Distribution

In its most general form, von Mises distribution [23],

generalized to a hyper-sphere, Sp−1, is given as

Mp(x; µ, κ) = (
κ

2
)p/2−1

1

Γ(p/2)Ip/2−1(κ)
exp (κµ

T x).

(1)

where κ ≥ 0 is the concentration parameter, µ, (with

‖ µ ‖= 1) is the principal direcrtion and Iν is the Bessel

function of the first kind and order ν. The concentration pa-

rameter κ indicates the concentration of the function around

the mean direction µ. For the 3 dimensional case, which

is of our immediate interest, this distribution is called von

Mises-Fisher distribution and has the form

M3(x; µ, κ) =
κ

4π sinhκ
exp (κµ

T x). (2)



At this point we note that as the data we are dealing

with is antipodally symmetric, it can be more succinctly de-

scribed by an axial distribution. This can be easily achieved

by pairing each von Mises-Fisher distribution with its an-

tipodal counterpart. This translates to assigning to each

direction, µ, a distribution which is an average of two

von Mises-Fisher distributions which are oriented along the

mean directions µ and −µ. Expression for such a paired

von Mises-Fisher distribution is given by

M̃3(±x; µ, κ) =
κ

4π sinhκ
cosh(κµ

T x). (3)

An advantage of using this form for the paired von Mises-

Fisher distribution is that the integrations involving this dis-

tribution can still be carried out over the sphere.

2.2. Continuous Mixture of Paired von Mises­Fisher
Distributions

Generalizing the concept of discrete mixture of distribu-

tions, we propose to use a continuous mixture of the paired

von Mises-Fisher distributions (Eq. 3) to model the MR sig-

nal. If we assume the existence of a density function f(µ)
with respect to a probability measure, dµ, associated with

each direction on a sphere, we can define the continuous

mixture of paired von Mises-Fisher distributions as

B(±x; κ) =

∫
S2

f(µ)M̃3(±x; µ, κ′)dµ. (4)

According to the unified de-convolution framework pre-

sented by Jian et al. [18], in our model M̃3(±x; µ, κ′) is the

convolution kernel function and f(µ) is the mixing density.

The mixing density is useful in handling the intra-voxel ori-

entational heterogeneity as it gives a continuous representa-

tion of the contributing volume fractions. In the literature,

various proposals have been made to pick the kernel and

the mixing density functions (e.g. [1], [4]). For our choice

of kernel function defined in eq. 3, we again pick the von

Mises-Fisher (eq. 2) as the mixing density. Our reason for

picking the von Mises-Fisher density as the mixing density

is two-fold. Firstly, it is a common practice to put an analog

of the Gaussian distribution as the prior on the kernel vari-

able distribution (e.g. Jian et al. [19] use the Wishart distri-

bution as prior on concentration matrix distribution because

it the analog of Gaussian distribution on Pn, the manifold

of symmetric positive definite matrices). By the same to-

ken, von Mises-Fisher is the analog of Gaussian distribution

on S2, the manifold of orientations. Secondly and more im-

portantly, using a von Mises-Fisher density leads to a closed

form expression for the diffusion weighted MR signal.

Now we make the important observation that a single

von Mises-Fisher as the mixing density would not be able

to accurately resolve the intra-voxel fiber orientational het-

erogeneity as it a unimodal density and convolution of

two unimodal functions leads back to a unimodal func-

tion. Therefore, we propose the use of a discrete mixture

of von Mises-Fisher distributions for the mixing density as∑N
i=1

wiM3(x; µi, κ). It must be noted that (also pointed

out in [19] and [18]) N is only the resolution of the dis-

cretization of the manifold S2 and should not interpreted as

the number of expected fiber bundles. It can also be looked

as the number of basis function that are to be used to recon-

struct the MR signal (more the number of basis functions,

better the reconstruction). Finally, we note that substituting

the expression for the mixing density in eq. 4 and setting

convolution kernel function parameter κ′ = 1, leads to an

expression which can be interpreted as the Laplace trans-

forms of a mixture of von Mises-Fisher distributions, which

we have analytically computed and thus our model for the

MR signal is

S(q)/S0 =
N∑

i=0

wi
κ

4π sinh(1) sinhκ
[
sinh(||κµi − q||)

||κµi − q||
+

sinh(||κµi + q||)

||κµi + q||
], (5)

where S(q) is the observed signal, S0 is the signal in ab-

sence if diffusion weighting gradient and q encodes the

magnitude and the direction of the diffusion sensitizing gra-

dients. The advantage of having the closed analytical form

in eq. 5 is that the unknown weights wi can be obtained

readily by solving a linear system Aw = s where

Aj,i =
κ

4π sinh(1) sinhκ
[
sinh(||κµi − qj ||)

||κµi − qj ||
+

sinh(||κµi + qj ||)

||κµi + qj ||
], (6)

w is the vector of unknown weights and s is the vector ob-

tained by stacking S(qj)/S0. Note that qj are the various

directions in which gradient is applied to obtain the MR

reading. We obtain the least square solution for this linear

system using pseudoinverse.

Here we must point two important differences between

our model and the mixture of Wisharts (MoW) model pro-

posed by Jian et al. ([19],[17]). Firstly, MoW makes the

simplifying assumptions that the diffusion tensor has fixed

eigenvalues. This is required because Pn, the manifold of

symmetric positive definite matrices, cannot be discretized

but fixing the eigenvalues translates that problem to dis-

cretizing the manifold of orientations, S2, which is not a

problem. In our model no such simplifying assumption

is required as we work directly with a distribution defined

on S2. Secondly, MoW method requires that the mixture



has sparse and positive weights which necessitates the use

of an iterative algorithm like Non-Negative Least Sqaures

(NNLS) [21]. In our method, since we look at the columns

of matrix A as basis set for the MR signal reconstruction,

we allow negative weights and thus computationally light

pseudoinverse solution works well. Another major advan-

tage of pseudoinverse solution is that pseudoinverse need be

computed only once. We must point out that no significant

distortion due to possible ill-conditioning of A matrix was

observed (as indicated by the experimental results).

2.3. Fiber Orientation Recovery

Once the MR signal has been reconstructed, the relation

of the water displacement probability to MR signal is given

though a Fourier transform as

P (r0r) =

∫
S(q)

S0

e−2πiqT
rr0dq, (7)

where q is the reciprocal space vector, S(q) is the DW-MRI

signal value associated with vector q, S0 the zero gradient

signal and r and r0 is the direction and magnitude respec-

tively of the displacement vector [12].

There are various approaches for computing P (r0r).
MR signal S(q) can either be first reconstructed and then

Eq. 7 be evaluated ([17]) or the displacement probability

can be directly computed from the given diffusion-weighted

MR data ([26]). Yet another technique seeks an alternative

representation called the fiber orientation distribution (from

the Q-Ball images) from which the optimal fiber orienta-

tions can be derived ([13], [4]). In this work we used the

method proposed in [7], though any of the above mentioned

methods would also work.

Once the water displacement probability has been esti-

mated, orientations of the underlying distinct fiber bundles

can be recovered using the spherical function p(r) which

is extracted from the volume of P (r0r) by either fixing r0

([26]) or by integrating over r0 ([36]) and then finding the

maxima of p(r). In this work we follow the former of these

two approaches to recover the final fiber orientations.

3. Experimental Results

In this section we present various experimental results

obtained by applying our method to synthetic as well as real

diffusion weighted MR data from excised, perfusion-fixed

rat optic chiasm and rat brain datasets. In all our experi-

ments we constructed the proposed basis Aj,i (given by Eq.

6) by discretizing the space of unit vectors µi using a 4th

order subdivision of the icosahedral tessellation of the unit

hemi-sphere.

Figure 1 shows spherical plots of the von Mises-Fisher

distribution (upper row), the paired von Mises-Fisher (mid-

dle row) and the corresponding proposed basis (lower row)

Figure 1. Upper row: Visualization of the von Mises-Fisher distri-

bution (Eq. 2) for various values of κ. Middle row: The paired

von Mises-Fisher distribution. Lower row: The corresponding

proposed basis functions (column of matrix A (Eq. 6)) plotted

as spherical functions (i.e. for all unit vectors qj).

for different values of the parameter κ. It can be noted that

different choices of κ does not alter the shape of the ob-

tained basis significantly (see Fig. 1 bottom row). This was

also noted by us in our experiments with synthetic and real

data and thus for the rest of section, we assume the value of

κ to be fixed to 10.

In order to compare the performance of the proposed

model with other existing state-of-the-art methods, we con-

ducted experiments on synthesized two fiber crossing DW-

MRI data with known fiber directions (so that errors could

be computed). The dataset was generated by simulating the

diffusion-weighted MR signal attenuation using the model

proposed in [29]. The signal was simulated for 81 mag-

netic gradient directions with the b-value = 1250s/mm2.

In order to test the performance of the models under vary-

ing noise conditions, different amounts of Riccian noise was

added to the data (standard deviation 0.02 to 0.14). The

noise corrupted data was then used for signal reconstruc-

tion using the diffusion orientation transformation (DOT)

[26] method, the ODF method proposed in [14], the fourth

order tensor model (DT4) [6], the continuous mixture of

Wishart distributions (MOW) [17] and the proposed contin-

uous mixture of von Mises-Fisher (MOVM). To quantita-

tively compare the performance of our method with other

methods, the fiber orientation errors were estimated for all

the methods. This experiment was repeated 100 times and

the mean and standard deviation of the fiber orientation er-

rors are presented in Fig. 2.

It can be noted in Fig. 2 that the proposed method

performs significantly better than the DOT, ODF and DT4

models especially in the higher noise cases. Furthermore,

the performance of the proposed model is generally similar

to that of MOW, especially in the typical case of noise with

signal to noise ratio (SNR): 12.5 − 16.6. In addition to the

quantitative error measurements, the displacement proba-

bility profiles recovered by our method (MOVM) using data



Figure 2. Plot of the mean and standard deviation of the fiber ori-

entation error (in degrees) estimated using the methods: DOT [26],

ODF [14], DT4 [6], MOW [17] and the proposed MOVM.

Figure 3. The displacement probability profiles corresponding to

the signal reconstructed by the proposed method using data cor-

rupted with varying amount of noise.

corrupted with varying amount of noise is presented in Fig.

3 for visual inspection. These last two experiments validate

the accuracy of our model in estimating multiple fiber ori-

entations and demonstrate its robustness in presence of high

levels of noise in the data.

Next, we show results for application of our method to

a real diffusion-weighted MR data set obtained from an ex-

cised perfusion-fixed rat brain. The data collection proto-

col included acquisition of 32 images using a spin-echo,

pulsed-field-gradient sequence with repetition time 1.4 s,

echo time 28 ms, field-of-view 30 mm × 15 mm, matrix

200 × 100 with 32 continuous 0.3-mm-thick slices mea-

sured (oriented parallel to the long-axis of the brain). 46

diffusion-weighted images were collected with 5 signal av-

erages with approximate b values of 1250 s/mm2, whose

orientations were determined by the tessellation on a hemi-

sphere.

Figure 4 depicts a region of interest (ROI) showing fibers

of cingulum and corpus callosum intersecting each other.

On the lower left corner in this figure the zero gradient im-

age S0 is shown. The square box indicates the ROI which

is presented enlarged in the rest of the image. The dis-

placement probability iso-surface estimated from the recon-

structed signal by the proposed method is shown within

each voxel. Each probability iso-surface is colored accord-

ing to its dominant fiber direction . The colormap map-

ping the directions to the colors is shown on the upper left

corner of the figure (same color coding is used in the next

two figures). In the upper right side of the ROI, single fiber

structures that correspond to the fibers from corpus callo-

sum are shown to be correctly estimated. At the center of

the ROI, where a number of fibers intersect, the proposed

method estimated fiber crossings and other complex fiber

structures, which demonstrates the effectiveness of the pro-

posed model.

Figure 5 shows the region containing the hippocampus

from the same data set. As before, the rectangular box in

the S0 image (lower left) indicates the ROI which is shown

zoomed in the rest of the figure. The estimated structures in-

clude fiber crossings and single fibers which are consistent

to other published studies on the structure of hippocampus

[28, 3].

We also applied our model to a set of diffusion-weighted

MR data taken from excised, perfusion-fixed rat optic chi-

asm [26](46 diffusion gradient directions, b-value≃ 1250
s/mm2). Figure 6 shows the probability profiles computed

from the reconstructed signal. The rectangular box in the

S0 image (lower left) indicates the ROI which shows myeli-

nated axons from the two optic nerves crossing each other to

reach their respective contra-lateral optic tracts. The prob-

ability profiles computed by our method brings out this ex-

pected behavior of the fiber structures. These recovered

fiber structures are consistent with other studies on this

anatomical region of the rat nervous system [26].

4. Conclusion

In this paper, we introduce a novel mathematical model

for estimating the MR signal using a continuous mixture

of von Mises-Fisher distributions. Since the von Mises-

Fisher distributions are defined on sphere, simplifying as-

sumptions to transform the discretization problem from the

space of symmetric positive definite matrices ([19], [17]) to

the sphere are not required. Further, our technique leads

to a linear system which does not require a sparse solu-

tion and thus produces good results even with computation-

ally light pseudoinverse solution. Through experimentation



Figure 4. Real DW-MRI data from a rat brain. The figure shows displacement probability iso-surfaces estimated from the reconstructed

signal by the proposed method. The depicted ROI shows intersecting fibers from cingulum and corpus callosum.

on benchmark synthetic data for fiber crossing we demon-

strate the our method performs better than most state-of-

the-art techniques and similar to MoW. Further, to validate

the applicability of this method to real data, we present the

recovered fiber orientations for rat brain and optic chiasm

datasets. From our results on synthetic and real data it can

be concluded that the performance of our novel method is

comparable, if not better than the state-of-the-art in DW-

MRI image analysis.
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