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Abstract. In this paper a framework is presented for monitpbshape changes on
the human body with applications to obesity contfdlis framework uses a low-

cost infrared depth camera in order to captur&fshape of the human body and
approximate it as a set of spherical functions.
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Introduction

Infrared depth cameras have been widely used ascdsivperipheral devices for
various applications related to virtual realityaraction using natural user interfacing.
The depth information captured on a daily basigh®se devices can also be used to
extract useful information related to the behawamd physical shape of the users,
which can be associated with parameters relatethdouser’'s health and physical
condition.

There are several examples in literature that ptesedical applications of depth
cameras. A game-based rehabilitation system waepted in [9] using body tracking.
A similar application was applied to kids with splirtord injuries as a mechanism for
exciting young patients to perform walking exersif2]. Other medical applications of
depth cameras include controller-free exploratidnneedical image data [8] for
avoiding the spreading of germs caused by intergatith physical controller devices.

The aforementioned medical applications as weltheswork presented in this
paper employ several well studied principles frdweé-dimensional computer vision
[5,6,7] in novel frameworks that provide the metlicammunity with useful tools for
rehabilitation, medical data navigation using nalftuaser interfaces, and patient
monitoring.

In this paper a framework is presented for estingatiescriptive parameters of the
human body shape using a low-cost depth cameraomirast to the traditional
computer vision algorithms that attempt to recargthuman avatars using image- or
video-based approaches [12,13,14,15,16]. The peasb@@mework can be used for
synthesizing human avatars as a set of spherioatifuns that approximate the shape
of independent regions in the human body sucheasotiso, the head, the arms and the
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legs. In the experimental section a novel applicais presented for obesity monitoring
over a period of time and quantitative comparisath whe average human shape
computed using the 3D spherical functions estimatethe proposed framework. One
of the major goals of this project is to use aitradal gaming interface (such as depth
cameras) in order to raise awareness of the impoetaf child obesity, which has

reached 17% of the population aged 2-19 years mlthé US [1]. Besides obesity
control, the proposed framework can be used to toopiost-surgical changes in the
shape of human body, during chemotherapy, as wellother types of medical

treatment.

1. Methods & Materials

In this section a framework is presented for apjmnating the 3D shape of the human
body with a set of homogeneous polynomial functiessmated using a depth and a
video camera. A diagram of the proposed framewsdhown in Fig. 1.
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Figure 1. Block diagram of the proposed framework. The outguthe overall system is a tensor coefficient
vector that approximates the shape of independgidns in the human body.

The depth camera generates a sequence of diseqgte fdames in the form of 2D
arraysDj, which can be equivalently expressed as a quati giesn bei,-:(i-iC)Dijcd'l,
Yi=(-j C)Dijcd'l, andZ;=Dj;, wherei,, j. denote the coordinates of the central pixel in the
depth frame, and, is the focal length of the depth camera.

The video frames can be associated with the 3D qunash by using texture
mapping given by the coordinatédg=X";Z’ ij'lcv, Vi=Y'yZ ij'lcv, where the coordinates
of the vector [X' Y’ Z'] are related to [X Y Z] viaa known rigid transformation
(rotation and translation), and, is the focal length of the video camera. The
aforementioned transformation corresponds to thpping between the location and
orientation of the two cameras.

The depth and video frames are provided as inpahtalgorithm that fits a simple
human skeletal model representing the person depict the data [10]. The model
consists of points in Reorresponding to the location of major jointshie human body,
13 of which are used by the proposed frameworlségmenting the 3D quad mesh of
each frame. The computed list of poisiss R®, k=1...13, forms 13 line segments
depicted in Fig. 2 (fourth panel), 4 in the tor&in each arm, 2 in each leg, and 1 in
the head.

For every vertexp=[X; Yj; Dj] in the quad mesh we compute its distance from
each of the 13 line segments of the skeleton masléllows:

dist(p,a,b)=|| a+x(b-a)-p|| 1)



wherea,b € R® are vertices/joints that define a particular ls@gment in the skeleton
model, and x is the projection pfonto the line segment given by:

xzmax{min{(o-a)~(p-a)/||b-a||2,1},0} 2)

The max andmin functions in Eq. 2 guarantee that if the projettialls outside
the line segment, the distance computed by Eq. IlL bei equal to the Euclidean
distance betweep and the closest end-point of the line segmentni||a-p||,||b-
pl|}). Using the distance measure defined by Eq. lyevertex p is assigned to the
closest body region. The quad mesh segmentatigerformed for every frame as
demonstrated in Fig. 2. Note that the points tlmhdt belong to the depicted human
subject can be easily thresholded acrgsssiice the background objects usually have

larger §j values.
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Figure 2. Segmentation examples of the 3D quad meshes extatdring a 360 degree rotation of the
depicted human subject. The fitted 13 point skelé&shown on the fourth example from the left.
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After the segmentation step, a time sequence af queshes for each body region
was generated. The meshes in each of the obtaegadesces can be considered
transformed versions of the two neighboring intthee domain meshes. Assuming that
the individual body regions are not significantlgfarmed in two consecutive time
frames, the transformation can be modeled as @ migition 4x4 matrix with 6 degrees
of freedom (close to the identity matrix), whichndze easily estimated using a distance
measure between the corresponding point sets flijedl as the intensity maps of the
corresponding textures. The registration proceasheaperformed in parallel for all the
neighboring meshes in order to compute a globalyistered point set for each body
region.

In total 10 point sets will be constructed: two &mch arm, two for each leg, one
for the torso, and one for the head. Each of thietsets can be approximated by any
continuous spherical function that can be modeldguspherical harmonic bases or
their equivalent Cartesian tensor basis [3] ag¥at

(V)= 2y, 2y V2" V2! V& @3)

where k=1...10 is the index of the body regior€,y,« is the vector of unknown
coefficients andv=[v; v, v3] " is a unit vector. The summation in Eq. 3 is oves t
powersx,y,zof the tensor bases that define the order of fipecximation. In order to
approximate any arbitrary function, one even anel @td order should be included. In



the experiments presented in next section the stimmia Eq. 3 was implemented for
all non-negativex,y,zthat satisfyx+y+z=10 andx+y+z=9. The unknown coefficients
Cyzxcan be estimated by fitting Eq. 3 to the pomtsf each point set by minimizing

[4]:

ECuy)=2 (”pi',”l|'fk(pi'.“/||pi',”||))2 (4)

whereu is the mean of the point set. The minimizatioregf4 can be implemented as
the least-squares solution to the linear systerb whereb;=||pi-u|| andA;= vi* v’ v3*
wherev=p;-u/||pi-u||. The fitted polynomial can be visualized as a sighéfunction
demonstrated in Fig. 5. The proposed framework a@gslied to real data and the
experimental results are discussed in the nexiosect

2. Results

In our experiments we used the PrimeSense infrdepth camera as well as the video
camera of Microsoft's Kinect gaming control deviteat was connected with a
computer via a USB 2.0 port. The resolution of depth camera was 320x240 pixels
with a viewing range from 0.8m to 4.0m and horizbriteld-of-view angle of 57
degrees.

Based on the viewing volume defined by the abowecifipations, an average-
height human body (~1.75m) when viewed entirelythig particular depth camera
using the full vertical range of 240 pixels, it da@ recorded with a 3D point accuracy
limit of ~73mm-+e, wheree is an additional accuracy error term related todignal-to-
noise ratio of the sensor. In practice, due tot¢hm ¢ as well as the fact that a moving
subject cannot fully utilize the vertical field-gfew, the 3D point accuracy error is
estimated at ~1cm, which is acceptable for the geepf our proposed application. If
one is interested in performing the proposed aimlgspart of the human body only,
for instance the upper part or the torso, the ayuerror can be reduced to ~0.43cm.

Five volunteers participated in our preliminary esiments. In order to focus our
study to a specific age/gender group, all subjeeie males, between 20-31 years old.
The subjects were positioned in front of the degaimera in such a distance so that
their full body was in the viewing volume. ThengtBubjects were asked to rotate
slowly around their position having their handglstly raised in order to avoid biasing
our results due to possible mis-segmentation betweetorso and the hands.

The depth and video streams were recorded duricly gsssion, approximately 10
sec. stream for a 360 degree rotation, which cpomged to ~250-300 frames (i.e. 25-
30 frames/second). At the same time, a simple gkelmodel consisting of 20 joints
was fitted to the data in real time using the dtpar provided by Microsoft’s Kinect
SDK and the computed skeleton stream was recorded avith the video and depth
streams.

After finishing the data collection, each dataseisvprocessed by the proposed
framework as presented in the previous sectioniliusdrated in Fig. 1. The data of
each frame were converted to the form of a textueethngular mestX(,Y;,Z;, UV,
i=1...320, j=1...240, which were segmented into 11 regions includiogl® body
parts and the background. An example of the reduhie body segmentation is shown
in Fig. 2. The segmented 3D meshes are shown ferelift colors for various frames



during the rotation of the subject. The correspogpdegmented meshes from each
frame were registered to each other producing atpdoud for each body segment,
visualized in Fig. 3 as a full 3D body. Finally theint clouds can be approximated by
a least-squares-fitted continuous spherical functising homogeneous polynomial
basis. The computed polynomial coefficients camder as a compact descriptor of the
approximated 3D shapes for statistical analysia obllection of similar shapes from a
population of subjects as well as shapes computad the same subject during a
specific time period.

Figure 3. Visualization of the point set constructed afegistering the quad meshes from adjacent frames.

In our preliminary experiments we computed the Hleean average of the
polynomial coefficient vectors from the torso ofetfive subjects. An example of
visualizing the distance of a specific subject frdma computed average is shown in
Fig. 4. The locations that correspond to largestadice values are shown in red using
the color map on the left of the same figure.

Figure 4. Example of visualizing the distance of a spedfibject from the average torso shape. The regions
highlighted in red correspond to larger differences

Finally, the fitted polynomials as well as the diste between two polynomials
can be visualized as spherical functions. In bases, the value of the function can be
computed for a predefined set of unit vectors unily distributed on the unit sphere.
Such a set of unit vectors can be generated asNtherder tessellation of the
icosahedrons on the unit sphere, which producemagtilar mesh that approximates



the unit sphere (as shown in Fig. 5 left). Aftemlenating the spherical function of
interest for all vertices on the triangular meshe tfunction can be plotted by
multiplying the magnitude of each vertex with tteeresponding value of the function.
Figure 5 (right) shows an example of visualizing thistance of the polynomial fitted
to the torso of a specific subject from the avenagignomial.
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Figure 5. Plot of the estimated homogeneous polynomial 3B a@losed surface (right) using the triangular
mesh on the left.

3. Conclusions & Discussion

The experimental results presented in the prevéeetion demonstrate the efficacy of
the proposed framework. The interactive natureegftl cameras as a tool for natural
user interfaces in addition to their low cost armit popularity in the digital
entertainment industry brings to the average coeswamevice for various home-based
medical applications, some of which discussed ia thtroductory section. The
monitoring of the changes in our body and its cazhpnsive comparison with the
average body shape of the corresponding age/gagrdep can be proven to be a
significant tool against obesity or other relatéskdses such as heart disease.

In the future, we plan to apply the proposed fraodwto large datasets
collected from various populations with criticaldyochanges such as women during
and after pregnancy as well as patients duringouaristages of chemotherapy.
Furthermore, we plan to compute body shape atfases healthy subjects of various
ages, genders and ethnicities. Such an atlas teulgsed for analyzing quantitatively
the shape differences of the body across populgtionps and derive useful statistical
results.
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