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Tensor Splines for Interpolation and Approximation
of DT-MRI With Applications to Segmentation
of Isolated Rat Hippocampi

Angelos Barmpoutis, Baba C. Vemuri*, Timothy M. Shepherd, and John R. Forder

Abstract—In this paper, we present novel algorithms for sta-
tistically robust interpolation and approximation of diffusion
tensors—which are symmetric positive definite (SPD) ma-
trices—and use them in developing a significant extension to an
existing probabilistic algorithm for scalar field segmentation, in
order to segment diffusion tensor magnetic resonance imaging
(DT-MRI) datasets. Using the Riemannian metric on the space of
SPD matrices, we present a novel and robust higher order (cubic)
continuous tensor product of B-splines algorithm to approximate
the SPD diffusion tensor fields. The resulting approximations
are appropriately dubbed rensor splines. Next, we segment the
diffusion tensor field by jointly estimating the label (assigned to
each voxel) field, which is modeled by a Gauss Markov measure
field (GMMF) and the parameters of each smooth tensor spline
model representing the labeled regions. Results of interpolation,
approximation, and segmentation are presented for synthetic data
and real diffusion tensor fields from an isolated rat hippocampus,
along with validation. We also present comparisons of our algo-
rithms with existing methods and show significantly improved
results in the presence of noise as well as outliers.

Index Terms—Affine invariance, approximation, diffusion ten-
sors, interpolation, segmentation.

I. INTRODUCTION

NALYSIS of matrix-valued image data is becoming quite

common as advances in imaging technology allow for the
collection of matrix-valued datasets. In medical imaging, in the
last decade, it has become possible to collect magnetic reso-
nance imaging (MRI) data that can be used to infer the apparent
diffusivity of water in tissue in vivo. A rank 2 tensor has been
commonly used to approximate the diffusivity profile at each
lattice point of the image lattice [1]. This approximation yields a
diffusion tensor magnetic resonance imaging (DT-MRI) dataset
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that is a matrix-valued image. These tensors are elements of the
space of the (3 X 3) positive-definite matrices denoted by P(3).
A word on terminology, the space of symmetric positive definite
(SPD) rank 2 tensors describes the space of all SPD matrices
and in general, we use the notation P(n) to denote the space of
SPD matrices of size (n, n). In this paper, we will be concerned
only with rank 2 tensors and for brevity, we will drop the term
rank 2 and simply use the word tensors to imply rank 2 tensors.
Mathematically, these positive definite diffusion tensors belong
to a Riemannian symmetric space [2], where the Riemannian
metric is defined by the inner product assigned to each point
of this space. By using this metric, one can compute geodesic
(shortest) distances between the points (diffusion tensors) of this
space and compute various statistics in this space [3]-[8].

Processing of DT-MRI datasets has scientific significance in
clinical sciences. Most of these applications involve processing
that more often than not involves interpolation of the diffusion
tensor fields. For example, registration of DT-MRI datasets will
require interpolation to be employed when a registration trans-
formation is applied to a tensor field defined on a lattice. Other
examples that require tensor field approximation as well as in-
terpolation include tensor field segmentation, atlas construction,
etc.

In this paper, we present a novel diffusion tensor field approx-
imation algorithm. Our algorithm approximates and interpolates
the diffusion tensor fields by forming a higher order continuous
tensor product of B-splines using the Riemannian metric on the
space of SPD matrices. Our method involves a two-step pro-
cedure wherein the first step uses Riemannian distances to eval-
uate a tensor spline by computing a weighted intrinsic average of
tensors and the second step minimizes the Riemannian distance
between the evaluated tensor spline and the given data. Further-
more, we present a novel DT-MRI multimodal (multiclass re-
gions) segmentation algorithm using the proposed tensor splines
as an approximation module. The segmentation is achieved by
jointly estimating the label (assigned to each tensor residing at a
voxel) field and the parameters (control points) of each smooth
tensor spline model representing the labeled regions. The label
field is modeled by a Gauss Markov measure field (GMMF) and
the segmentation algorithm very efficiently computes the poste-
rior marginal probability distribution of the label field (given the
parameters describing the region model) as the global minimizer
of a linearly constrained quadratic energy.

We present comparisons of our algorithms with existing
methods applied to synthetically generated diffusion MRI
data, and show significantly improved results in the presence
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of noise and outliers. We also present several 3-D DT-MRI
approximation and segmentation results from an isolated rat
hippocampus. The motivation for segmenting and analyzing the
hippocampus is due to its importance in semantic and episodic
formation that is particularly vulnerable to acute or chronic
injury [9], [10]. In current clinical practice, we only look
at the whole hippocampus and describe atrophy for epilepsy
(hippocampal sclerosis), schizophrenia, depression, hypoxia-is-
chemia, trauma, and Alzheimer’s disease and other dementias.
Obviously, these cannot be distinguished from each other
and hippocampal atrophy is a late imaging sign of pathology.
However, we know from more than 100 years of literature that
the hippocampus is made of many different cytoarchitectural
regions and that these regions are selectively vulnerable to the
aforementioned diseases (e.g., the CA1 and subicular regions
are affected by Alzheimer’s disease while the dentate gyrus
is affected by medial temporal lobe epilepsy). These regions
can be distinguished by diffusion tensor MRI. Thus, the seg-
menting techniques being developed here could prove useful to
improving the sensitivity and specificity of diffusion MRI for
detecting and monitoring hippocampal diseases. We can also
use these methods for studies in animal models of hippocampal
disease. Structural insights from high-resolution DT-MRI
imaging of the isolated rat hippocampus were presented previ-
ously [11]. In our experiments, we use these structural results
[11] for validation of the obtained segmentation.

In the following sections, we review several existing methods
for tensor field interpolation/approximation and segmentation.
Section II contains the mathematical preliminaries on geometry
of the space of diffusion tensors that will be used in developing
the interpolation and approximation algorithms. In Section III,
we present the tensor splines interpolation and approximation
algorithms. Section IV contains the application of these algo-
rithms as a module in a tensor field segmentation algorithm.
Section VI contains the discussion and conclusion.

A. Tensor Field Interpolation and Approximation

Directly performing smooth interpolation of the individual
components of the diffusion tensor matrices [12] does not pre-
serve most of the properties, e.g., the value of the determinant
of the diffusion tensors, etc. This motivates us to seek alterna-
tive methods to achieve interpolation/approximation and seg-
mentation. Smooth interpolation of orientation fields has been
proposed in [13]. Although rank-2 tensors contain the notion of
orientation (e.g., the orientation of its eigenvectors), their struc-
ture is much more complicated. Wang and Vemuri [4], [5] used
the symmetrized Kullback—Liebler (KL) divergence as a “dis-
tance” measure between two SPD tensors. They also derived a
closed form solution for computing the mean of two or more
SPD tensors. This result can be used in the context of interpola-
tion and approximation of SPD tensors but this aspect was never
explored. In [3], [14], and [15], a Riemannian metric was pro-
posed for geodesic distance computation between two tensors.
However, none of these methods on geodesic curve computa-
tion between tensors use higher order smoothness constraints
in achieving the interpolation/approximation. Thus, although
there is continuity of the interpolated dataset, higher order con-
tinuity and hence smoothness is lacking. Recently, a log-Eu-
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clidean metric was proposed in [16] for computing with tensors.
In this work, the elements from the space of positive definite
diffusion tensors, P(3), are mapped to their tangent space, de-
noted by Sym(3), using the matrix logarithm map. The tangent
space of P(3) forms a vector space of dimension 6. Therefore,
one can use the Euclidean norm for computations in this tangent
space and finally by using the inverse mapping, the interpolated
data are mapped back to the space of positive definite matrices
P(3). This framework is very interesting and has advantages
due to its high computational efficiency. Approximation of ma-
trix-valued images can be achieved via various regularization
methods. For instance, a PDE-based approach as was proposed
in [17]. Another tensor field regularization method was pro-
posed in [18] using normalized convolution and Markov random
fields (MRFs) in a Bayesian framework. The SPD tensors are
treated as vectors in 6-D and their components are treated inde-
pendently. Most of the aforementioned methods disregard the
special geometry of the space of SPD diffusion tensors in the
regularization, which in turn may lead to inaccurate predictions
(e.g., wrong determinants, lack of affine invariance, etc.).

Affine invariance is a desirable feature for segmentation al-
gorithms to possess. Many a time, when a patient being im-
aged moves, the image data undergo rigid motions; moreover,
if there are breathing artifacts, data undergo an affine deforma-
tion. Other scenarios include pre- and the post-surgical DT-MRI
data acquired from the same patient, data acquired over time
depicting tumor growth, etc. In these latter situations, the diffu-
sivity of the underlying tissue microstructure is altered and does
not remain constant. The true transformation of the diffusivity
is actually unknown and an affine transformation is at best an
approximation. Under these conditions, it is desirable to have
affine invariance of the segmented structures, i.e., the segmen-
tations of the two images should be related by the same affine
transform that the two images are related by.

In [19], it was shown that, under the assumption of tissue mi-
crostructure remaining intact between two data acquisitions, the
diffusion tensors are always transformed (pre- and post-multi-
plication) only by rotations regardless of the order of the trans-
formation relating the two image coordinate systems. This is
certainly true for the case when there is a rigid motion of the pa-
tient between the two acquisitions. However, there are many ap-
plications that do not guarantee this condition and the research
reported here is an attempt to address this problem through the
imposition of an affine invariance requirement on the segmen-
tation. The claim is that if the relationship between the two
image’s coordinate systems denoted by X and Y can be approx-
imated by an affine transform, the diffusion tensors estimated
from each image would be related by 1y = A'I'x A, where T
and Ty denote the tensor fields on the coordinate systems X
and Y, respectively. This is mathematically precise and would
hold when there are microstructural changes that can be approx-
imated by affine transforms. For more details on affine invariant
segmentation, the reader is referred to [5].

B. Tensor Field Segmentation

In this section, we will briefly review SPD tensor field seg-
mentation algorithms. In [20], Zhukov et al. proposed a level set
segmentation method that segments the scalar anisotropic prop-
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erty computed from the diffusion tensor. By using such a scalar
field, the direction information contained in the tensor field has
been ignored. Thus, such a method will fail to correctly seg-
ment two homogeneous regions of a tensor field that have the
same scalar anisotropy property but are oriented in different di-
rections. Feddern et al. [21] extended the mean curvature flow
and self-snakes models to matrix-valued data. However, their
method employs the Euclidean metric to measure distance be-
tween tensors and not the Riemannian metric discussed ear-
lier. Thus, it does not possess some of the interesting properties
that accrue from the use of a Riemannian framework (e.g., the
affine invariance property, etc.). Wang et al. [4] developed a re-
gion-based active contour model for tensor field segmentation.
They generalized the well known region-based active contour
model for scalar field segmentation to that of tensor fields, and
developed a variational principle using the Forbenius norm of
the difference of tensors as a discriminant in the data term. More
recently, Lenglet et al. [15] developed a statistical surface evo-
lution framework using the Fisher-Rao metric. They employed
the principle that within a region the diffusion tensors can be
modeled by using statistics and distributions of diffusion ten-
sors. The surface evolution framework and the active contour
models can be extended to cope with multiple types of regions,
but such an extension is computationally expensive and can be
quite cumbersome.

II. MATHEMATICAL PRELIMINARIES

In this section, we briefly review the geometry of the space
of diffusion tensors. More detailed expositions on some of this
material may be found in [3], [6], and [7].

The space of rank 2 diffusion tensors can be viewed as a Rie-
mannian symmetric space [22], where a Riemannian metric as-
signs an inner product to each point of this space. By using this
metric, we can compute geodesic distances between diffusion
tensors and calculate statistics on this space [3], [6], [7]. For
example, the mean tensor of a set of diffusion tensors can now
be computed as that tensor that minimizes the sum of squared
Riemannian distances between itself and the given set of ten-
sors. The mean tensor may be employed as an interpolant for
performing principal geodesic analysis, etc.

In the aforementioned Riemannian framework, the
distance between two tensors T; and T, is given by
dist?>(Ty,Ty) = trace(log(T; /2T, T, Y/?)2), where
log is the matrix logarithm operation. By using this dis-
tance measure, the geodesic curve (shortest path) be-
tween T; and To is defined uniquely. The tangent, spec-
ified at the first tensor with respect to the other one
along the unique geodesic between them, is a 3x3 sym-
metric matrix and is given by the Riemannian-log map,
Logp,(T2) = T:"?log(T:~*ToT,~Y/2)T, /. The
inverse operation is given by the Riemannian-exp map,
Expy (T) = T2 exp(T,~2TT,~*)T, /2, where Exp
is the matrix exponential operation and T is a 3x3 symmetric
matrix. We will use this Riemannian distance between SPD ten-
sors in computing the distance between the given data and the
tensor spline approximation of the data as well as in computing
the weighted average for defining the tensor spline. In the
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following section, the Riemannian exponential and logarithmic
maps, and the expression for a geodesic between two diffusion
tensors, will be used in order to define and compute the tensor
splines.

III. TENSOR SPLINES

In this section, we present a novel and robust spline ap-
proximation algorithm given a noisy SPD tensor field. Our
algorithm involves the use of the Riemannian distance between
SPD tensors in order to evaluate a tensor spline by computing
a weighted intrinsic average of SPD tensors. This module
(the intrinsic weighted average calculator) is then used in a
robust tensor product B-spline fitting method involving the
minimization of the Riemannian distance between the tensor
spline function and the SPD tensor valued data. The tensor
valued data are obtained from the diffusion MRI datasets by
fitting the mono-exponential signal attenuation model, called
the Stejskal-Tanner equation [23].

This section has three subsections. First, we provide a brief
review of B-splines. Next, we present a novel algorithm for
computing splines on a given SPD tensor field. Following that,
we present tensor splines using the log-Euclidean metric as an
improvement over recent work in [16] (described earlier). Then,
we present our robust tensor spline approximation algorithm. Fi-
nally, a robust tensor spline approximation (fitting) technique is
presented.

A. B-Splines
The equation for a (k — 1)th degree B-spline with (n + 1)
control points (cg,c1,...,¢,) and n + k + 1 numbers called

“knots” (t,k+1, t_ kg2, 7tn+1), is

St =Y Ni(t)e: (1)
=0

where {9 < t < ¢, 11_(x—1)- Each control point is associated
with a basis function N; i, where

Nip = {0, otherwise @
and
t—1; tiazp —t
Ni(t) = Nijo1 () 7 + Nig g1 () — .
tipho1 = ti ——
3

N, 1 (t) functions are polynomials of degree k—1. Cubic basis
functions N; 4 can be used for a third degree B-spline. Knots
must be series of monotonically increasing numbers. A more
detailed discussion on B-splines can be found in [24].

One useful property of the functions N; ;. (¢) is that N; 1 (t) >
0,foralliand ), _, N; (t) = 1. Considering the above prop-
erties, functions N; i, (t) behave as blending functions and (1) is
a weighted average of the control points c;.

B. Tensor Spline Interpolation

Given two SPD tensors P and P5, we can use the tangent
direction specified at P; with respect to P» by the unique
geodesic (obtained using the Riemannian structure) between
them. Even though there is continuity of the interpolated ten-
sors, there is lack of higher order continuity. It is more natural
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Fig. 1. (a) Tangent space of the manifold M of diffusion tensors at point p; .
The tangent vector X points to the direction of geodesic v(t) between the points
p1 and p2. (b) A cubic tensor spline S(t), that approximates p;s of a 1-D tensor
field. The given points p; and the points of the tensor spline S(#) are SPD
matrices, elements of the Riemannian manifold /. Seven control points ¢; and
11 knots ¢; are required. The association between basis functions NV; 4 ( t), knots
t,; and given data points p; is displayed in this figure.

to have a higher order continuity in the interpolant when used
to represent smoothly varying regions of tensors.

Recent work in [12] on continuous tensor field approxima-
tion achieves smoothness; however, a Riemannian framework
is not employed for tensor calculations. In this section, we de-
fine tensor splines that are curves interpolating or approximating
matrix valued functions, constructed using the geometry of the
space of SPD tensors. Note that we are defining tensor-splines
by doing weighted intrinsic averages on P(n) and choosing the
weight functions to be B-splines. As an illustration of interpo-
lation on a 1-D grid of tensors, Fig. 1(b) depicts the idea of
using weight functions (B-splines here) to perform weighted
average of tensors using the Riemannian metric. This weighted
averaging leads to the desired degree spline interpolant (approx-
imant when used in a fitting problem) of the diffusion tensor
data.

Let us assume that we have a set of N diffusion tensors
(Po, P1,---,PN—1) on a one-dimensional grid, and we need to
interpolate between them. Linear (first degree) interpolation on
the tensor space can be achieved by simply computing points
on the geodesics connecting two consecutive diffusion tensors.
Higher degree continuous interpolation can be achieved by
using a set of control points and a knot vector. A k£ — 1th degree
tensor spline that fits to our data requires N 4k —2 control points
(co,c1,-..,CNt+k—3) that are also tensors and N + 2(k — 1)
monotonically increasing knots (¢ 41, g+2,---stN4E—2)-
A tensor S(t), where t € [t;,t;41), which is a point on a tensor
spline, can now be computed by generalizing (1) to the space of
tensors. We can compute the value S(¢) of the & — 1th degree
B-spline of tensors for a particular ¢ value, by calculating a
weighted intrinsic average, ), of the control tensors c;, where
the weights are the basis functions w; = N; (), discussed
earlier

—~N
Zi:owici.

The intrinsic weighted average (4) of tensors is defined using
the Riemannian distance instead of the Euclidean distance, and
it is the minimizer of the function

S(#) @)

min
HEP(n)

®)

1 )
= min = w;dist(p, c;

HEP(H) 9 ; 7 (Il'v 1)
where dist(-,-) is the Riemannian geodesic distance. The
weighted average can be computed using a gradient descent

algorithm that is an extension of the algorithm described in
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[3] for computing the mean of tensors. The gradient of p(u) is
given by

Vup (0)

n
= _Zi:owiLOg“ (ci)-
Thus, the intrinsic weighted average of a set of diffusion tensors
can be computed using the following procedure:

input : ¢y, ...,cy € P(n)
wi, ..., wn weights

output: . € P(n), the weighted mean
o —1;
7+—0;
while || X; |[> e do

Xi— =Vup;

pit1 < Exp, (X;) 3
end

Algorithm 1: Intrinsic weighted mean of tensors.

C. Tensor Spline Approximation

In order to fit a tensor spline to the diffusion tensor data,
we have to approximate the control tensors of such a spline. A
tensor spline that fits to our data, minimizes the Riemannian dis-
tance of the given tensors from the tensor spline curve

N

In (7), the Riemannian metric should be used for the distance
calculation, since the tensor space, where the data and control
points live, is a curved manifold (convex cone). We need to find
a set of control points (cg,cCy,...,Cy_14+k—2) that form the
spline S(t) which minimizes the energy E. The gradient of E
with respect to c; is then given by

1 N-1 . 2
Ve,E = ﬁzizo Vs dist(S(t:), pi)*Ve, S(t:).  (8)

The gradient of the square distance between S(¢;) and p; with
respect to S(t;) equals

Vs dist(S(t:), pi)* = —2Logs(.)(pi) ©)
where Logg,,)(p:) is the Riemannian logarithmic map, which
is a tangent vector at S(¢;). Since the gradient of the energy [see
(8)] is with respect to c;, we need to express the gradient in (9)
by using tangent vectors at point ¢;. Taking this into considera-
tion, (9) can be approximated by the formula A, (p;, S(t;))
Log., (p:) — Log., (S(t:)), so we obtain

Vs dist(S(t:), pi)° & —2Ac, (i, S(t:)).  (10)

Furthermore, the gradient of S(¢;) with respect to c; in (8) is

Ve, S(ti) = Njr(ti). (11
Using (11) and (10) in (8), we obtain
1 N-1
Ve, E=—-— A, (Pis S(t:))Njx(ti).  (12)

N i=0
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Starting with an initial guess of the control tensors, we can up-
date them by using the gradient descent technique. The new
values ¢’; of control tensors will be

1 N-1

c/j = EchJ_ (sz’_o

where Exp(.) is the Riemannian exponential map. The initial
guess of the control tensors can be either the given data or the
average tensor of the given tensors. The gradient descent algo-
rithm is summarized as follows:

Ac_7<pi,s<ti>>Nj,k<ti>) (13)

input : N tensors (po, ..., PN—1)s
N+2(k-1) monotonically increasing knots
(t—kt1s o EN—14R—1)
k, and a small value e
output: N-1+k-1 control tensors
(€0, CN—14k—2)
| Xo || «— e+l;
while > | X; [|> ¢ do

Evali;ate S(t;) for i=0 ... N-1 ;
for j=0 to N-1+k-2 do
X « zero matrix ;
for i=0 to N-1 do
| X Xj+ Ac; (i, S(E:))Nj e (t) 5
end
c'j — Ezp, X ;
end
c+—c;

end

Algorithm 2: Control tensors estimation.

The time complexity for a single iteration of Algorithm 2 is
of order O((k%c)N), where k is the degree of the spline, d is
the dimensionality of the dataset (for 3-D data d = 3) and ¢
is the number of iterations of Algorithm 2, and N is the given
input data size (number of tensors to be approximated). In the
experiments that we performed, we found that Algorithm 2 con-
verges in at most in five iterations (¢ < 5), a CPU time of 9.37 s
per iteration on a Pentium 2.4-GHz processor for fitting a cubic
(k = 3) tensor spline in a dataset of size 128 x 128. As ex-
pected, the time complexity of Algorithm 2 increases as we in-
crease the degree of the spline k or the dimensionality of the
dataset d. Note that we chose to provide this machine indepen-
dent measure of time complexity because execution time will
depend on the machine architecture and therefore is not a pre-
ferred measure.

The error introduced by the approximation of (10) can be
large, if the tensor spline approximation S(;) is far from the
target p;. When S(¢;) tends (moves closer) to p; during the
spline fitting procedure, the error introduced by the approxima-
tion of (10) tends toward zero. By setting a small threshold e
on the difference between consecutive iterates, the outer loop
of Algorithm 2 will be iterated sufficient times in order for the
error of (10) to be as small as needed. Thus, the control tensors
c;, which are obtained as the output of Algorithm 2, are esti-
mated by taking the true geometry of P(n) into account.

Tensor splines can be easily extended to higher dimensional
tensor fields. For example, consider the case of a 2-D N x M

tensor field. A (k — 1)th degree tensor spline that fits to our
data requires (N 4+ k — 2) x (M + k — 2) control tensors and
(N +2(k—1)) x (M +2(k — 1)) monotonically increasing (in
both the dimensions) knots (t_g+1,—k+1s - -+ » EN k=2 M+k—2)-
Note that in this case the knots are vectors with two elements,
one for each parametric dimension. Finally, the new basis func-
tions are formed by the tensor product of 1-D basis functions

N, jk([trta]) = Nig(t1) Nk (t2).

D. Log-Euclidean Splines

Recently, Arsigny et al. [16] proposed a new log-Euclidean
metric for tensor calculations. In this framework, the diffusion
tensors are first mapped using the matrix logarithmic map to
the space of the symmetric matrices Sym(n). Thereafter, the
Euclidean norm is used in all calculations in this space. Finally,
by using the matrix exponential mapping, the computed values
are mapped back to the manifold P(n). Using the log-Euclidean
metric we can also fit a spline to the logarithmically mapped data
in the space of symmetric tensors, and after that we can map the
interpolated/approximated symmetric tensors back to the space
of SPD tensors using the exponential mapping. In Section V, we
provide a quantitative comparison between tensor splines and
splines using the log-Euclidean metric that we will call “log-
Euclidean splines.”

E. Robust Tensor Splines

The presence of outliers is common in DT-MRI data due to
noise in the original data obtained from the MR scanners [25].
A robust algorithm should reject these outliers from further con-
sideration in any processing algorithms applied to the dataset.

A robust function can be applied to the energy function, in
order to weight the given data p; appropriately. We can use
a robust function that assigns weights in the interval [0, 1],
where weights that are almost zero imply rejection of the
corresponding data point. Furthermore, high weights should be
assigned to the data points whose distance from the unknown
spline curve is small and on the other hand lower weights
should be assigned to the data points whose distance from
the unknown spline is larger. Let us consider the following
function ¢(z) = e @)/(@*) whose derivative 1(z) has the
aforementioned properties. By using the above function ¢, the
energy function that we want to minimize can be written as

1 =N-1
E = ﬁzz':o ¢(dist(S(:), pi)).

The gradient of this energy with respect to the control tensors
now becomes
1 N-1

VC]E == —N i=0

(14)

P(dist(S(t:), pi))
XAc; (pi, S(ti)) Njk(ts).

In the above equation the quantity (dist(S(¢;),p:)),
weights the given data points p;, leading to a spline approxima-
tion that is robust to outliers. The distance function dist(., .),
as it was previously mentioned, measures the Riemannian
distance between the tensors.

IV. APPLICATION TO SEGMENTATION OF DTI DATA

In this section, we pose the DT-MRI segmentation problem in
a Bayesian estimation framework, which has many advantages
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over the deterministic segmentation schemes in that it naturally
allows for incorporation of any specific domain knowledge in
the form of priors. Moreover, estimates are provided along with
the uncertainty in the estimate. Also, one can get a “soft” seg-
mentation, i.e., a probabilistic segmentation when necessary.
Our formulation of the segmentation problem is based on re-
cent work on scalar-valued image segmentation work reported
by Rivera et al. [26].

We assume that the given DT-MRI dataset p; consists of
K regions, where “4” is the lattice index. Furthermore, we as-
sume that each region is represented by a model Sy (¢;), where
k = 1...K. There are different choices for the model, which
can be either piecewise constant or a smoothly varying tensor
field model. In the space of diffusion tensors, the piecewise con-
stant model has a parameter 6 which is a 3 x 3 SPD matrix.
Therefore, for this model the equation Sy (¢;) = 6y holds for
all ¢;. In the case of smoothly varying tensor fields, we chose
a tensor product of tensor splines as our model S(;), whose
parameters are the control tensors c¢; defined in Section III-A.
The relation between the control tensors and the tensor spline is
given by (4).

Let by; be the label map, where by; = 1 indicates that the
diffusion tensor at the zth lattice point belongs to the kth region
class and by; = 0 otherwise. Considering the above notation,
a diffusion tensor dataset can be modeled as being generated
using a generative model given by the following equation:

K

pi=)  Si(t)bri+e (15)
where ¢; is assumed to be an independent identically distributed
noise process. In this framework, the parameters of the models
and the labels by; are assumed unknown and must be estimated
given a diffusion tensor dataset p;. The goal then is to estimate
these unknowns given the tensor field. A Bayesian framework
has been popular in literature for solving such problems and
an efficient solution for the scalar field segmentation was pre-
viously presented in [26]. Our formulation here extends their
formulation to cope with tensor fields.

Let v; be the probability that the diffusion tensor p; was
generated by the kth model. The likelihood of the label field
is then given by

bs
Poive =T, 1L (o)™ (16)
where c are the control tensors (parameters of the tensor
splines). In the case of tensor-valued images, we can define the
probability vy; as

1  dist(p;,Sp ()2
= ———¢ 202

2ro

a7)

Uki
where dist(.,.) is the Riemannian geodesic distance between
two SPD tensors. If we can estimate the marginal probabilities
Pki, the label field for a hard segmentation (assigns labels in a
yes/no fashion and not with a probability) can be estimated by

the maximum posterior marginals (MPM) estimator [27] which
is defined as

1,
bri = { 0.

if pr; > puifork #1

otherwise. (18)
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By using the above label field estimator, the unknown vari-
ables of our problem are the parameters of the models and the
marginal probabilities py;. There are two ways to estimate the
marginals: a) the mean field approximation [28] and b) Gauss
markov measure field (GMMF) model [27]. The mean field ap-
proximation leads to algorithms that are rather slow and sensi-
tive to noise and the GMMEF approach in [27] leads to signifi-
cantly different (in the sense of entropy) distributions from the
true ones. In [26], Rivera et al. developed a clever technique
that controls the entropy of the solution distribution and con-
straints it to be closer to the true distribution. Using the for-
mulation presented in [26], we can efficiently estimate the un-
known parameters of the above mentioned GMMF model by
minimizing the following energy function:

E(p.c) = Zkzi(pkiz(—logvki — )
+AZS€N¢ (pki - pks)z) - Ziryi(l - kaki)

where p controls the entropy of the marginals, A controls the
smoothness of the label field, and ~; are Lagran%(e multipliers

that were introduced to enforce the condition Zk pri = L.

The purpose of the entropy control is to bias the posterior
marginals estimates toward distributions that have low entropy.
Also, log vy is introduced instead of vy; to make the data term
quadratically depend on the model parameters (tensor spline
control vertices) ¢ and for the energy function to remain a
quadratic positive definite function of the marginal probability
v and p < 2\. For a detailed discussion on the nuances of this
energy function (for scalar fields that are also applicable here),
we refer the reader to [26]. The energy can be minimized using
the expectation maximization (EM) procedure or a generalized
EM [29].

In this segmentation algorithm, the number of labels K is
not a hidden variable and is predefined. This number can be
set equal to or greater than the number of regions that a neu-
roanatomist expects to find in a particular dataset.

V. EXPERIMENTAL RESULTS

This section is divided into two subsections. The first one con-
tains experimental results obtained by testing the approximation
of a diffusion tensor field using tensor splines. In the second
subsection, the DT-MRI segmentation experiments performed
using the proposed algorithm are described.

A. Tensor Spline Approximation Experiments

In this section, we present several tensor spline approxima-
tion experiments with noisy synthetic as well as real DT-MRI
data. We also present comparisons with four other existing
methods to demonstrate the performance of our proposed
tensor spline approximation algorithm. We synthesized a tensor
field on a 2-D lattice of size 33 x 33. For the generation of
this field, a realistic simulation of the diffusion-weighted MR
signal using the Soderman-Jonsson equation presented in [30]
was performed. Using this process, at each voxel the MR signal
was simulated as a function of the angle £ between the applied
diffusion gradient and the orientation of the fiber. At each
voxel of the 2-D synthetic field, the orientation of the fiber was
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(a)

Fig. 2. Comparison of approximation methods using a SNR = 5.0 (top) and
aSNR = 3.0 (bottom). (a) Primary eigenvectors of the noisy tensor fields. The
rest of the columns shows the error in robust approximation using (b) Euclidean
spline, (c) PDE interpolation, (d) log-Euclidean spline, and (e) tensor spline.
The Riemannian metric was employed for computing these errors.

assumed to be tangent to circles centered at the lower left corner
of the field. Using this fiber structure, the diffusion-weighted
MR signal attenuation was simulated for 21 orientations that
correspond to the second-order tessellation of the icosahedron
on a unit hemisphere, using b-value = 1500 s/mm?. The diffu-
sion tensor field was estimated from the 21 diffusion-weighted
images using a linear least squares technique applied to the
log linearized Stejskal-Tanner equation [23]. This diffusion
tensor field will be considered as the ground truth field for the
experiment described below.

Gaussian noise was added to the real and imaginary parts
of the simulated diffusion MR signal and then the magnitude
signal computed from this noisy complex-valued data. From this
signal, we estimated the diffusion tensors as before and then
subsampled it by a factor of 4. This process was repeated for
different amounts of signal to noise ratios. The first column of
Fig. 2 depicts the primary eigenvector field of the 9 X 9 subsam-
pled noisy tensor fields corresponding to signal to noise ratios
of 5.0 (top) and 3.0 (bottom). Our goal now is to compare our
tensor spline approximation and interpolation method against
existing methods in literature, as well as our own modifications
of these techniques.

We first approximated (fitted) the noisy tensor fields by using
four different techniques including ours and then interpolated
the approximation (fitted) results by a factor of 4. The four
methods that we employed were: 1) linear approximation of the
elements of the SPD tensors; 2) log-Euclidean geodesic approx-
imation [16]; 3) Riemannian geodesic approximation [3]; and 4)
PDE-based anisotropic nonlinear diffusion [17] (Table I). Fol-
lowing this, we present a table of results comparing our method
with statistically robust implementation of all the methods (ex-
cept the PDE-based diffusion filter as its not a simple matter to
implement this filter in a robust framework). We also present the
results of comparison of a spline version of others’ work with
our own, all in a robust framework. In all these comparisons, as
expected, our tensor splines algorithms outperformed the com-
peting methods.

We use two methods to measure the distance of the es-
timated tensor fields from the ground truth tensor field: a)
the Riemannian metric and b) the Frobenius norm defined as

\/trace((A —B)(A -B)"), where A and B are two SPD
matrices. These errors are computed at each voxel and the
mean (x) and standard deviation (o) of these errors (denoted
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TABLE 1
APPROXIMATION ERRORS IN VARIOUS ALGORITHMS
Riem. ¢ | Riem. o | Forb. 4 | Forb. o
Euc. Geodesic Appr. | 12.2023 10.5576 | 37.2502 | 51.8160
Log-Euc Geodesic Appr. 6.5117 7.3565 7.7040 | 31.4381
Riem. Geodesic Appr. 6.5115 7.3563 7.7037 | 31.4378
PDE interpolation 8.8490 6.5481 6.3611 29.4992
Non-Robust Tensor Spline 3.8652 2.7202 0.5082 0.8581
Approximation errors using robust function
Robust Euc. Geodesic Appr. | 8.6782 | 0.7521 | 0.9201 | 0.1002
Robust Log-Euc Geodesic Appr. | 3.8912 | 2.3191 | 0.6328 | 0.928
Robust Riem. Geodesic Appr. | 3.4711 | 2.2534 | 0.6192 | 0.795
Robust Tensor Spline Appr. | 0.1373 | 0.0463 | 0.0015 | 0.0006
Approximation errors of robust splines using different metrics
Robust Euc. Spline Appr. | 7.4655 | 0.4931 | 0.0988 | 0.0927
Robust Log-Euc Spline Appr. | 1.4651 | 0.9996 | 0.0328 | 0.0318
Robust Tensor Spline Appr. | 0.1373 | 0.0463 | 0.0015 | 0.0006
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Fig. 3. Real DTI from an isolated rat hippocampus: (a) FA maps before (top)
and after (bottom) tensor spline approximation. (b) principal eigenvector field
after log-Euclidean geodesic approximation (left), and nonrobust tensor spline
approximation (right).

by Riem. p, Forb. i1 and Riem. o, Forb. o, respectively) are
reported in Table I for the noisy dataset corresponding to
a signal-to-noise ratio of 3.0. As evident, the error is much
smaller for our algorithm in comparison to the others. These
results demonstrate the superior performance of our algorithm
over other existing methods.

Fig. 3 shows a real data example from an isolated rat hip-
pocampus. The diffusion weighted MR images for this example
were acquired using the following protocol. This protocol in-
cluded acquisition of 22 images using a pulsed gradient spin
echo pulse sequence with repetition time (TR) = 1.5 s, echo
time (TE) = 28.3 ms, bandwidth = 35 kHz, field-of-view
(FOV) = 4.5 x 4.5 mm, matrix = 90 x 90 with 20-30 contin-
uous 200-m-thick axial slices (oriented transverse to the septo-
temporal axis of the isolated hippocampus). After the firstimage
set was collected without diffusion weighting (b ~ 0 s/mm?),
21 diffusion-weighted image sets with gradient strength (G) =
415 mT/m, gradient duration (§) = 2.4 ms, gradient separa-
tion (A) = 17.8 ms, and diffusion time (T5) = 17 ms were
collected. Each of these image sets used different diffusion gra-
dients (with approximate b values of 1250 s/mm?) whose orien-
tations were determined from the second-order tessellation of
an icosahedron projected onto the surface of a unit hemisphere.
The image without diffusion weighting had 36 signal averages
(time = 81 min), and each diffusion-weighted image had 12
averages (time = 27 min per diffusion gradient orientation) to
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() (b)

Fig. 4. Segmentation of various synthetic tensor fields. Figures depict the esti-
mated boundaries between regions and the corresponding primary eigenvector
fields.

give a total imaging time of 10.8 h per hippocampus. Tempera-
ture was maintained at 20 & 0.2°C throughout the experiments
using the temperature control unit of the magnet previously cal-
ibrated by methanol spectroscopy.

In Fig. 3, the proposed tensor spline approximation algo-
rithm is compared with the recently proposed log-Euclidean
metric based approximation algorithm [16], described earlier.
Fig. 3(a) depicts the FA map of the original (noisy) and the
approximated data. Note that the FA map after the approxima-
tion is much smoother that the FA map prior the approximation
(3(a) bottom). Fig. 3(b) shows a 3-D view of the results using
log-Euclidean geodesic approximation (left) and nonrobust
tensor spline (right) algorithms. Notice that in the tensor
spline approximation results the noise has been considerably
smoothed out. This may be attributed to the higher order
smoothness imposed by the tensor spline developed in this
work.

B. DTI Segmentation Experiments

In this section, several segmentation experiments with noisy
synthetic tensor fields as well as real diffusion tensor data of an
isolated rat hippocampus are presented. Validation results are
also presented to demonstrate the performance of our proposed
algorithm for diffusion tensor field segmentation under different
amounts of noise in the data.

We synthesized several 2-D synthetic tensor fields of size
32 x 32, with different shapes of regions and different anatomy
of the diffusion tensor field in each region. All synthetic tensor
fields were generated by simulating the diffusion-weighted MR
signal [30] as described earlier in Section V-A. Fig. 4(a) and (b)
present tensor fields consisting of two piecewise constant re-
gions: 1) a small square region in the center of the tensor field
and 2) the region forming the rest of the tensor field. The FA
is 0.6 in both regions. In Fig. 4(a), the tensor field within the
regions is piecewise constant, while in Fig. 4(b) it is smoothly
varying. Finally, Fig. 4(c) consists of the following regions: 1)
a ring with principal eigenvectors tangent to circles centered in
the lower left corner of the image; 2) two triangular regions with
horizontal principal eigenvectors; and 3) two triangular regions
with vertical principal eigenvectors. The last two regions have
the same FA equal to 0.6, while within the ring the FA is 0.8.

We segmented the three tensor fields of Fig. 4 using the pro-
posed entropy controlled segmentation algorithm described in
Section IV. The parameters of the algorithm that we used are
A = 1and p = 0.1. The segmentation results (boundaries be-
tween segmented regions) are presented in Fig. 4. The results
are as per expectation.
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Fig. 5. Illustration of segmentation under partial voluming effects. Top: aver-
aging kernels at different locations of the diffusion-weighted images. Bottom:
corresponding estimated tensor fields.

Fig. 6. 2-D segmentation of an isolated rat hippocampus DT-MRI: (a) FA map
segmentation using algorithm in [26] (b) tensor field using piecewise constant
models, (c) tensor field using a smoothly varying representation of the regions,
and (d) comparison of our results (shown in the background) with a manu-
ally labeled image based on knowledge of hippocampal anatomy (shown as an
overlay). The index of the labels corresponds to: 1) dorsal hippocampal commis-
sure, 2) subiculum, 3) alveus, 4) stratum oriens, 5) stratum radiatum, 6) stratum
lacunosum-moleculare, 7) molecular layer, 8) hilus, X) mixture of CA3 stratum
pyramidale and stratum lucidum, Y) stratum oriens but ambiguous, 12) fimbria.

In order to demonstrate the segmentation performance of our
proposed algorithm under partial voluming effects, we synthe-
sized a 2-D field consisting of two rectangular regions; the re-
gion on the left consists of fibers with orientations parallel to
z-axis, and the region on the right is composed of fibers with ori-
entations parallel to y-axis (Fig. 5). Diffusion-weighted images
for this 2-D field were obtained by simulating the MR signal,
similarly to previous experiments. Then the diffusion-weighted
images were averaged using a 10 x 10 kernel, which produces a
single average measurement per image for every 10 x 10 pixels.
This process was repeated for different locations of the aver-
aging kernel and each time the corresponding tensor field was
estimated from the averaged images (see illustration in Fig. 5).
The estimated tensor fields were then segmented using our pro-
posed algorithm. The segmentation performance defined as the
ratio of the correctly classified area over the total area was com-
puted for the pixels on the boundary between the two regions,
and found to be 0.75. For the rest of the pixels (nonboundary
pixels) this ratio was 1.0. Finally, we synthesized a 320 x 320
tensor field similar to the one in Fig. 4(c), and then by following
the above averaging process we filtered the tensor field down to
a) 32 x 32 and b) 64 x 64. After that, the two obtained tensor
fields were segmented using our algorithm and the segmenta-
tion performance found to be 0.92 and 0.96, respectively. These
high values indicate the relative insensitivity of our algorithm to
partial voluming.

In the following experiments, we used the real diffusion
tensor dataset from an isolated rat hippocampus, shown earlier
in Fig. 3. Fig. 6 presents segmentation results on a 2-D slice
selected arbitrarily from the 3-D dataset. Fig. 6(a) depicts the
fractional anisotropy (FA) map segmentation obtained using
the scalar field entropy-controlled segmentation algorithm
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(®)

Fig. 7. (a) View of the 3-D segmentation of an isolated rat hippocampus.
(b) Different views of the molecular layer from the segmentation in (a).

presented in [26]. Since the FA map does not contain any
information about the orientation of diffusion, as expected,
its segmentation yields erroneous results when compared
to the expert’s hand segmentation shown as an overlay in
Fig. 6(d), taken as the ground truth. This example demonstrates
that the tensor field segmentation obtained by segmenting
a scalar-valued function computed from the tensors would
not suffice in achieving the desired results. Fig. 6(b) depicts
the segmentation result using a piecewise constant model in
our tensor field segmentation algorithm described earlier and
Fig. 6(c) depicts the segmentation result using a piecewise
smooth segmentation model. Finally, in Fig. 6(d), we compare
our results (shown in the background) with a manually labeled
segmentation, based on expert knowledge of hippocampal
anatomy (shown as an overlay).

There were some differences between expert manual
segmentation and the automatic segmentations of the rat hip-
pocampus, although automatic segmentation based on the
smoothly varying tensor spline model better matched the
expert manual segmentation than the segmentation based on
the piecewise constant model. Expert manual segmentation
of the rat hippocampus was based on previous knowledge of
hippocampal cytoarchitecture obtained from 2-D visualization
of the hippocampus with contrast generated by immunochem-
istry, various histological staining methods, and tracer studies
[11]. The differences appreciated and boundaries denoted
by these older techniques offer only indirect or inferential
information about the orientations of neurons and glia within
the hippocampus. Thus, manual segmentation may differ
significantly in certain hippocampal regions from automatic
segmentation based on the tensor model of fiber coherences in
the rat hippocampus. It must be further considered that study
of the hippocampus using these new methods may produce
novel insight into the cytoarchitecture of different hippocampal
regions not previously known based on previous techniques.

Finally, we present results of segmenting the whole 3-D
volume of the isolated rat hippocampus using our segmentation
algorithm with the smoothly varying tensor spline representa-
tion of the regions. Fig. 7(a) presents a 3-D view of most of the
regions detected by the proposed algorithm. Finally, Fig. 7(b)
shows different views of the molecular layer contained in the
segmentation result shown in Fig. 7(a). To the best of our
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knowledge, this is the first report on automatic segmentation of
an isolated hippocapmus. The clinical significance of an algo-
rithm for automatic segmentation of an isolated hippocapmus
has already been discussed earlier.

VI. DISCUSSION AND CONCLUSION

Interpolation and approximation are fundamental problems
in image analysis and arise in many applications such as
DT-MRI registration, DT-MRI segmentation, DT-MRI atlas
construction, etc. Scalar-valued and vector-valued image/func-
tion interpolation is quite popular in literature. Splines have
distinguished themselves as the key ingredient in achieving
these goals. To the best of our knowledge, there is no work
to date on splines for interpolation and approximation of
matrix-valued (second-order tensor valued) datasets using the
Riemannian framework. In this paper, we presented a novel and
robust spline interpolation and approximation algorithm that
we dub tensor-splines, given a noisy symmetric positive definite
tensor field. We evaluated the performance of our algorithms
on several synthetic and real diffusion tensor field datasets. Our
algorithms performed fairly accurately on all the datasets.

For the generation of all the synthetic datasets used in the
experimental section, we simulated the diffusion-weighted MR
signal using the Soderman-Jonsson equation [30]. The simula-
tion performed by this equation is a simplified version of the
process within a real neural tissue, and it can be used for valida-
tion of the algorithms proposed in this paper. Another advantage
of using this simulation method is that the synthetic noise can
be added directly to the diffusion-weighted images, and it has
the same characteristics as the noise in real data.

A large amount of the noise that is present in the diffusion
tensor datasets (synthetic and real) was removed by approxi-
mating the datasets with a robust tensor product of cubic tensor
splines using the proposed tensor field approximation algorithm.
We implemented this algorithm using different metrics: a) Eu-
clidean, b) log-Euclidean, and ¢) Riemannian. In all our experi-
ments, the Riemannian metric yielded the best results in approx-
imating a given tensor field. The robust function presented in
Section III-E was employed in our experiments, using for each
metric the appropriate value for the parameter o that yields the
best results for the metric. The choice of this particular robust
function is justified by the fact that it has been commonly used
in literature. We have also performed experiments using other
robust functions [31] and finding only minor differences in the
results of our algorithm. In all our experiments we used cubic
(degree = 3) tensor splines since continuity higher than the
second order cannot be detected in general by the human eye
and this degree of continuity has been commonly used.

An application of our tensor spline algorithm to segmentation
of DT-MRI data was also presented. In the context of DT-MRI
segmentation, there are a handful of segmentation techniques
currently in literature, including work earlier from our own
group. Most of these techniques use the level-set framework
for segmentation and mostly handle bimodal situations i.e.,
images containing two classes of regions. In this paper, we
presented a novel extension of an efficient GMMF-based
Bayesian technique for scalar-valued image segmentation to
the tensor valued case using our tensor spline model. DT-MRI
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segmentation yields much more than what one would obtain
with segmentation of contrast-based MRI. It would reasonable
to say that the former subsumes the later.

Automated segmentation of DT-MRI from an isolated hip-
pocampus to date has not been reported in literature. Shape and
volume changes in different hippocampal regions are thus far
the best surrogate markers of hippocampal disease in patients
with epilepsy, Alzheimer’s disease, depression, etc. [32], thus
making these types of data extremely useful clinically. We pre-
sented results of segmentation from an application of our algo-
rithm to an isolated rat hippocampus. We also presented visual
comparison of our segmentation results to a hippocampal atlas,
showing satisfactory performance of our algorithm. Our future
work will be focused on applying our interpolation and approx-
imation algorithms as a module in other applications such as
registration of DT-MRI, tractography, etc.
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