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Abstract. In this paper a framework is presented for monitoring shape changes on 
the human body with applications to obesity control. This framework uses a low-
cost infrared depth camera in order to capture the 3D shape of the human body and 
approximate it as a set of spherical functions. 
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Introduction 

Infrared depth cameras have been widely used as low-cost peripheral devices for 
various applications related to virtual reality interaction using natural user interfacing. 
The depth information captured on a daily basis by these devices can also be used to 
extract useful information related to the behavior and physical shape of the users, 
which can be associated with parameters related to the user’s health and physical 
condition. 

There are several examples in literature that present medical applications of depth 
cameras. A game-based rehabilitation system was presented in [9] using body tracking. 
A similar application was applied to kids with spinal cord injuries as a mechanism for 
exciting young patients to perform walking exercises [2]. Other medical applications of 
depth cameras include controller-free exploration of medical image data [8] for 
avoiding the spreading of germs caused by interacting with physical controller devices. 

The aforementioned medical applications as well as the work presented in this 
paper employ several well studied principles from three-dimensional computer vision 
[5,6,7] in novel frameworks that provide the medical community with useful tools for 
rehabilitation, medical data navigation using natural user interfaces, and patient 
monitoring.  

In this paper a framework is presented for estimating descriptive parameters of the 
human body shape using a low-cost depth camera in contrast to the traditional 
computer vision algorithms that attempt to reconstruct human avatars using image- or 
video-based approaches [12,13,14,15,16]. The proposed framework can be used for 
synthesizing human avatars as a set of spherical functions that approximate the shape 
of independent regions in the human body such as the torso, the head, the arms and the 
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legs. In the experimental section a novel application is presented for obesity monitoring 
over a period of time and quantitative comparison with the average human shape 
computed using the 3D spherical functions estimated by the proposed framework. One 
of the major goals of this project is to use a traditional gaming interface (such as depth 
cameras) in order to raise awareness of the importance of child obesity, which has 
reached 17% of the population aged 2-19 years old in the US [1]. Besides obesity 
control, the proposed framework can be used to monitor post-surgical changes in the 
shape of human body, during chemotherapy, as well as other types of medical 
treatment. 

1. Methods & Materials 

In this section a framework is presented for approximating the 3D shape of the human 
body with a set of homogeneous polynomial functions estimated using a depth and a 
video camera. A diagram of the proposed framework is shown in Fig. 1. 
 

 
Figure 1. Block diagram of the proposed framework. The output of the overall system is a tensor coefficient 
vector that approximates the shape of independent regions in the human body. 

 

The depth camera generates a sequence of discrete depth frames in the form of 2D 
arrays Dij, which can be equivalently expressed as a quad mesh given by X ij=(i-ic)Dijcd

-1, 
Y ij=(j-j c)Dijcd

-1, and Zij=Dij, where ic, jc denote the coordinates of the central pixel in the 
depth frame, and cd is the focal length of the depth camera.  

The video frames can be associated with the 3D quad mesh by using texture 
mapping given by the coordinates Uij=X’ ijZ’ ij

-1cv, V ij=Y’ ijZ’ ij
-1cv, where the coordinates 

of the vector [X’ Y’ Z’] are related to [X Y Z] via a known rigid transformation 
(rotation and translation), and cv is the focal length of the video camera. The 
aforementioned transformation corresponds to the mapping between the location and 
orientation of the two cameras. 

The depth and video frames are provided as input to an algorithm that fits a simple 
human skeletal model representing the person depicted in the data [10]. The model 
consists of points in R3 corresponding to the location of major joints in the human body, 
13 of which are used by the proposed framework for segmenting the 3D quad mesh of 
each frame. The computed list of points sk ϵ R3, k=1…13, forms 13 line segments 
depicted in Fig. 2 (fourth panel), 4 in the torso, 2 in each arm, 2 in each leg, and 1 in 
the head. 

For every vertex p=[X ij Y ij Dij] in the quad mesh we compute its distance from 
each of the 13 line segments of the skeleton model as follows: 

 
dist(p,a,b)=||a+x(b-a)-p||       (1) 



 
where a,b ϵ R3 are vertices/joints that define a particular line segment in the skeleton 
model, and x is the projection of p onto the line segment given by: 

 
x=max{min{(b-a)·(p-a)/||b-a||2,1},0}     (2) 
 
The max and min functions in Eq. 2 guarantee that if the projection falls outside 

the line segment, the distance computed by Eq. 1 will be equal to the Euclidean 
distance between p and the closest end-point of the line segment (i.e min{||a-p||,||b-
p||}). Using the distance measure defined by Eq. 1 every vertex p is assigned to the 
closest body region. The quad mesh segmentation is performed for every frame as 
demonstrated in Fig. 2. Note that the points that do not belong to the depicted human 
subject can be easily thresholded across Zij, since the background objects usually have 
larger Dij values. 

 

 
Figure 2. Segmentation examples of the 3D quad meshes recorded during a 360 degree rotation of the 
depicted human subject. The fitted 13 point skeleton is shown on the fourth example from the left. 

 
After the segmentation step, a time sequence of quad meshes for each body region 

was generated. The meshes in each of the obtained sequences can be considered 
transformed versions of the two neighboring in the time domain meshes. Assuming that 
the individual body regions are not significantly deformed in two consecutive time 
frames, the transformation can be modeled as a rigid motion 4x4 matrix with 6 degrees 
of freedom (close to the identity matrix), which can be easily estimated using a distance 
measure between the corresponding point sets [11] as well as the intensity maps of the 
corresponding textures. The registration process can be performed in parallel for all the 
neighboring meshes in order to compute a globally registered point set for each body 
region. 

In total 10 point sets will be constructed: two for each arm, two for each leg, one 
for the torso, and one for the head. Each of the point sets can be approximated by any 
continuous spherical function that can be modeled using spherical harmonic bases or 
their equivalent Cartesian tensor basis [3] as follows: 

 

fk(v)=Σx,y,z Cxyzk v1
x v2

y v3
z      (3) 

 
where k=1…10 is the index of the body region, Cxyzk is the vector of unknown 
coefficients and v=[v 1 v2 v3]

T is a unit vector. The summation in Eq. 3 is over the 
powers x,y,z of the tensor bases that define the order of the approximation. In order to 
approximate any arbitrary function, one even and one odd order should be included. In 



the experiments presented in next section the summation in Eq. 3 was implemented for 
all non-negative x,y,z that satisfy x+y+z=10 and x+y+z=9. The unknown coefficients 
Cxyzk can be estimated by fitting Eq. 3 to the points pi of each point set by minimizing 
[4]: 

 

E(Cxyzk)=Σi (||pi-µ||-fk(pi-µ/||pi-µ||))2
     (4) 

 
where µ is the mean of the point set. The minimization of Eq.4 can be implemented as 
the least-squares solution to the linear system Ac=b where bi=||pi-µ|| and A ij= v1

x v2
y v3

z 
where v=pi-µ/||pi-µ||. The fitted polynomial can be visualized as a spherical function 
demonstrated in Fig. 5. The proposed framework was applied to real data and the 
experimental results are discussed in the next section. 

2. Results 

In our experiments we used the PrimeSense infrared depth camera as well as the video 
camera of Microsoft’s Kinect gaming control device that was connected with a 
computer via a USB 2.0 port. The resolution of the depth camera was 320x240 pixels 
with a viewing range from 0.8m to 4.0m and horizontal field-of-view angle of 57 
degrees.  

Based on the viewing volume defined by the above specifications, an average-
height human body (~1.75m) when viewed entirely by this particular depth camera 
using the full vertical range of 240 pixels, it can be recorded with a 3D point accuracy 
limit of ~73mm+ε, where ε is an additional accuracy error term related to the signal-to-
noise ratio of the sensor. In practice, due to the term ε as well as the fact that a moving 
subject cannot fully utilize the vertical field-of-view, the 3D point accuracy error is 
estimated at ~1cm, which is acceptable for the purpose of our proposed application. If 
one is interested in performing the proposed analysis to part of the human body only, 
for instance the upper part or the torso, the accuracy error can be reduced to ~0.43cm. 

Five volunteers participated in our preliminary experiments. In order to focus our 
study to a specific age/gender group, all subjects were males, between 20-31 years old. 
The subjects were positioned in front of the depth camera in such a distance so that 
their full body was in the viewing volume. Then, the subjects were asked to rotate 
slowly around their position having their hands slightly raised in order to avoid biasing 
our results due to possible mis-segmentation between the torso and the hands. 

The depth and video streams were recorded during each session, approximately 10 
sec. stream for a 360 degree rotation, which corresponded to ~250-300 frames (i.e. 25-
30 frames/second). At the same time, a simple skeleton model consisting of 20 joints 
was fitted to the data in real time using the algorithm provided by Microsoft’s Kinect 
SDK and the computed skeleton stream was recorded along with the video and depth 
streams. 

After finishing the data collection, each dataset was processed by the proposed 
framework as presented in the previous section and illustrated in Fig. 1.  The data of 
each frame were converted to the form of a textured rectangular mesh (Xij,Yij,Zij,Uij,Vij, 
i=1…320, j=1…240), which were segmented into 11 regions including to 10 body 
parts and the background. An example of the result of the body segmentation is shown 
in Fig. 2. The segmented 3D meshes are shown in different colors for various frames 



during the rotation of the subject.  The corresponding segmented meshes from each 
frame were registered to each other producing a point cloud for each body segment, 
visualized in Fig. 3 as a full 3D body. Finally the point clouds can be approximated by 
a least-squares-fitted continuous spherical function using homogeneous polynomial 
basis. The computed polynomial coefficients can be used as a compact descriptor of the 
approximated 3D shapes for statistical analysis of a collection of similar shapes from a 
population of subjects as well as shapes computed from the same subject during a 
specific time period. 

 

 
Figure 3. Visualization of the point set constructed after registering the quad meshes from adjacent frames. 

 
In our preliminary experiments we computed the Euclidean average of the 

polynomial coefficient vectors from the torso of the five subjects. An example of 
visualizing the distance of a specific subject from the computed average is shown in 
Fig. 4. The locations that correspond to largest distance values are shown in red using 
the color map on the left of the same figure. 

 

 
Figure 4. Example of visualizing the distance of a specific subject from the average torso shape. The regions 
highlighted in red correspond to larger differences. 

 
Finally, the fitted polynomials as well as the distance between two polynomials 

can be visualized as spherical functions. In both cases, the value of the function can be 
computed for a predefined set of unit vectors uniformly distributed on the unit sphere. 
Such a set of unit vectors can be generated as the Nth-order tessellation of the 
icosahedrons on the unit sphere, which produces a triangular mesh that approximates 



the unit sphere (as shown in Fig. 5 left). After evaluating the spherical function of 
interest for all vertices on the triangular mesh, the function can be plotted by 
multiplying the magnitude of each vertex with the corresponding value of the function. 
Figure 5 (right) shows an example of visualizing the distance of the polynomial fitted 
to the torso of a specific subject from the average polynomial. 

 

 
Figure 5. Plot of the estimated homogeneous polynomial as a 3D closed surface (right) using the triangular 
mesh on the left. 

3. Conclusions & Discussion 

The experimental results presented in the previous section demonstrate the efficacy of 
the proposed framework. The interactive nature of depth cameras as a tool for natural 
user interfaces in addition to their low cost and their popularity in the digital 
entertainment industry brings to the average consumer a device for various home-based 
medical applications, some of which discussed in the introductory section. The 
monitoring of the changes in our body and its comprehensive comparison with the 
average body shape of the corresponding age/gender group can be proven to be a 
significant tool against obesity or other related diseases such as heart disease. 

In the future, we plan to apply the proposed framework to large datasets 
collected from various populations with critical body changes such as women during 
and after pregnancy as well as patients during various stages of chemotherapy. 
Furthermore, we plan to compute body shape atlases from healthy subjects of various 
ages, genders and ethnicities. Such an atlas could be used for analyzing quantitatively 
the shape differences of the body across population groups and derive useful statistical 
results. 
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