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Abstract. Tensors of various orders can be used for modeling physical quantities such as strain
and diffusion as well as curvature and other quantities of geometric origin. Depending on the physical
properties of the modeled quantity, the estimated tensors are often required to satisfy the positivity
constraint, which can be satisfied only with tensors of even order. Although the space P2m

0
of 2mth-

order symmetric positive semi-definite tensors is known to be a convex cone, enforcing positivity
constraint directly on P2m

0
is usually not straightforward computationally because there is no known

analytic description of P2m
0

for m > 1. In this paper, we propose a novel approach for enforcing the
positivity constraint on even-order tensors by approximating the cone P2m

0
for the cases 0 < m < 3,

and presenting an explicit characterization of the approximation Σ2m ⊂ Ω2m for m ≥ 1, using
the subset Ω2m ⊂ P2m

0
of semi-definite tensors that can be written as a sum of squares of tensors

of order m. Furthermore, we show that this approximation leads to a non-negative linear least-
squares (NNLS) optimization problem with the complexity that equals the number of generators in
Σ2m. Finally, we experimentally validate the proposed approach and we present an application for
computing 2mth-order diffusion tensors from Diffusion Weighted Magnetic Resonance Images.
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1. Introduction. Multi-linear algebra is a generalization of linear algebra and
tensors which are multi-linear forms are widely used for modeling various physical
quantities commonly encountered in engineering and physics. Elasticity [34], stress,
strain and diffusion [10] are some examples. In differential geometry, tensors are
used to represent metrics, curvatures [40] and other geometric quantities. In image
processing, structure tensors [46] have been used for texture analysis, trifocal tensors
in multi-view geometry, etc. The tensors in most of these applications are required to
satisfy certain properties. For example, the tensors that approximate the Bidirectional
Reflectance Distribution Function (BRDF) [7] are anti-symmetric, while the diffusion
[10] and the structure tensors [46] are antipodally symmetric. Furthermore, certain
applications demand that the estimated tensors be positive-definite since they model
positive-valued physical quantities such as the diffusivity function or the displacement
probability of water molecules [8]. In this paper, we are interested in the case of fully
symmetric positive-definite tensors of various orders and hence for sake of simplicity,
every reference to the term tensor will imply this particular case of tensors unless
otherwise stated.

Let Pm denote the set of mth-order symmetric positive-definite tensors in R3.
As is well-known, positivity condition requires the order m to be even. Denote Pm0
the closure of Pm consisting of symmetric positive semi-definite tensors (PSD) in
R3. As subsets of the space Sm of mth-order symmetric tensors, Pm,Pm0 are cones,
convex subsets that are invariant under positive scaling [18]. In most applications,
the main computational problem can be formulated as data interpolation problem
with the domain being P2m

0 . Specifically, the input data are often in the form
{(x1, y1), · · · , (xk, yk)} where xi are directions in R3 represented as points on the
unit sphere S2, and yi are the values to be interpolated. The interpolation problem
requires a non-negative tensor T ∈ P2m

0 that interpolates the input data. Formulated
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as a least-squares problem, it has the form

T = arg min
p∈P2m

0

k∑

i=1

|yi − p(xi)|2.

We note that both the objective function and the domain P2m
0 are convex, and there-

fore, the optimization problem above is in fact a convex optimization problem that,
in principle, can be solved using existing techniques [12]. However, a formal and sig-
nificant difficulty of applying these methods is that except for the m = 1 case, there
exists no known description of the cone P2m

0 as it is well-known that the positivity
test for polynomials of degree m > 2 is a difficult problem. In the second-order case,
the cone P2

0 is known to be self-dual in the sense that there exists an inner product
< ·, · > on S2 such that < A,B >≥ 0 for any A,B ∈ P2

0 . The inner product allows
the extension of the usual duality theory using Lagrange multipliers to the cone P2

0 ,
and there is a well-developed theory of semi-definite programming (SDP) [12] that
deals with linear objective functions on P2

0 .
While the difficulty of providing a complete description of P2m

0 seems to be un-
surmountable at this point, the main contribution of this paper is the realization of
another formal difficulty that can be overcome relatively easily. A cone C in a vec-
tor space is said to be finitely-generated if there exists a finite number of elements
v1, · · · , vn ∈ C, its generators, such that every element c ∈ C can be written as a
non-negative linear combination of the generators

c = a1v1 + · · ·+ anvn, a1, · · · , an ≥ 0.

If the cone P2m
0 were finitely generated, the above optimization problem becomes

a non-negative linear least-squares (NNLS) problem, with complexity (number of
variables) equals to the number of generators. The advantage of solving an NNLS
problem is that there are software packages that can efficiently solve NNLS problems
containing thousands of variables [28]. While P2m

0 is not finitely-generated, it follows
naturally that we can try to approximate P2m

0 with a finitely-generated subcone,
and restrict the above optimization problem to the subcone. The restriction can be
justified if the subcone can be shown to be a good approximation of P2m

0 .
The second contribution of this paper is an explicit characterization of the ap-

proximations Σ2m ⊂ P2m
0 for 0 < m < 3, and Σ2m ⊂ Ω2m for m ≥ 1, where Σ2m is a

finitely-generated subcone in the respective spaces. More specifically, let Ω2m denote
the subcone in P2m

0 consisting of semi-definite tensors that can be written as a sum
of squares of tensors of order m. We have the natural inclusions Σ2m ⊂ Ω2m ⊂ P2m

0 ,
and our result gives a detailed characterization of the approximation Σ2m ⊂ Ω2m in
terms of the geometry of the generators in Σ2m. In particular, for m = 1, 2, it is
known that Ω2m = P2m

0 , and our result then gives a detailed characterization of the
approximation Σ2m ⊂ P2m

0 . Our analysis have shown that, for the lower-order cases
m = 1, 2, 3, which are of primary interest here, for a reasonable precision require-
ment, Ω2m can be approximated by Σ2m containing a few hundreds or at most a few
thousands of generators. It follows that the corresponding NNLS problems have the
complexity that are well within the capability of currently available NNLS algorithms
[28]. We quantitatively validate our method via several experiments, and we also
present an application of the proposed technique for estimating the diffusivity func-
tion from diffusion-weighted MRI to demonstrate both the efficiency and accuracy of
the proposed method.
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The rest of this paper is organized as follows: In Sec. 2, we define the finitely-
generated subcone Σ2m. We also develop the theory that quantifies the approximation
Σ2m ⊂ Ω2m, and the main theorem proved in this section relates the approximation
error with the geometry of the generators in Σ2m. Using the theory developed in
Sec. 2, in Sec. 3 we explicitly work out the formulas for the number of generators
for Σ2m required for a given accuracy requirement. The results show that, up to
order-6 and depending on the order, it generally requires at most a few thousands
of generators for Σ2m in order to achieve a relative approximation error of less than
10%. Finally, in Sec. 4, we validate our theoretical findings using a set of experiments
and we present an application of our method on diffusion-weighted MR datasets.

Related Work Symmetric positive-definite (SPD) tensors of order-2 have been used
in modeling the diffusivity function in the so called Diffusion Tensor MR Imaging (DT-
MRI) [10]. SPD matrices can be endowed with a Riemannian metric that is invariant
under affine transforms. This metric or its approximations have been employed for
estimating and processing diffusion tensor fields [48, 47, 29, 38, 18, 9]. Tensors of 3rd

and 5th order can model reflectance distributions with specularities and cast shadows
in facial images and have been used for re-lighting in [7]. In general, odd-order
tensors are generalizations of the order-1 tensor, which have been commonly used in
computer graphics for representing the Lambertian reflectance model. Similarly, 4th,
6th or higher even-order tensors generalize the 2nd-order tensors and have the ability
to approximate multi-lobed functions [35, 30, 36] such as the kurtosis of diffusion
[26]. In particular, some 4th-order tensors can be expressed as 2nd-order tensors in
higher dimensions and their properties have been studied in detail by Moakher in
[32, 33]. They however do not span the full space of the higher-order tensors as was
shown in the case of order-4 tensors in [6, 5]. In [20], Ghosh et al. used the metric
proposed by Moakher in [32, 33] to represent the space of 4th-order SPD tensors using
the geometry of 2nd-order SPD tensors in higher dimensions. Recently, an algorithm
for imposing positivity constraints on 4th-order tensors using their equivalent ternary
quartic polynomial representation was proposed in [6] and this was further developed
in [5] and [21, 49].

After estimating a field of high-order tensors, it can be processed using a Finsler
metric by appropriately modifying the polynomial equivalent representation of the
tensors that satisfy the properties of Finsler geometry [4]. This method can be used
for neuronal fiber tracking from high angular resolution diffusion MRI data. Further
processing of higher-order tensor fields can be achieved by using the eigenvalue de-
composition of matrices which has been extended for the case of high-order tensors
in [23]. In this framework, the eigenvalues correspond to the extreme values (minima
or maxima) of a tensor and they can be used to extract useful information from the
kurtosis tensor [42] as well as the orientation of maximum diffusion [11, 22]. Another
method for extracting the principal orientation of diffusion from a higher-order tensor
was recently described in [44].

Although, high-order tensors have been employed in most of the aforementioned
methods due to their simple polynomial form and their ability to model multi-lobed
spherical functions, there are no existing methods for imposing positivity constraints
in symmetric tensors of any order higher than two and four. The need to impose
positivity constraints becomes essential especially in the case where the tensors ap-
proximate positive-valued physical quantities, and it has been shown that imposing
the positivity constraint on the tensors approximating the diffusivity function being
estimated reduces the approximation errors significantly [5]. Recently, Pasternak et al.
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[37] also emphasized the importance of enforcing positivity constraints in processing
diffusion tensor MR images.

Finally, although Cartesian tensors basis have been widely used for modeling the
diffusivity function in DW-MRI, we would like to mention that Spherical Harmonic
basis have been employed in approximating other spherical functions involved in DW-
MRI processing such as the diffusion propagator. A detailed review of several multi
fiber reconstruction methods that employ spherical harmonic basis can be found in
the recent article by Descoteaux et al. on Diffusion Propagator Imaging [17]. The
orientation distribution function (ODF) is another example of a DW-MRI related
spherical function, which can be reconstructed from Q-ball imaging data [16, 13, 3]
and was recently done in [2] by using the mathematically correct definition of ODF
and deriving a closed form expression for the same. In this article, however, our main
focus is on the use of Cartesian tensor basis for parameterizing the diffusivity function
in DW-MR datasets.

2. Theory. We will consider symmetric tensors of order m as functions defined
on the unit sphere S2 in R3. In particular, symmetric tensors of order m can be
identified with homogeneous polynomials of degree m: for a symmetric tensor T of
order m, its associated homogeneous polynomial P (x, y, z) is given as

P (x, y, z) = T(x, · · · ,x
︸ ︷︷ ︸

m

),

where x = [x y z]⊤. Under this identification, Pm are homogeneous polynomials of
degree m that do not vanish on S2, and similarly, Pm0 are degree-m homogeneous
polynomials that do not take negative values in R3. Both are now considered as cones
in Hm, the set of homogeneous polynomials of degree m. For even degree 2m, let
Ω2m denote the subset of P2m

0 consisting of polynomials that can be written as a sum
of squares of polynomials of degree m. Ω2m is clearly a subcone of P2m

0 for all m ≥ 1,
and for m = 1, 2, it is known that Ω2m = P2m

0 : the m = 1 case follows easily from
linear algebra and m = 2 case is the content of Hilbert’s theorem on ternary quartics
[24]. For m > 2, however, the inclusion is strict Ω2m ( P2m

0 . In this section, we will
describe a general method for approximating Ω2m using a finitely-generated subcone
Σ2m in Ω2m, and we will provide a characterization of the approximation error in
terms of the geometry of the generators of Σ2m. For the important quadratic and
quartic cases m = 1, 2, our result provides an approximation of the full PSD cone
P2m
0 using a finitely-generated subcone Ω2m.

The basic norm used in this paper is the L1-norm over the sphere S2. More
specifically, for any P ∈ Hm, its L

1-norm ||P ||1 is the integral over S2

||P ||1 =

∫

S2

|P (x)|dx.

That it is indeed a norm follows from the fact that for two homogeneous polynomials
P,Q, P = Q as polynomials if and only if ||P −Q||1 = 0. Note that the other norm
properties are trivial to prove. For any P ∈ P2m

0 and a subcone Σ2m ⊂ P2m
0 , we

define the relative L1-approximation error of P as

EΣ2m(P ) =
minp∈Σ2m ||P − p||1

||P ||1
. (2.1)

Proposition 2.1. Let Σ2m be a closed subcone in P2m
0 and P ∈ P2m

0 .
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1. The L1-norm is convex: for any p ∈ P2m
0 , the function g(q), q ∈ P2m

0

g(q) = ||p− q||1

is a convex function on P2m
0 .

2. For P 6= 0, EΣ2m(P ) = 0 if and only if P ∈ Σ2m. For any s > 0,

EΣ2m(sP ) = EΣ2m(P ).

Proof. For any q1, q2 ∈ P2m
0 ,

g(tq1+(1−t)q2) =
∫

S2

|p−tq1−(1−t)q2|dx ≤
∫

S2

|tp−tq1|dx+
∫

S2

|(1−t)p−(1−t)q2|dx,

and the convexity of the norm on P2m
0 follows. (2) is clear because Σ2m is closed.

The invariance of EΣ2m under positive scaling follows readily from the definition.

Let m1(x), · · · ,md(m)(x) denote the d(m) = (m+2)(m+1)
2 monomials in Hm.

(Note that d(m) also equals to the number of symmetric spherical harmonic basis
elements, which can be mapped to the monomials in Hm using an one-to-one trans-
formation [35, 15].) The monomials form a basis in Hm that identifies Hm with Rd(m).
We will denote HSm the unit sphere in Hm, consisting of polynomials

p(x) =

d(m)
∑

i=1

aimi(x)

such that a21 + · · · + a2
d(m) = 1. The subcone Σ2m will be defined using polynomials

in HSm, and this is accomplished through the square map F2
m : Hm → H2m:

F2
m(p) = p2.

Clearly F2
m is a smooth map, and F2

m(p) = F2
m(q) if and only if p = ±q. While F2

m

is not linear, it maps rays in Hm to rays in H2m: F2
m(tp) = t2F2

m(p). The geometry
of the map F2

m will play a crucial role in our analysis below, and it is quantified by
its condition number ηm. First, we define two quantities.

ηmax
m = max

p∈HSm

||F2
m(p)||1, ηmin

m = min
p∈HSm

||F2
m(p)||1.

Clearly we have ηmin
m > 0 since HSm does not contain the zero polynomial. The

two numbers measure the amount of stretching and shrinking F2
m does to the sphere

HSm. Their ratio gives the condition number ηm for F2
m

ηm =
ηmax
m

ηmin
m

.

In the following, we will often drop the subscript and denote the condition number
simply as η when the degree m in the context is clear. Figure 2.1 illustrates the effect
of F2

m and its condition number η.
Proposition 2.2. ηmax

m , ηmin
m and hence η can be determined by evaluating

d(m)2+d(m)
2 trigonometric integrals.

Proof. Let m1, · · · ,md(m) denote the d(m) monomials in Hm. A polynomial

p ∈ HSm is identified with the vector of coefficients a = [a1, · · · , ad(m)]
⊤ as p =
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Fig. 2.1. Left: Comparison between F2

1
and F2

2
. Let S2m

r , r > 0 denote the circle with radius
r centered at origin in H2m. F2

1
is isotropic in the sense that ||F2

1
(p)||1 ∈ S2

4π/3
for all p ∈ HS1.

F2

2
, on the other hand, is not isotropic. HS2 is the five-dimensional sphere S5. Its equator can be

identified with S4, and the two polynomials ±1/
√
3(x2 + y2 + z2) form the two poles. Inside the

equator, are embedded S1 and S2. F2

2
maps the poles ±(x2 + y2 + z2) to S4

4π/3
, and it maps the

embedded S1 and S2 to S4

8π/15
, S4

4π/15
, respectively. The condition number η for F2

2
on HS2 is 5.

Restricting F2

2
to the equator S4, the condition number improves to 2. Right: Local and non-local

approximations. For each p ∈ HSm, Lemma 2.8 approximates p first with the vertices of the simplex
containing p. This local approximation is further improved using non-local approximations as the
polynomials (pi − pj)2 are approximated by polynomials in HSm that are generally far from p.

a1mi + · · · + ad(m)md(m). The L1-norm ‖F2(p)‖1 is the integral of p2 over S2 that
can be written as

‖F2(p)‖1 =

d(m)
∑

i,j=1

aiaj

∫

S2

mi(x)mj(x) dx.

Let Λm denote the d(m) × d(m) matrix whose components Λmij are the integrals
∫

S2 mi(x)mj(x) dx, we have

‖F2(p)‖1 = a⊤Λma.

It follows that ηmax
m , ηmin

m can be determined as

ηmax
m = min

a⊤a=1
a⊤Λma, ηmin

m = min
a⊤a=1

a⊤Λma,

both of which can be solved once Λm is known using Singular Value Decomposition.
The integrals

∫

S2 mi(x)mj(x) dx can be computed in closed form since using spherical
coordinates, x = sinψ cos θ, y = sinψ sin θ, z = cosψ, each integral is a product of two
trigonometric integrals

∫

S2

mi(x)mj(x) dx =

(∫ 2π

θ=0

cosb1 θ sinb2 θ dθ

)(∫ π

ψ=0

cosb3 ψ sinb4 ψ dψ

)

,

with exponents b1, b2, b3, b4 depending on mi,mj.
In practice, Λmij can be numerically evaluated to any desired accuracy without

appealing to the closed-form integral formulas. Next we prove a simple result that
partially explains why the linear case m = 1 is substantially easier than the nonlinear
cases m > 1.

Proposition 2.3. ηm = 1 if and only if m = 1. That is, F2
1 is isotropic with

respect to the L1-norm in H2.
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Proof. The ‘if’ part follows readily from the fact that
∫

S2

xy dx =

∫

S2

xz dx =

∫

S2

yz dx = 0,

and
∫

S2

x2dx =

∫

S2

y2dx =

∫

S2

z2dx =
4π

3
.

The matrix Λ1 is therefore diagonal with constant diagonal element 4π
3 , and F2

1 is
isotropic with respect to the L1-norm in H2.

Conversely, for m > 1, let p = xm, q = xm−1y. We show that ‖F2(p)‖1 6=
‖F2(q)‖1:

‖F2(p)‖1 =

∫

S2

x2mdx =

∫ π

ψ=0

∫ 2π

θ=0

sin2m ψ cos2m θ sinψdθdψ,

‖F2(q)‖1 =

∫

S2

x2m−2y2dx =

∫ π

ψ=0

∫ 2π

θ=0

sin2m ψ cos2m−2 θ sin2 θ sinψdθdψ.

Let c =
∫ π

ψ=0 sin
2m+1 ψdψ, we have

‖F2(p)‖1 = c

∫ 2π

θ=0

cos2m θdθ,

‖F2(q)‖1 = c

∫ 2π

θ=0

cos2m−2 θ sin2 θdθ.

Therefore,

‖F2(p)‖1 − ‖F2(q)‖1 = c

∫ 2π

θ=0

cos2m−2 θ(cos2 θ − sin2 θ)dθ

= c

∫ 2π

θ=0

cos2m−2 θ(2 cos2 θ − 1)dθ.

Since
∫ 2π

π=0 cos
n θdθ = n−1

n

∫ 2π

π=0 cos
n−2 θdθ for any n ≥ 2, we have

‖F2(p)‖1 − ‖F2(q)‖1 = c (
2m− 1

m
− 1)

∫ 2π

θ=0

cos2m−2 θdθ,

which shows that ‖F2(p)‖1 −‖F2(q)‖1 6= 0 if m > 1. This implies ηm > 1 if m > 1.
Using the square map F2

m, we will define the approximating subcone ΣC
2m by spec-

ifying its generators as polynomials in HSm. More specifically, let C = {p1, · · · , pk}
denote a finite set of k polynomials (points) in HSm. Its associated cone ΣC

2m in H2m

is generated by the finite set of generators F2
m(C) = {p21, · · · , p2k}: elements in ΣC

2m

are non-negative linear combinations of F2
m(pi):

p = a1p
2
1 + · · ·+ akp

2
k,

for some a1, · · · , ak ≥ 0. It is immediately clear that ΣC
2m ⊂ Ω2m ⊂ P2m

0 for any finite
subset C ⊂ HSm. Since F2

m(p) = F2
m(−p), we can restrict points in C to lie in one
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chosen hemisphere of HSm. For such C, its completion C ⊂ C is obtained by joining
all antipodal points of points in C,

C = {p1, · · · , pk,−p1, · · · ,−pk}.

Examples: For m = 1, H1 is R3 and HS1 is S2. If C consists of four points
{[1, 0, 0]⊤, [0, 1, 0]⊤, [0, 0, 1]⊤, [

√

1/3,
√

1/3,
√

1/3]}, the four polynomials p1, p2, p3, p4
are x, y, z and

√

1/3x+
√

1/3y+
√

1/3z, respectively. Elements in ΣC
2 are non-negative

combinations of the four polynomials p21, p
2
2, p

2
3, p

2
4. More precisely, any p ∈ ΣC

2 is de-
termined (in this case, uniquely) by four non-negative numbers a1, a2, a3, a4 ≥ 0 such
that

p(x, y, z) = (a1 +
a4
3
)x2 + (a2 +

a4
3
)y2 + (a3 +

a4
3
)z2 +

2a4
3

(xy + xz + yz).

Form = 2,H2 can be identified with R6 using the monomial basis {x2, y2, z2, xy, xz, yz}
and HS2 is S5. If C consists of three points

[λ, λ, 0, 0, 0, 0]⊤, [λ, 0, 0, −λ, 0, 0]⊤, [0, −λ, 0, 0, 0, λ]⊤,

where λ =
√

1/2, the three polynomials p1, p2, p3 are λ(x
2+y2), λ(x2−xy), λ(yz−y2).

Any p ∈ ΣC
4 can be written (again uniquely) as

p(x, y, z) =
(a1 + a2)

2
x4 +

(a1 + a3)

2
y4 + (a1 +

a2
2
)x2y2 − a2x

3y − a3y
3z +

a3
2
y2z2

for three non-negative a1, a2, a3.

The inclusion ΣC
2m ⊂ Ω2m gives an approximation of Ω2m by ΣC

2m, and it involves
two main components: the square map F2

m and the chosen polynomials in C that
provide the generators in ΣC

2m through F2
m. The main result of our analysis on the

approximation error of ΣC
2m ⊂ Ω2m is given in the next theorem, which asserts that

the approximation error can be bounded by a product of contributions from both
components: the condition number ηm of F2

m and the condition number θ(C) of
the set C whose definition we now turn to.

Condition Number θ(C) of C We use θ(C) as the measure that quantifies the
approximation of any q ∈ HSm, considered as a point on the sphere, by the finite set
C. We will use the spherical distance dHSm

(p, q) (arc-length in radians) to measure
the distance between a pair of points p, q on the sphere HSm, and in particular,
dHSm

(p, q) is the angle between the two unit vectors p, q in HSm. A set C is said to
be good if there is a triangulation of HSm as a simplicial complex T whose vertex
set T 0 is the completion C of C. Since HSm has dimension d(m) − 1, the top-
dimensional simplexes in T have dimension d(m) − 1 as well. Therefore, for any
q ∈ HSm, there is a d(m) − 1-simplex σ ∈ T d(m)−1 containing q. In particular, we
will assume that q can be written as a non-negative linear combination of the vertices
of σ : q = a0p0 + · · · + ad(m)−1pd(m)−1 with a0, · · · , ad(m)−1 ≥ 0. While this is in
general not true for an arbitrary triangulation T of HSm, it is not difficult to show
that T can be modified (without changing its underlying abstract simplicial complex)
to satisfy this property, e.g., by first defining a triangulation of the vertices in T
considered as points in the Euclidean space Rd(m) using the same abstract simplicial
complex as T and radially projecting the simplices onto HSm. For 0 ≤ k ≤ d(m)− 1,
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T k will denote the set of k-simplices in T , and for a k-simplex σ ∈ T k, its width δ(σ)
is defined as the maximal distance between its vertices, p0, · · · , pk,

δ(σ) = max
0≤i,j≤k

dHSm(pi, pj).

For a triangulation T , we define its width to be the maximal width of its top-
dimensional simplices:

δ(T ) = max
σ∈T d(m)−1

δ(σ).

The condition number of C is then defined as the minimal width of the triangulations
T that have C as its vertex set:

θ(C) = min
T ,T 0=C

δ(T ).

Since C is finite, there exists a triangulation ∆(C) whose width gives the condition
number θ(C). We note that 0 < θ(C) < π, and for a good set C, the following
conditions hold,

1. For each q ∈ HSm, there are d(m) elements, p0, · · · , pd(m)−1, in C such that
q = a0p0 + · · · ad(m)−1pd(m)−1 for a0, · · · , ad(m)−1 ≥ 0 and dHSm(pi, pj) <
θ(C) for any 0 ≤ i, j ≤ d(m).

2. For each q ∈ HSm, there exists p ∈ C such that dHSm
(q, p) < θ(C).

Property (1) follows immediately from the definition. Property (2) can be shown to
follow from the requirement that if q ∈ σ ∈ T d(m)−1, q is a non-negative linear com-
bination of vertices in σ.

Theorem 2.4. Let C denote a good finite subset in HSm and ΣC
2m its associated

finitely-generated subcone in H2m. Let θ = θ(C) denote the condition number of C as

defined above and ηm the condition number of F2
m. Then, for any polynomial r ∈ Ω2m,

its L1-relative approximation error EΣC

2m
(r) satisfies

EΣ2m
C

(r) ≤ 4 tan θ sin2
θ

2
η2m.

The bound above constitutes our quantitative characterization of the approximation
ΣC

2m ⊂ Ω2m. Not surprisingly, the bound provided above depends on both the map
F2
m as well as the set C through θ and η. The error measured by EΣ2m

C

takes place in
H2m, and the bound on the right factored into two components with contribution from
θ that essentially measures how well an arbitrary point q ∈ HSm can be approximated
using C and its associated triangulation ∆(C). In particular, as will be seen from the
proof, tan θ arises from approximating q using its nearest neighbor in C as in Property
(2) above while sin2 θ2 comes from approximating q using the simplex σ containing it
as in Property (1).

We will prove the theorem through a sequence of lemmas given below. However,
before delving into the proof, we remark that although using the triangulation ∆(C)
to define θ(C) may seem unnecessary at first, it is in fact crucial to have Property
(1) in order to produce a smaller bound on the error. For example, it is possible to
define θ(C) using only Property (2), i.e., each q ∈ HSm can be approximated by a
p ∈ C such that dHSm

(q, p) < θ(C). However, this hypothesis itself is only strong
enough to produce the bound given in Lemma 2.6 (Equation 2.4). Disregarding ηm,
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the bound given in Equation 2.4 is 2 sin θ, which is considerably inferior to the bound
of 4 tan θ sin2 given in Theorem 2.4. In particular, for small θ, the former is approxi-
mately 2θ while the latter is θ3 (See Equation 3.1), two order of magnitude less. As
will be clear in the proof, the main issue is to approximate the polynomial q2 for any
q ∈ HSm with a sum of squares of polynomials in C. Using only Property (2), it is
difficult to determine what polynomials in HSm can be used to approximate q2 other
than the polynomial p ∈ C that is closest to q. With Property (1), we have more
choices at our disposal as we can approximate q2 using the vertices pi of the simplex
σ that contains q, and more importantly, the remainder of this approximation (sum
of (pi−pj)2) can be further approximated using polynomials in C. This is the content
of Lemma 2.8. In particular, when approximating q2, Property (1) allows the access
of not only the polynomials pi ∈ C that are neighbors of q but also polynomials in
C that are usually far away from q. See Figure 2.1. Furthermore, as will be detailed
in Section 3, Property (1) allows us to formulate a simple method for estimating the
minimal number of points (polynomials) in C needed for a given precision requirement.

Lemma 2.5. Let p, q be two polynomials in HSm and θ = dHSm
(p, q) denote

their geodesic distance considered as points on the sphere HSm. We have
∫

S2

|p(x) − q(x)|2dx ≤ 4 sin2
θ

2
ηmax
m .

Proof. Let r = p− q. As a vector in Hm, |r| = |p− q|. Using the law of cosines,

γ = |r| = |p− q| =
√
2− 2 cos θ = 2 sin

θ

2
. (2.2)

Therefore, r/γ ∈ HSm, and we have
∫

S2

r2(x)dx = γ2
∫

S2

(r(x)/γ)2dx ≤ γ2ηmax
m ,

and the result follows.
Next we prove an important lemma which shows that for two nearby p, q in HSm,
we can approximate q2 using p2 such that the L1-approximation error is a fraction
(depending on the geodesic distance) of the L1-norm of p2.

Lemma 2.6. Let p, q be two polynomials in HSm and θ = dHSm(p, q) denote

their geodesic distance considered as points on the sphere HSm. Let ||F2(p)−F2(q)||1
denote the L1-difference between F2(p),F2(q)

||F2(p)−F2(q)||1 =

∫

S2

|p2(x)− q2(x)| dx. (2.3)

We have

||F2(p)−F2(q)||1 ≤ 2 sin θ ηm ||F2(p)||1. (2.4)

Proof. Using Hölder’s inequality, we have
∫

S2

|p2(x)− q2(x)| dx =

∫

S2

|p(x)− q(x)||p(x) + q(x)| dx

≤
(∫

S2

|p(x)− q(x)|2dx
) 1

2
(∫

S2

|p(x) + q(x)|2dx
) 1

2

.
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The proof will proceed to bound the two terms on the right. By the preceding lemma,
we have

(∫

S2

|p(x)− q(x)|2dx
) 1

2

≤ 2 sin
θ

2

√
ηmax
m .

For the second term, we will consider the polynomial r = γ p+q2 , where γ > 1 ensures

that r ∈ HSm. A quick calculation shows that γ = 1/ cos θ2 . Since, by definition,

∫

S2

r2(x) dx ≤ ηmax
m ,

we have

(∫

S2

|p(x) + q(x)|2dx
) 1

2

=

(∫

S2

4

γ2
r2(x)dx

) 1
2

≤ 2

γ

√
ηmax
m .

Combining the two inequalities, we have
∫

S2

|p2(x) − q2(x)| dx ≤ 4 cos
θ

2
sin

θ

2
ηmax
m = 2 sin θ ηmax

m .

Since

||F2(p)||1 =

∫

S2

p2(x)dx ≥ ηmin
m ,

it follows that

||F2(p)−F2(q)||1 ≤ 2 sin θ
ηmax
m

ηmin
m

||F2(p)||1.

This completes the proof.
We will use the preceding lemma to prove two basic error estimates. For any two

points p, q in C, the following lemma provides a bound on the approximation error for
points that lie on the arc (geodesic path) joining p, q.

Lemma 2.7. Let p, q be two neighboring points in ∆(C), i.e., there is a 1-simplex

σ1 in ∆(C) with p, q as its two vertices. Let r = ap+ bq be a convex combination of

p, q with a, b ≥ 0 and a+ b = 1. If θ = θ(C) denotes the condition number of C, then

EΣC

2m
(r2) ≤ 2 sin θ tan2

θ

2
η2m.

Proof. By definition of θ, dHSm
(p, q) ≤ θ. Let ϕ = a2p2 + b2q2 + abp2 + abq2 be

an element in Σ2m
C . We have

ϕ− r2 = (a2p2 + b2q2 + abp2 + abq2)− (ap+ bq)2

= ab(p− q)2.

Let γ = |p− q| and t = (p− q)/γ ∈ HSm. There exists s ∈ C such that the geodesic
distance between t and s is less than θ. By the preceding lemma,

∫

S2

|t2(x)− s2(x)|dx ≤ 2 sin θηm||t2(x)||1.
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Now let φ = ϕ+ abγ2s2 be another element in Σ2m
C . We have

∫

S2

|r2(x)− φ(x)|dx = ab

∫

S2

|(γt)2 − (γs)2|dx ≤ 2ab sin θ ηm ||(γt)2(x)||1.

By Lemma 2.5, |(γt)2(x)|1 ≤ 4 sin2 θ2η
max
m . This gives

∫

S2

|r2(x) − φ(x)|dx ≤ 2 sin θ sin2
θ

2
ηmη

max
m . (2.5)

as ab ≤ 1
4 for a, b ≥ 0 and a + b = 1. We next bound the L1-norm of r2(x). Since

r = ap+ bq, there exists 1 ≤ γ ≤ 1/ cos θ2 such that γr ∈ HSm. This implies that

∫

WS

γ2r2(x)dx ≥ ηmin
m ,

or
∫

S2

r2(x)dx ≥ cos2
θ

2
ηmin
m . (2.6)

Combining Equations 2.5 and 2.6 gives the desired result.
The preceding lemma can be generalized immediately to higher-order convex com-

binations.
Lemma 2.8. Let p1, · · · , pk denote the vertices of a k−1-simplex σk−1 in ∆(C) as

well as the corresponding homogeneous polynomials in HSm. Let r = a1p1+ · · ·+akpk
be a convex combination of p1, · · · , pk with a1, · · · , ak ≥ 0 and a1 + · · ·+ ak = 1. If θ
denote the condition number of C, Then

EΣC

2m
(r2) ≤ 4 tan θ sin2

θ

2
η2m.

Proof. Expanding r2, we have

r2 =

k∑

i=1

a2i p
2
i + 2

∑

i<j

aiajpipj.

The second sum contains Ck2 = k(k−1)
2 terms. To approximate r2 using an element

φ ∈ Σ2m
C , we proceed similarly as before. We start with ϕ equals the first sum above.

For each cross-term 2aiajpipj in the second sum, we add aiaj(p
2
i + p2j) to ϕ. This

gives

ϕ =
k∑

i=1

a2i p
2
i +

∑

i≤j
aiaj(p

2
i + p2j).

It follows that

ϕ− r2 =
∑

i<j

aiaj(pi − pj)
2.

Next, we will approximate the squares (pi − pj)
2 using elements in Σ2m

C exactly as
before. More specifically, let γij = |pi − qj | and tij = (pi − qj)/γij . There exists
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sij ∈ C such that the geodesic distance between tij and sij is less than θ. Now let
φ = ϕ+

∑

i<j aibj(γijsij)
2 be an element in Σ2m

C . We have

∫

S2

|r2(x) − φ(x)|dx ≤
∑

i<j

aiaj

∫

S2

|(γijtij)2(x) − (γijsij)
2(x)|dx.

It follows from Equations 2.2 and 2.4 that all the integrals on the right can be uni-
formly bounded

∫

S2

|(γijtij)2(x)− (γijsij)
2(x)|dx ≤ 8 sin θ sin2

θ

2
ηmax
m ηm,

and this gives

∫

S2

|r2(x) − φ(x)|dx ≤ 8 sin θ sin2
θ

2
ηmax
m ηm

∑

i<j

aiaj .

Since a1 + · · ·+ ak = 1 ,

∑

i≤j
aiaj =

(a1 + · · ·+ ak)
2 − (a21 + · · ·+ a2k)

2
=

1− (a21 + · · ·+ a2k)

2

≤ 1− 1
k

2
=
k − 1

2k
<

1

2
(2.7)

as a21 + · · ·+ a2k ≥ 1
k
by Cauchy-Schwarz inequality. This yields the bound

∫

S2

|r2(x) − φ(x)|dx ≤ 4 sin θ sin2
θ

2
ηmax
m ηm. (2.8)

We next bound the L1-norm of r2. Given that r = a1p1 + · · ·akpk, the following
lemma shows that the L2-magnitude |r| of the vector r satisfies

|r| ≥
√
cos θ.

Hence, there exists 1 ≤ γ ≤ 1√
cos θ

such that γr ∈ HSm. Exactly as before, we have

∫

S2

r2(x)dx ≥ 1

γ2
ηmin
m ≥ cos θηmin

m . (2.9)

Equations 2.8 and 2.9 together complete the proof.
Lemma 2.9. Let ∆ denote a k-simplex in Rd(m) whose vertices p0, · · · , pk are

on the unit sphere, i.e., ||p0||2 = · · · = ||pk||2 = 1. If there exists some α such that

1 > α > 0 and p⊤i pj ≥ α for all i 6= j, then for any x ∈ ∆,

||x||2 >
√
α.

Proof. Let x = a1p1 + · · ·akpk with ai ≥ 0 and a1 + · · ·+ ak = 1. It follows that

x⊤x ≥
k∑

i=0

a2i + 2α
∑

i<j

aiaj .
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Let s = 2
∑

i<j aiaj and the above inequality becomes x⊤x ≥ 1 − (1 − α)s. From

Equation 2.7, we have 0 ≤ s ≤ k−1
k

< 1. It follows that

x⊤x > 1− (1− α) = α.

We remark that when k = 2, k−1
k

= 1
2 and the bound becomes tighter x⊤x ≥ 1

2 + α
2 .

This gives the cos θ term in Equation 2.9. Finally, we are ready to complete the proof
of Theorem 2.4:

Proof. Since r(x) can be written as a sum of squares, by Proposition 2.10, it can
be written as a sum of no more than d(m) terms with pi ∈ HSm:

r(x) =

d(m)
∑

i=1

aip
2
i (x).

Each pi belongs to a (d(m) − 1)-dimensional simplex σi ∈ ∆(C). By the preceding
lemma, each p2i can be approximated by an element p̃i in Σ2m

C with uniformly bounded
relative L1-error

||p2i (x)− p̃i(x)||1 ≤ C||p2i (x)||1,

where C = 4 tan θ sin2 θ2η
2
m. Define r̃ ∈ Σ2m

C as

r̃ =

d(m)
∑

i=1

aip̃i,

and we have

||r(x) − r̃(x)||1 ≤
d(m)
∑

i=1

ai||p2i (x) − p̃i(x)||1 ≤ C

d(m)
∑

i=1

ai||p2i (x)||1.

On the other hand, we also have

||r(x)||1 =

d(m)
∑

i=1

ai

∫

S2

p2i (x)dx =

d(m)
∑

i=1

ai||p2i (x)||1

Combining both inequalities yields the desired result.
In the proof above we made use of the following proposition.

Proposition 2.10. Let r denote a homogeneous polynomial of degree 2m that

can be written as a sum of squares of homogeneous polynomials of degree m. Then, r
can be written as a sum of at most d(m) squares

r(x) =

d(m)
∑

i=1

ai p
2
i (x),

where a1, · · · , ad(m) ≥ 0 and p1, · · · , pd(m) ∈ HSm.

Proof. Suppose r is a sum of k squares of homogeneous polynomials q̃1, · · · , q̃k of
degree m

r(x) = q̃21(x) + · · ·+ q̃2k(x).
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Denote m1, · · · ,md(m) the d(m) monomials of degree m, and X the vector

X = [m1(x), m2(x), · · · ,md(m)(x) ]
⊤

whose components are the monomials. It follows that q̃i(x) = a⊤i X with ai the vector
whose components are coefficients of q̃i(x), and

r(x) = X⊤ (a1a
⊤
1 + · · ·+ aka

⊤
k )X = X⊤SX.

The matrix S is symmetric and positive semi-definite with non-negative eigenvalues.
Let λ1, · · ·λd(m) denote its complete set of eigenvalues and v1, · · · ,vd(m) their asso-
ciated unit eigenvectors, |vi|2 = 1. It follows that

S = λ1v1v
⊤
1 + · · ·+ λd(m)vd(m)v

⊤
d(m),

and

r(x) = λ1X
⊤v1v

⊤
1 X+ · · ·+ λd(m)X

⊤vd(m)v
⊤
d(m)X

= λ1q
2
1(x) + · · ·λd(m)q

2
d(m)(x),

where qi(x) = v⊤
i X ∈ HSm as |vi|2 = 1 for i = 1, · · · , d(m).

3. Approximating PSD Tensors of Orders two, four and six. In this
section, we apply Theorem 2.4 to derive formulas for the minimal number of generators
in ΣC

2m needed to ensure that the approximation ΣC
2m ⊂ Ω2m is within a given accuracy

requirement. Specifically, the accuracy requirement is presented in the form of the
relative L1-approximation error EC

2m (cf. Equation 2.1): for 0 < ǫ < 1, we derive a
formula that gives the (approximated) minimal number N (ǫ,m) of generators in ΣC

2m

such that any r ∈ Ω2m can be approximated within ǫ using ΣC
2m, i.e.,

EC
2m(r) < ǫ.

For PSD ternary tensors of orders two and four, it is known that they can be written as
sums of squares of three tensors of order one and two, respectively. This follows from
the well-known result that any ternary positive semi-definite homogeneous polynomial
p(x) of degree two and four can be written as a sum of three squares of polynomials of
degree one and two, respectively. The quadratic case follows easily from linear algebra
while the quartic case follows from the celebrated theorem of Hilbert on ternary
quartics [24]. We will first describe a general method for obtaining the formulaN (ǫ,m)
for any order m, and we will then explicitly work out the three cases m = 1, 2, 3 that
are of most interest for various applications.

3.1. Preliminaries. Given a required precision ǫ > 0, the bound provided by
Theorem 2.4 allows us to determine the condition number θ = θ(C) for the point set C
in HSm to ensure that the precision requirement is satisfied. The main result in this
section is a simple estimate on the number N (ǫ,m) of points in C needed to achieve
the desired θ on the sphere HSm. Let Cη(θ) = 4 tan θ sin2 θ2η

2 denote the bound given
in Theorem 2.4. Since

tan θ sin2
θ

2
=

1

2
(tan θ − sin θ),
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Cη(θ) is a monotonically increasing function for 0 ≤ θ ≤ π
2 , and we will denote its

inverse by fη(ǫ) = C−1
η (ǫ). fη can be numerically evaluated and the plots for fη over

the range 0.01 ≤ ǫ ≤ 0.1 for several different η-values are shown in Figure 3.1. If θ is
assumed to be small,

tan θ sin2
θ

2
≈ θ3

4
. (3.1)

Therefore, 4 tan θ sin2 θ2η
2 ≈ ǫ implies that

θ ≈ (
ǫ

η2
)

1
3
. (3.2)

The formula above gives an estimate on the condition number θ = θ(C) given ǫ
and η. We next give an estimate on the size of C for the given θ(C). Let n = d(m)− 1
denote the dimension of the sphereHSm and ∆(C) denote the triangulation associated
with C. A simplex in ∆(C) is said to be θ-regular if the distance between any pair
of its vertices equals θ, and the edge joining any pair of vertices is a geodesics on
HSm. Due to the curvature on the sphere HSm, it is not possible to cover HSm
with only θ-regular simplices. Therefore, we assume that the n-simplices in ∆(C)
are approximately θ-regular in the sense that the geodesic distance between any pair
of vertices of a n-simplex in HSm is approximately θ and the edge joining them is
approximately a geodesic as well. For each vertex v in ∆(C), its degree is the number
of n-dimensional simplices having it as a vertex. To estimate the number of points
in C, we will estimate two quantities: the number K of n-dimensional simplices in
∆(C) and the average degree ν of the vertices. The number of points in C can then
be estimated as

N (ǫ,m) = # of points in C ≃ (n+ 1)K

2ν
.

The occurrence of 2 in the denominator accounts for the fact that points in C are
located only on a hemisphere.
Estimate on K: Since HSm is covered by a collection of θ-regular n-simplices, K
can be estimated by taking the ratio between the volume of the sphere HSm and the
volume of a θ-regular n-simplex. Since θ is in general assumed to be small, we will
approximate the volume of a θ-regular n-simplex on the sphere HSm with the volume
ωn(θ) of a corresponding θ-regular n-simplex in the Euclidean space Rn:

ωn(θ) =

√
n+ 1

n!
√
2n

θn. (3.3)

It then follows that the number K of n-simplexes can be estimated as

K =
Vn

ωn(θ)
, (3.4)

where the volume of the sphere Vn is given by the formula [25]

Vn =







(2π)(n+1)/2

2·4···(n−1) if n is odd;
2(2π)n/2

1·3···(n−1) if n is even.
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Estimate on ν : For a typical vertex v in ∆(C), a small neighborhood U around
v in HSm is covered by the θ-regular n-simplices having v as one of their vertices.
Again, assuming θ is small, we can approximate this using Euclidean geometry, by
transforming the neighborhood U onto the tangent space Tv at v using the log map.
The geodesic ball Bθ of radius θ on HSm is mapped to the Euclidean ball of radius
θ and the image of each n-simplex under the log map can be approximated by a
regular n-simplex in the Euclidean space with side length θ. See Figure 3.2. It follows
that the degree of v can be estimated as the ratio between the volume of the unit
n-dimensional ball and the volume of regular n-simplex in Rn with side length θ. The
volume Vn of an n-ball in Rn with radius r = 1 is given by the formula [25]

Vn =

{
(2π)n/2

2·4···n if n is even;
2(2π)(n−1)/2

1·3···n if n is odd.

The degree ν is then estimated as

ν =
Vn

ωn(1)
. (3.5)

Fig. 3.1. Left: Plots of fη for η = 1, 2, 4 in red, blue and green, respectively. ǫ varies from
0.01 to 0.1 and θ is given in degree. Right: Comparison plot of N (ǫ, 1) according to Equations 3.7
(in red) and 3.8 (in blue). The estimate using Equation 3.7 is between 17% and 20% less than the
estimate using Equation 3.8.

Combining Equations 3.3, 3.4, 3.5, we have

N (ǫ,m) = # of points in C ≈ 1

2

(n+ 1)Vn

ωn(θ)
Vn

ωn(1)

=
(n+ 1)Vn

2Vnθn

=
(n+ 1)Vn

2Vn
fη(ǫ)

−n.

(3.6)

In the remaining section, we will work out the implication of the above estimate for
2nd, 4th and 6th-order tensors.

3.2. Second-Order Tensors. A quadratic homogeneous polynomial P (x, y, z)
in R3 has six coefficients P (x, y, z) = ax2 + by2 + cz2 + dxy + exz + fyz. It can be
written in a matrix form as,

P (x, y, z) = [x y z]





a d
2

e
2

d
2 b f

2
e
2

f
2 c









x
y
z



 = x⊤Sx.
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Fig. 3.2. Left: For small θ, we can approximate the volume of a θ-regular spherical simplex
by the volume of a θ-regular Euclidean simplex. The exponential map Expp maps a neighborhood of
the origin in the tangent space Tp diffeomorphically onto a neighborhood U at p. Since the derivative
of Expp at p is the identity, for small enough θ, Expp is close to an isometry in Bθ. Right: The
average degree of a vertex, ν, can be approximated by the number of θ-regular simplexes contained
in the ball of radius θ.

Positive semi-definiteness of the polynomial P (x, y, z) is equivalent to the positive
semi-definiteness of the matrix S. It follows that determining positive semi-definiteness
of a homogeneous quadratic polynomial is straightforward by examining eigenvalues of
S: S is positive semi-definite if and only its eigenvalues λ1, λ2, λ3 are all non-negative
and S can be written as

S = λ1v
⊤
1 v1 + λ2v

⊤
2 v2 + λ3v

⊤
3 v3,

where vi is the unit eigenvector with eigenvalue λi for i = 1, 2, 3. It follows that
P (x, y, z) can be written as a sum of three linear polynomials p1(x), p2(x), p3(x),

P (x) = p1(x)
2 + p2(x)

2 + p3(x)
2,

with pi(x) =
√
λiv

⊤x.
With m = 1, the sphere HSm has dimension n = 2. According to Proposition 2.3,

the map F2
1 is isotropic with respect to the L1-norm and η = 1. Equation 3.6 (together

with Equation 3.2) then gives

N(ǫ, 1) ≈ 3V2

2V2

(
1

ǫ

) 2
3

= 6

(
1

ǫ

) 2
3

. (3.7)

More Precise Estimate: For the linear case m = 1, since HSm is the two-sphere
S2, its geometry is well-known and a better estimate on N can be obtained. Given
θ, S2 is covered by geodesic triangles whose sides have lengths of approximately θ.
Approximating the areas of these geodesic triangles with the area of an Euclidean
equilateral triangles with side θ gives θ2

√
3/4. Let F,E, V denote the number of

triangles, edges and vertices in the triangulation ∆(C). According to Euler’s formula

F − E + V = χ(S2) = 2

where χ(S2) is the Euler characteristic of S2. Since E = 3F/2, V = 2 + F/2 ≈ F/2.
This gives ν = 6 as the average degree of a vertex on S2. Our estimate on the degree
ν in Equation 3.5 in this case gives ν = 4π/

√
3 ≈ 7.2, which gives a 20% overestimate.
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The area A of a geodesic triangle on S2 with three interior angles α, β, γ is given
as [1]

A = α+ β + γ − π.

In particular, for a geodesic equilateral triangle on S2 with side length θ, its angle α
is given as

α = cos−1(
cos θ − cos2 θ

sin2 θ
),

and the estimate on the number of triangles is

K =
4π

3 cos−1( cos θ−cos2 θ
sin2 θ

)− π
.

Let 4 tan θ sin2 θ2 = ǫ and θ = f(ǫ) be the solution to the trigonometric equation. It
then follows that

N(ǫ, 1) =
π

3 cos−1( cos(f(ǫ))−cos2(f(ǫ))
sin2(f(ǫ))

)− π
. (3.8)

In Figure 3.1, we compare the two estimates using Equations 3.8 and 3.7. For ǫ = 0.1,
Equation 3.7 gives N ≈ 30. And for ǫ = 0.01 and 0.001, it gives N ≈ 130 and 600,
respectively. As for Equation 3.8 it gives N ≈ 34, 156, 725 for ǫ = 0.1, 0.01, 0.001,
respectively.

3.3. Fourth-Order Tensors. In this case, m = 2 and H2 and HS2 have di-
mensions six and five, respectively. The map F2

2 is no longer isotropic with respect
to L1-norm in HS2. An analytic evaluation of the matrix Λ2 gives

Λ2 =
4π

5











1 1/3 1/3 0 0 0
1/3 1 1/3 0 0 0
1/3 1/3 1 0 0 0
0 0 0 1/3 0 0
0 0 0 0 1/3 0
0 0 0 0 0 1/3











.

The singular values of Λ2 arranged in the descending order are

σ(Λ2) =
4π

3
[1, 2/5, 2/5, 1/5, 1/5, 1/5].

This gives η = 5, and Equation 3.6 gives

N ≈ 3V5

V5
fη=5(ǫ)

−5 =
90π

16
fη=5(ǫ)

−5.

For ǫ = 0.1, this yields N ≈ 176790. However, in H2, the polynomial v(x, y, z) =
x2+y2+z2 is the constant function 1 on S2. In particular, u(x, y, z) = v(x, y, z)/

√
3 ∈

HS2, and ||F2
2 (u)||1 = 4π/3. The map F2

2 stretches the constant polynomial consid-
erably more than any other quadratic polynomials, and this is the reason for the large
condition number η. Let Ru denote the one-dimensional subspace in H2 spanned by
the constant polynomial u(x, y, z), and W its orthogonal complement,

H2 = Ru⊕W.



20 BARMPOUTIS et al.

The intersection of the sphere HS2 with the subspace W is a four-sphere S4. If we
specialize to this four-sphere, i.e., polynomials orthogonal to the constant polynomial
x2+y2+z2, the condition number η becomes 2 and the dimension of the sphere drops
by one. Theorem 2.4 then provides the following estimate on the number of points

N ≈ 5V4

2V4
fη=2(ǫ)

−4 =
40

3
fη=2(ǫ)

−4.

This number is considerably less than 176790. For example, for ǫ = 0.1, we have
N ≈ 1800 and for ǫ = 0.05, 0.01, N ≈ 4670, 39620, respectively.

3.4. Sixth-Order Tensors. In this case, m = 3 and H3,HSm have dimensions
10, 9, respectively. The map F2

3 is again non-isotropic with respect to L1-norm in H6.
The singular values of Λ3 arranged in the descending order are

σ(Λ3) = 4π[
19 +

√
193

210
,
19 +

√
193

210
,
19 +

√
193

210
,
19−

√
193

210
,
19−

√
193

210
,

19−
√
193

210
, 2/105, 2/105, 2/105, 1/105 ].

The condition number η = 16.44, which is quite substantial. However, similar analysis
as above can be applied to eliminate polynomials in HS3 coming from polynomials of
lower degree to substantially decrease the condition number. First, the three linear
polynomials x, y, z are now embedded in H3 as x(x2+y2+z2), y(x2+y2+z2), z(x2+
y2 + z2). Let r̂(x), ŝ(x), t̂(x), r(x), s(x), t(x) be the following polynomials

r̂(x) = x(x2 + y2 + z2)/
√
3, r(x) = 0.7184x3 + 0.3951 r̂(x),

ŝ(x) = y(x2 + y2 + z2)/
√
3, s(x) = 0.7184y3 + 0.3951 ŝ(x),

t̂(x) = z(x2 + y2 + z2)/
√
3, t(x) = 0.7184z3 + 0.3951 t̂(x).

The three polynomials r(x), s(x), t(x) are responsible for the three largest singular
values of Λ3. The smallest singular value of 4π/105 comes from the polynomial
q(x) = xyz. Let W denote the six-dimensional subspace in H3 that is the orthogonal
complement of the subspace spanned by r(x), s(x), t(x) and q(x),

H3 = Rr ⊕ Rs⊕ Rt⊕ Rq ⊕W.

The sphere in W is five-dimensional, and the condition number of F2
3 on S5 is η =

1.2769.

N ≈ 3V5

V5
fη=1.27(ǫ)

−5 =
90π

16
fη=1.27(ǫ)

−5.

For ǫ = 0.1, 0.05, 0.01, the result above gives N ≈ 1943, 6021, 85495, respectively.

4. Experimental Results. In this section we experimentally validate the pro-
posed theory and at the end of this section we present an application to Diffusion-
Weighted MRI. In all the experiments we use tensors in R3, which can be visualized
by plotting the corresponding homogeneous polynomial P (x, y, z) as a spherical func-
tion (see Fig. 4.1). Such tensor glyphs can be generated by scaling the radius of a
unit sphere at orientation x = [x y z]T with the value of P (x, y, z). Additionally, we
assign a color to each tensor glyph by using the following coloring scheme: we use the
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Fig. 3.3. The geometry of the map F2

3
. Left: HS3 is the nine-dimensional sphere S9. The

decomposition of H3 into four subspaces of dimensions of 3, 3, 3, 1 respectively implies that HS3

contains separate copies of sphere S2,S2,S2 and S0. F2

3
maps these spheres to spheres of radii

52π/83, 68π/699, 8π/105 and 4π/105, respectively. Right: The number of generators in Σ2,Σ4

and Σ6 that can ensure the given accuracy requirement ǫ. The plots for m = 1, 2, 3 are in red, blue
and green, respectively.

Fig. 4.1. Examples of randomly computed symmetric positive semi-definite tensors in Ω2, Ω4,
Ω6. The tensor glyphs are shown.

method in [11, 22] to compute the unit vector [x y z]T that maximizes P (x, y, z) and
then we assign to the R,G,B color channels the squares of the three components in
the vector x (i.e. R = x2, G = y2, B = z2). This color map produces smooth color
transitions when visualizing fields of tensors such as the diffusion tensor fields.

First, we construct a dataset with samples from Ω2m as follows: we first generate
random vectors in Rd(m) using the normal distribution N(µ = 0, σ2 = 1) in d(m) = 3,
6, and 10 dimensions, and we use them as coefficients of linear, quadratic and cubic
homogeneous polynomials p ∈ HS1, HS2, HS3 in three variables, respectively. Then
we construct 2nd, 4th and 6th-order positive semi-definite tensors that belong to Ω2m

by taking sums of squares of the polynomials in HS1, HS2, HS3, respectively. This
process is repeated for 5000 times for each order, producing a dataset of 15000 tensors
in total. Several of the generated tensors are shown in Fig. 4.1(right). The primary
goal of the aforementioned process is to generate samples from Ω2m in order to test
the error analysis presented in Section 3, and it should not be perceived as a DW-MRI
simulation as in this section we do not discuss any application of the proposed method
to DW-MR imaging.

In order to investigate how many generators in the finitely-generated cone ΣC
2m

are necessary for our algorithm to approximate accurately a set of given tensors, we
apply our framework to the previously described synthetic dataset using finite subsets
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Fig. 4.2. Comparison of the proposed formulas for computing N for m=1,2,3 with results
produced using a numerical approximation algotithm. The horizontal axis show the the accuracy
achieved by N finite generators (vertical axis) in the unit n-sphere. The circles show the numerical
results produced for specific sets C of various sizes N .

C ∈ HSm of various sizes N . The sets C are constructed as the vertices computed
by triangulating the unit n-sphere. The triangulation is based on a variation of the
algorithm for mesh generation presented in [39], which extends to any dimension n
of the n-sphere. This method is an iterative force-based technique that uses a force
displacement function to move the nodes of the mesh and the Delaunay triangulation
[14], which is a fundamental and widely used triangulation process, to adjust the
topology (i.e. the edges). Obviously, in our particular case we discard the edge
information since we only need the finite set of nodes. This algorithm produces at
the end the finite subsets C ∈ HSm for different predefined sizes N .

We first use the constructed finite sets C in a numerical framework for approxi-
mating the error rate ǫ achieved by the finitely-generated cone ΣC

2m for m = 1, 2, 3.
The numerical calculations were performed by randomly generating points in the n-
sphere and testing if each point lies inside or outside the cone ΣC

2m. The error rate ǫ
is the ratio of the points outside the cone over the total number of generated points.
For each numerical computation we used 100k points. The numerical approximations
are shown as circles in Fig. 4.2. By observing the figures we can see that in most of
the cases the numerical approximations are close to the proposed formulas for com-
puting N . We should note that the results are based on the computed sets C using the
method in [39]. One may expect that the results will be slightly different if another
method is employed for triangulating the n-sphere.

We also use the sets C in a non-negative least squares (NNLS) optimization frame-
work [28] in order to estimate tensors from the finitely-generated cone ΣC

2m that ap-
proximate the given 15000 tensors. For each order of tensors, the NNLS system is
formulated as Aw = b, where A a matrix constructed from C, w the unknown solu-
tion vector and b contained the values of the given positive-semidefinite homogeneous
polynomial at K = 81 three-dimensional unit vectors x1 · · ·x81 (producing 81 com-
ponents of b as b1 = P (x1) · · · b81 = P (x81)) for each tensor in the dataset. Although
this problem seems extremely unconstrained in general, in our particular case the
NNLS algorithm by definition constrains the number of non-zero elements in the so-
lution vector to be at most d(2m), which is significantly smaller than the number
of data points K in all of our experiments. In order to estimate such a constrained
solution the NNLS algorithm implements a basis selection mechanism that starts with
a set of possible basis vectors in C, computes the associated dual vector, and then
reselects the basis in the solution by iteratively performing swaps in order to minimize
the entries in the dual vector until they are all non positive. In our particular case
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of m = 1, 2, 3 the estimated unknown non-zero entries are 6, 15, 28 respectively which
are all significantly smaller than the number of given samples K = 81. For a detailed
description of the NNLS algorithm the reader is referred to [28].

The solutions w provide tensors in ΣC
2m that approximate the given tensors in

Ω2m, for m = 1, 2, and 3. The computed tensors are compared to the ground truth
(given) tensors using the relative L1-error (fitting error):

∫

S2 |Pgiven(x) − P (x)|dx
∫

S2 |Pgiven(x)|dx
. (4.1)

The histograms of the errors found in the experiments (measured by Eq. 4.1) are plot-
ted in Fig. 4.3 for the case of 2nd, 4th, and 6th-order tensors, respectively. Obviously,
by increasing N , i.e. the number of generators in the finitely-generated subcone ΣC

2m,
the error decreases correspondingly. The table in Fig. 4.3 reports the mean errors for
various difference sizes N of the generator set.

The experimental results presented in Fig. 4.3 and Fig. 4.4 validate empirically
our method as the results corroborate well with our previous analysis on the number
of generators required for a given relative error bound. For 2nd-order tensors, the
analysis in Section 3 shows that for the error to be less than ǫ = 10%, 1%, 0.1%, it
requires approximately N ≈ 30, 130 and 600 generators, respectively. The first plot
in Fig. 4.3 shows that with N = 45, there are no occurrences of error greater than
10%, and with N = 150, there are no occurrences of error greater than 1%. With 321
generators, the error becomes negligible. For 4th-order tensors, our analysis shows that
for the error to be less than ǫ = 10%, 5%, it requires approximately N ≈ 1800, 4670
generators, respectively. This can be seen from the second plot in Fig. 4.3. With
N < 1500 generators, there are occurrences of 10% error, and with N ≥ 1500, there
are no occurrences of error greater than 10%. To decrease the error under 5% level,
the plot shows that we need at least N = 3000 generators. Finally, for 6th-order
tensors, our analysis shows that for the error to be less than ǫ = 10% and 5%, it
requires approximately N ≈ 1943 and 6021 generators, respectively. The third plot
in the figure show that at N = 3000, there is only a small percentage of errors greater
than 10%, and with N = 6000, there is an even smaller percentage (less than 1%) of
errors greater than 5%. In most cases, our earlier analysis underestimate the required
numbers of generators, and this is not surprising as these analysis are themselves
based on several approximations. Nevertheless, the experimental results do agree in
general with the predictions made in Section 3.

Figure 4.4 shows the running time of the optimization method for fitting one
tensor versus the approximation error for various orders and number of generators N
in the set C. The running times are measured using an Intel Pentium Dual CPU at
1.60 GHz and 1GB RAM. The plots demonstrate that the proposed technique can
efficiently estimate positive tensors of various orders. More specifically, 2nd, 4th, and
6th-order tensors can be estimated using finitely-generated subcones of size N = 45,
N = 900, and N = 6000 at 0.5ms, 12ms, and 243ms, respectively.

4.1. Application: Diffusion-Weighted MRI. Finally, we present an appli-
cation of the proposed tensor approximation theory to Diffusion-Weighted MRI (DW-
MRI). In several DW-MRI processing methods, a diffusion tensor is computed from
the acquired diffusion-weighted signals. Negative diffusion values are non-physical;
therefore, appropriate methods such as our proposed framework are necessary to en-
sure positive semi-definiteness of the estimated Diffusion tensors.
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Fig. 4.3. Histograms of tensor fitting errors obtained by our method for the case of 2nd, 4th,
and 6th-order tensors respectively, using various sizes N of the set C. The vertical axis corresponds
to the percentage of the tensors in the dataset (i.e. number of occurances), and the horizontal axis
corresponds to the given fitting error.

In order to demonstrate the necessity for estimating tensors with the positiv-
ity constraints, we compare our method with an existing one that computes tensors
without the constraints [35]. In this experiment, we use the aforementioned synthetic
dataset of 6th-order tensors, and we sample the corresponding homogeneous polyno-
mials using K = 81 3-dimensional unit vectors x1 · · ·x81 in the Stejskal-Tanner model
[45], producing 81 DW-MRI samples for each tensor in the dataset. Various levels of
Rician noise are added to the samples with standard deviations ranging from σ = 0.04
up to σ = 0.12. The noisy datasets are given as inputs to: a) the proposed algorithm
(using N = 6000), and b) the method proposed in in [35], which is one of the several
existing methods in the literature [15, 19] that estimate 6th-order tensors. For both,
the computed 6th − order tensors P (x) are compared to the ground truth tensors
using the error defined in Eq. 4.1.

Figure 4.5 shows the comparison of the fitting errors between the two methods for
various levels of noise in the data. The results conclusively demonstrate that tensors
estimated using positivity constraints approximate the data significantly better than
the ones without. We also note that this result agrees with similar comparisons
reported earlier for tensors of lower orders (e.g. 4th-order comparison in [5]), showing
that the errors incurred in approximating positive-valued functions are significantly
smaller when positivity constraints are enforced in the process. Our current results
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Fig. 4.4. Plots of the running time of our method for fitting one tensor versus the approximation
error for the case of 2nd, 4th, and 6th-order tensors, using various sizes N of the set C. The
vertical axis corresponds to the obtained mean fitting error, and the horizontal axis corresponds to
the execution time.

have provided further evidence that supports the importance of imposing positivity
constraints in this context.

In order to illustrate the performance of our framework on real data sets, we
applied the method to a DW-MRI data set of an excised rat hippocampus (shown
in Fig. 4.6). The data set contains 46 images acquired using a pulsed gradient spin
echo pulse sequence, with 45 different diffusion gradients and approximate b value
of 1250s/mm2. Figure 4.6 shows the computed 6th-order diffusion tensor field. The
highlighted regions of interest demonstrate the variability of the estimated structures.
At each voxel, the fiber orientations can be estimated from the peaks of the displace-
ment probability, which can be computed from the diffusion tensors as was shown in
[5].

Finally, Fig. 4.7 presents the results obtained by applying our method to a DW-
MRI dataset from an excised rat optic chiasm. The data acquisition protocol was the
same as in the rat hippocampus dataset. The computed field of 4th-order diffusion
tensors is shown in the center. Using the estimated diffusion tensors, we can compute
the underlying fiber orientations by computing the orientations that correspond to
the maxima of the water molecule displacement probabilities. The computed fiber
orientations are shown on the right and they agree with the known fiber orientations
in the optic chiasm. Further quantitative validations of these orientations with respect
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Fig. 4.5. Comparison of the 6th-order tensor fitting errors obtained by the proposed method
and the technique in [35] for various Rician noise levels in the data.

Fig. 4.6. DW-MRI dataset from an isolated rat hippocampus. The image without diffusion
weighting (S0) is shown on the top left. The 6th-order diffusion tensors estimated by the proposed
method are shown as a field of spherical functions. The three regions of interest depict 6th-order
diffusion tensors that model one, two, and three fiber structures.

to those from histology will be performed as part of our future work.

5. Discussion and conclusions. Symmetric positive semi-definite tensors have
been used in many applications. Although there are existing methods for imposing
positivity constraints on the estimated tensors of order two and four, none of these
techniques can be easily extended to higher orders. In this paper, we presented
a framework for estimating PSD tensors of any order by approximating the space
(cone) of PSD tensors with a finitely-generated subcone Σ2m. We discussed in detail
the geometry of the higher-order tensors, and we presented an explicit characterization
of the approximation, using the subset of semi-definite tensors that can be written as
a sum of squares of tensors of order m. This approximation leads to a non-negative
linear least-squares (NNLS) optimization problem, which can be efficiently solved, as
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Fig. 4.7. DW-MRI dataset from an isolated rat optic chiasm. A field of 4th-order diffusion
tensors computed by the proposed method is shown in the central plate. The corresponding estimated
fiber orientations are shown on the right.

it was demonstrated using synthetic datasets and real diffusion-weighted MR images.
An interesting property of the NNLS optimization algorithm is that it produces

sparse solution vectors. In our particular case, although the problem seems signifi-
cantly unconstrained, the solution vector contains at most d(2m) non-zero weights,
which corresponds to the rank of the basis matrix. Therefore if the finitely-generated
set C contains a few thousands bases, the algorithm will select only 6, 15, 28 for
tensors of order 2, 4, and 6 respectively. Note that the number of non-zero weights
in the solution vector equals to the number of the unique unknown parameters of
the symmetric tensor in each case. The sparsity of NNLS in comparison with other
optimization techniques for modeling the diffusion-weighted MR signal has also been
studied in [27].

In our experiments the sets C were generated by tessellating the unit n-sphere
using the iterative force-based technique in [39]. The vertices produced by this algo-
rithm form the finite subset C ∈ HSm for different predefined sizes N . An alternative
approach could involve constructing C as a finite dictionary of elements in HSm by
running a training algorithm on a control dataset [31]. A finite set of diffusion basis
for multi-fiber reconstruction is also employed by the method in [43].

One of the advantages of the proposed algorithm is that it enforces positive semi-
definite constraints to the estimated tensors. The need for positivity constraints in
DW-MRI has been demonstrated in [6] and [5]. It has been shown that unconstrained
methods may yield negative diffusivities in real datasets, especially in voxels with high
anisotropy or in the presence of noise in the data.

Finally, although high order tensors can approximate several distinct fiber orien-
tations, in the current standard clinical settings for DW-MRI acquisition most of the
multi-fiber reconstruction techniques cannot estimate more than two fiber orientations
[41], due to the low diffusion weighting (b-value) and the small number of gradient
orientations. However, theoretically or in experimental settings with higher b-values
and larger sets of diffusion gradient orientations, the proposed technique can estimate
up to 2 and 3 distinct fiber orientations using tensors of order 4 and 6 respectively,
which also agrees with the results presented in [35].
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