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Abstract. Human movement classification and analysis are important in the 
research of health sciences and the arts. Laban movement analysis is an 
effective method to annotate human movement in dance that describes 
communication and expression. Technology-supported human movement 
analysis employs motion sensors, infrared cameras, and other wearable devices 
to capture critical joints of the human skeleton and facial key points. However, 
the aforementioned technologies are not mainstream, and the most popular form 
of motion capture is conventional video recording, usually from a single 
stationary camera. Such video recordings can be used to evaluate human 
movement or dance performance. Any methods that can systematically analyze 
and annotate these raw video footage would be of great importance to this field. 
Therefore, this research offers an analysis and comparison of AI-based 
computer vision methods that can annotate the human movement automatically. 
This study trained and compared four different machine learning algorithms 
(random forest, K neighbors, neural network, and decision tree) through 
supervised learning on existing video datasets of dance performances. The 
developed system was able to automatically produce annotation in the four 
dimensions (effort, space, shape, body) of Laban movement analysis. The 
results demonstrate accurately produced annotations in comparison to manually 
entered ground truth Laban annotation.  

Keywords: Artificial intelligence, Human motion classification, Laban move-
ment analysis 

1 Introduction 

Human movement has been studied in multiple disciplines, including health sciences 
and the Arts, resulting in a large but disparate assortment of multi-modal datasets, 
including video, skeletal motion capture, manual annotations, and clinical metadata. 
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Laban notation is a standardized form of kinetograph annotation [1, 2]. Although it 
was originally proposed for vector-based choreographic transcription [3], it has been 
successfully applied to several fields that study human motion [4], such as neurosci-
ence [5], kinesiology [6], human-computer interaction [7], as well as theater and 
dance [8]. Traditional data collection processes often include Laban movement analy-
sis and annotation that parameterizes observed changes in pre-defined 4-dimensional 
feature space (effort, space, shape, body). Such analysis requires lengthy manual input 
from professionals who annotate the recorded data through a time-consuming “watch 
and pause” process, which is also prone to human errors. The majority of automated 
Laban analysis focuses on processing 3D point sets (skeletal sequences) captured by 
specialized motion tracking equipment that may require the installation of markers on 
the user’s body and calibration of the devices [6, 8]. However, these technologies are 
not mainstream, and until today the most commonly used form of observation and 
documentation of human motion is conventional video recording, typically done from 
a single stationary camera discretely placed within the professional setting.  

In this project, we proposed using Artificial Intelligence (AI) methods to fully au-
tomate the annotation process involved in Laban analysis by training and testing dif-
ferent machine learning algorithms on existing video datasets of human motion, fo-
cusing on performative movement. First, we trained four different machine learning 
algorithms through supervised learning on existing dance video datasets in this study. 
Second, this study tested feature extraction methods (within and across frames) to 
improve the annotation accuracy. The trained model was then tested in Laban-
annotating existing video sequences and validated using manually produced Laban 
annotation, which was considered our ground truth. Finally, a software application 
was developed that can be used by researchers to input raw videos and export auto-
matically produced Laban annotation.  

2 Related Works 

Laban movement analysis was originally developed by Rudolf Laban [2]. Laban sys-
tem has been widely used for human movement analysis and annotation, and its relia-
bility has been extensively studied and evaluated [9]. Figure 1 shows the detailed 
hierarchy of the Laban movement analysis in four dimensions. Shape quality has six 
elements: opening, enclosing, rising, sinking, advancing, and retreating. Shape quality 
can be described by observing the positioning of the body along the vertical, horizon-
tal, and sagittal axes. Effort quality has eight elements: light, strong, free, bound, sus-
tained, quick, indirect, and direct. The majority of the elements in effort quality can 
be related to motion features such as velocity and acceleration. The space zone has six 
elements: side-open, side-across, up, down, forward, and backward. These elements 
describe the trajectory of human motions. Body phrasing has three elements: impul-
sive, swing, and impactive. These elements explain the kinematic chains and global 
locomotion. 

With the use of motion tracking technologies, there have been numerous applica-
tions of Laban movement analysis in dance emotion recognition [10], folk dance 



evaluation [8], parameterizing interpersonal behavior [6], and signal interpretation 
[11], among others. Several of these examples were focused on behavior patterns 
recognition and human-computer interaction using Laban movement analysis, and the 
majority of them have been restricted to the effort and shape dimensions of the 4-
dimensional Laban annotation space.  

More recently, Microsoft Kinect sensors have been employed for Laban-based 
motion tracking and analysis [12–14]. More specifically, Ajili [13] compared the 
effectiveness of machine learning methods to classify human actions using Kinect 
sensors. The results indicated robust classification across the Laban dimensions. Simi-
larly, Kim [14] extracted motion features such as velocity and acceleration of joints to 
analyze the Laban movement. Although motion sensors such as Kinect have been 
consistently becoming more affordable, they are still not in mainstream use by con-
sumers. On the contrary, the popularity of video sharing and streaming platforms, 
ranging from teleconferencing tools to social media, have established conventional 
video recording (without additional sensors) as the dominant form of recording and 
documenting the human activity. In professional settings (such as clinical, performa-
tive, etc.), the use of a single stationary video camera has been the current standard 
for observing and recording human movement.  

 
Fig. 1. Laban movement annotation hierarchy 

Our method involved the processing of raw video footage of human movement us-
ing a sequence of artificial intelligence algorithms. First, human skeleton detection 
algorithms extracted key skeletal features from the input videos. Then feature vectors 
were calculated from in-frame and across-frames values and were used to train and 
test the effectiveness of four machine learning algorithms (random forest, K neigh-
bors, neural network, and decision tree) in automatic Laban classification across the 



four dimensions of the Laban analysis space. Random forest is an estimator that fits 
many decision tree classifiers on various sub-samples of the dataset and uses averag-
ing to improve the predictive accuracy and control over-fitting. K neighbors is a clas-
sifier that captures the similarity, such as calculating the distance between points on a 
graph. The neural network is a multi-layer perceptron classifier to optimize the log-
loss function. The feedforward network generates a set of outputs from a set of inputs 
in the neurons.  

3 Methods 

As in the majority of AI-based methods, our process included the following four 
milestones: 1) Data preparation, 2) Feature extraction, 3) Training and testing, 4) 
Automated annotation.  

 In this pilot study, we used performative video datasets from the Digital Worlds 
Institute at the University of Florida and videos from the Dance Motion Capture Da-
tabase of the University of Cyprus [15]. A selection of four videos was manually an-
notated using Laban movement analysis. In order to identify the skeleton and body 
joints in the raw input videos, we used Facebook Detectron2 [16], which is an open-
source platform for human motion analysis. 

Features extracted from single frames (in-frame features) were initially used as the 
baseline to check the accuracy of four traditional machine learning algorithms. After 
finding the best algorithms, features within and across frames were extracted to im-
prove the annotation accuracy. Figure 2 shows the total of 17 key points extracted 
from the video, including nose, left eye, right eye, left ear, right ear, left shoulder, 
right shoulder, left elbow, right elbow, left wrist, right wrist, left hip, right hip, left 
knee, right knee, left ankle, and right ankle. 

 

 
Fig. 2. Skeleton detection from input video (left), Extracted body key points (right) 

The x, y coordinates of each key point were estimated for each frame of the video, 
generating 34 time-series/signals for our analysis. Figure 3 shows the x and y coordi-
nates as signals in the left and right plots, respectively. By visually inspecting these 



plots, it is evident that patterns can be observed from the corresponding motion activi-
ty. Subsequently, these features and other quantities derived from these features, such 
as distance, velocity, and acceleration, can be correlated with the four dimensions of 
the Laban analysis system. 
 

 
Fig. 3. Plots of the human joint movements. Left: x-coordinate, right: y-coordinate. 

After the feature extraction step, we trained four machine learning models to re-
ceive a video sequence as input and recognize the body motion changes across the 4-
dimensional domain used in Laban annotation, including effort, space, shape, and 
body. Table 1 shows an example of Laban movement annotation in four dimensions. 
Each dimension has two elements, and this study created four binary classifiers to 
annotate the human movement. 

Table 1. Laban movement annotation 

# Shape Effort Space Body 
1 Enclosing Light Side-open Impulsive 
2 Opening Strong Side-across Swing 

 
For our training dataset, we used dance videos from the Graphics Lab at the Uni-

versity of Cyprus. Additional video datasets from the University of Florida Digital 
Worlds Institute were used for evaluation and testing. We randomly selected 70% of 
the compiled dataset for supervised training, and the remaining 30% was used for 
testing. The annotation system was implemented in Python using existing libraries 
(Scikit-learn) to expedite the project’s prototyping phase. The system was developed 
and tested in UF High-Performance Computing Facility (HiPerGator). Facebook De-
tectron2 was used to detect the human key points, estimating a total of seventeen key 
points for each human skeleton. The feature vector that we used to detect the Laban 
annotation consisted of the velocity and acceleration of each detected key point as 
well as distances between specific key points, as listed in Table 2.  

More specifically, for the experiments in this pilot study, we calculated the dis-
tance, velocity, and acceleration between ankle and hip, velocity and acceleration of 
ankle, hip, and wrist [8]. Each dimension in Laban movement analysis contained mul-
tiple elements, and not all the videos covered every element of four dimensions. 



Therefore, two elements in each dimension were used in this study, and multilabel 
classification was generated. 

Table 2. Features for Laban annotation 

Distance Velocity Acceleration 
Ankle and hip ankle ankle 
Wrist and nose Hip Hip 
Wrist and hip Wrist Wrist 

In our experiments, we also compared distances between adjacent joints in order 
to study the suitability of each feature in our feature vector (such as the distance from 
hip to knee, elbow to wrist, elbow to shoulder, and shoulder to shoulder). Hip to knee 
distance had a minimum standard deviation, and it was regarded as a normalization 
factor. Based on the average thigh length of humans, this study normalized the data 
based on the hip to knee distance.   

Performance evaluation was based on the precision, recall, and F1 scores. Preci-
sion is the ability of the classifier not to label as positive a sample that is negative. 
The recall is the ability of the classifier to find all the positive samples, and its value 
ranges from 0-1, with 1 being the best. F1 can be interpreted as a harmonic mean of 
the precision and recall, and its value also ranges from 0-1. The relative contribution 
of precision and recall to the F1 score are equal. The formula for the F1 score is: 

F1 = 2 * (precision * recall) / (precision + recall)    (1) 
Finally, the automated annotation was visualized by Matplotlib, which was a 

comprehensive library for creating animated and interactive visualization.  

4 Results 

Multilabel classification treats each label independently whereas multilabel classifiers 
treat the multiple classes simultaneously. The multilabel approach taken in this pilot 
study is to break the Laban movement analysis problem into four binary classification 
tasks and one for each Laban dimension. Each binary classifier decides body (impul-
sive or swing), shape (enclosing or opening), effort (light or strong), and space (side-
open or side-across), respectively. Table 3 shows the results of Laban annotation us-
ing four machine learning algorithms, including random forest, K neighbors, neural 
network, and decision tree. It should be noted that all four algorithms were used in the 
multilabel classification framework.  

The data indicated that Random forest had the best performance compared to the 
other machine learning algorithms. Additional experiments were performed with larg-
er feature vectors that were generated by adding cross-frame features. The added fea-
tures were the average, maximum, minimum, and standard deviation of the original 
frames for a duration of two seconds. These additional features increased the accuracy 
of Laban annotation, especially the space dimension, side-across, and side-open, 
which are highly related to the content of the previous frames, as reported in Table 4.  



This pilot study also explored the accuracy based on different frame intervals. The 
frame interval experiments were varied with increments of 10 frames at a time be-
cause the manually produced labels were based on ten frames interval. Cumulative 
mean, standard deviation, maximum, minimum for 10-60 frames interval were calcu-
lated as the input data for training. Based on the results, the frame interval that pro-
duces the best results was 60 frames. 

Table 3. Laban annotation using four machine learning algorithms 

 Random Forest K neighbors Neural Network Decision Tree 
 P R F1 P R F1 P R F1 P R F1 

enclosing 1.00 0.97 0.98 0.93 0.93 0.93 0.85 0.97 0.90 0.80 0.97 0.88 

impulsive 1.00 0.45 0.62 0.50 0.09 0.15 0.56 0.43 0.49 0.38 0.35 0.36 

light 0.98 1.00 0.99 0.97 0.99 0.98 0.97 0.98 0.98 0.97 0.97 0.97 

opening 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.98 0.99 

side-across 0.81 0.76 0.79 0.79 0.67 0.72 0.79 0.79 0.79 0.69 0.73 0.71 

side-open 0.80 0.84 0.82 0.81 0.73 0.77 0.81 0.81 0.81 0.74 0.70 0.72 

strong 1.00 0.45 0.62 0.50 0.10 0.17 0.50 0.40 0.44 0.40 0.40 0.40 

swing 0.98 1.00 0.99 0.96 0.99 0.98 0.97 0.98 0.98 0.97 0.97 0.97 

Table 4. Laban annotation using cumulative frames 

 Random Forest (Single frame) Random Forest (Cross frame) 
 P R F1 P R F1 

enclosing 1.00 0.97 0.98 0.88 0.78 0.82 

impulsive 1.00 0.45 0.62 0.94 0.61 0.74 

light 0.98 1.00 0.99 0.98 1.00 0.99 

opening 1.00 1.00 1.00 0.99 0.99 0.99 

side-across 0.81 0.76 0.79 0.95 0.91 0.93 

side-open 0.80 0.84 0.82 0.92 0.96 0.94 

strong 1.00 0.45 0.62 0.94 0.61 0.74 

swing 0.97 1.00 0.99 0.98 1.00 0.99 

Figure 4 describes the confusion matrix of Laban annotation using random forest 
(Cross frame). The results showed the high accuracy of the detection in Laban move-
ment four dimensions including eight elements.  

Figure 5 shows an example of our results from a single frame of one of the input 
videos. The automatically detected human skeleton and the corresponding key points 
are superimposed on the image. For this frame, the automated Laban annotation in 
four dimensions was: Shape=opening, Effort=light, Space=side-open, Body=swing. 



Our developed software was able to successfully produce Laban annotation for each 
frame of an input video. Our classifier had two elements for each Laban dimension: 
effort (light, strong), shape (enclosing, opening), space (side-open, side-across), and 
body (swing, impulsive). The multilabel binary classifier could produce the annota-
tion such as “light, opening, side-open, swing” for each frame of the input video. The 
labels reflected the human movement in each frame.  
 

 
Fig. 4. Confusion matrix of each Laban movement dimension 

 
Fig. 5. Sample demonstration of our results. Detected skeletal features are shown in the frame. 
Automated Laban classification result for this frame: Effort=light, Shape=opening, Space=side-
open, Body=swing. 



5 Conclusion 

In this pilot study, we developed a method for recognizing Laban movement dimen-
sions from input videos using machine learning algorithms. The study trained and 
compared four different machine learning algorithms (random forest, K neighbors, 
neural network, and decision tree) through supervised learning on existing human 
motion video datasets. Our results obtained high accuracy in three dimensions: shape 
(enclosing, opening), effort (light, strong), and body (swing, impulsive) for the single-
frame analysis. The annotation accuracy was increased in space (side-open, side-
across) when cross-frame features were included in our feature vector. These results 
demonstrated that Laban movement analysis could be fully automated using machine 
learning algorithms that operate on raw input videos and that AI-driven standardized 
human motion evaluation systems can be developed. 

Our results indicated that such AI-driven movement classification could enable 
fully automated reporting in commonly used Laban annotation using only a single 
stationary camera. Furthermore, an AI-based solution to this problem may lead to 
standardization of data processing and optimize professionals’ time and decrease 
human errors. In the future, this can significantly impact the health science and art 
areas that use Laban analysis, by bringing AI to new domains and applications such as 
atlas construction of choreographic data and clinical assessment in dance therapy. 

6 Limitations and Future Work 

Although AI-based Laban annotation has already shown the improvement of efficien-
cy, this study only trained a limited number of four videos, and more datasets need to 
be trained in the future. Only a specific genre of dances was included in the dataset; 
inclusion of more genres may lead to larger variability of cross frames features based 
on the rhythms and motion patterns. Our binary classifier only detected two elements 
in each Laban dimension, and all the elements in the four dimensions need to be test-
ed in the Laban annotation in the future. 

Facebook Detectron2 only contains x, y coordinates which may bias the annotation 
to patterns that are visible in the 2-dimensional plane of the video frame. Newer pose 
estimation models with 3D coordinate detection need to be tested in the future. The 
inclusion of the z-dimension (depth) of the joints may help us detect more elements in 
the Laban movement analysis. 

In the future, more algorithms can be tested using Tensorflow, such as Convolu-
tional Neural Network (CNN), through supervised learning on the time-series of the 
features extracted from the video datasets.  
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