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ABSTRACT 
 
Prostate cancer is the most common internal malignancy 
among males. Micro-Ultrasound is a promising imaging 
modality for cancer identification and computer-assisted 
visualization. Identifying the prostate capsule area is essential 
in active surveillance monitoring and treatment planning. In 
this paper, we present a pilot study that assesses prostate 
capsule segmentation using the U-Net deep neural network 
framework. To the best of our knowledge, this is the first 
study on prostate capsule segmentation in Micro-Ultrasound 
images. For our study, we collected multi-frame volumes of 
Micro-Ultrasound images, and then expert prostate cancer 
surgeons annotated the capsule border manually. The lack of 
clear boundaries and variation of shapes between patients 
make the task challenging, especially for novice Micro-
Ultrasound operators. In total 2099 images were collected 
from 8 subjects, 1296 of which were manually annotated and 
were split into a training set (1008), a validation set (112), 
and a test set from a different subject (176). The performance 
of the model was evaluated by calculating the Intersection 
over Union (IoU) between the manually annotated area of the 
capsule and the segmentation mask computed from the 
trained deep neural network. The results demonstrate high 
IoU values for the training set (95.05%), the validation set 
(93.18%) and the test set from a separate subject (85.14%). 
In 10-fold cross-validation, IoU was 94.25%, and accuracy 
was 99%, validating the robustness of the model. Our pilot 
study demonstrates that deep neural networks can produce 
reliable segmentation of the prostate capsule in Micro-
Ultrasound images and pave the road for the segmentation of 
other anatomical structures within the capsule, which will be 
the subject of our future studies.   
 
 

Index Terms— U-Net, deep neural networks, prostate 
capsule segmentation, prostate cancer, Micro-Ultrasound 
 

1. INTRODUCTION 
 
Prostate cancer is the most common solid malignancy among 
American men, with 268,000 projected diagnoses in 2022 [1]. 
Conventional ultrasound is unable to differentiate cancer 
from benign tissue [2]. Over the last decade, two significant 

advances in imaging have improved the visualization of 
prostate cancer. First, the introduction of Magnetic 
Resonance Imaging (MRI) led to an increase in the accuracy 
of cancer diagnosis [3], [4]. Second, the use of Micro-
Ultrasound further improved the visualization of cancer 
compared to MRI [5]. Prostate MRI enables clinicians to 
identify prostate cancer and suspicious target areas for biopsy 
utilizing MRI/ultrasound fusion. Use of MRI to aid prostate 
cancer diagnosis is now the standard of care. However, the 
time, cost, and limited availability of scanners are amplified 
if MRI is used for in-bore biopsy. The accuracy of Micro-
Ultrasound for prostate biopsy has demonstrated better 
performance than MRI guidance in the detection of prostate 
cancer. 

Studies compared Micro-Ultrasound imaging with MRI 
and conventional ultrasound for visualizing prostate cancer in 
active surveillance [6], [7]. High-resolution Micro-
Ultrasound was demonstrated to be sensitive to significant 
prostate cancer and effective for biopsy targeting. Micro-
ultrasound was performed in real-time during the biopsy 
procedure and improved imaging resolution over 
conventional ultrasound imaging, thereby enabling targeting 
of these biopsies. Micro-Ultrasound increased the detection 
probability of clinically significant cancer and decreased the 
disease risk early. 

Manual segmentation is still the most common way to 
accurately annotate the prostate capsule area. However, 
manual prostate segmentation is time-consuming and subject 
to surgeons’ experience level. Prostates have a wide range of 
shapes and sizes, and surgeons need to be trained to annotate 
the prostate area on grayscale ultrasound images. The 
ambiguity of its boundaries makes it very hard to differentiate 
the capsule from the surrounding area with the intraprostatic 
area.  

While several algorithms have been published for 
automated prostate capsule annotation in MRI and 
conventional ultrasound [8]–[12], no algorithms have been 
tested for Micro-Ultrasound. Additionally, Micro-Ultrasound 
has several unique features making algorithm design 
challenging: inconsistent image spacing, non-uniform voxel 
orientation, sagittal image acquisition, and pixel resolution 
degradation distant from the transducer. Therefore, our aim is 
to develop a solution for automated prostate capsule 
segmentation in Micro-Ultrasound images that will assist 
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prostate cancer surgeons during the biopsy procedure by 
providing real-time annotation. 

  Our contributions in this paper are twofold: a) we 
present a method for prostate capsule segmentation in Micro-
Ultrasound images using a modified U-Net-based deep neural 
network framework, and b) we present a pilot study for 
assessing the segmentation results using a dataset of 1296 
manually annotated Micro-Ultrasound images from eight 
subjects, including one separate subject for the test set. The 
results demonstrate reliable segmentation performance 
measured by accuracy as well the intersection over union 
metric. Additionally, 10-fold cross-validation demonstrated 
the robustness of our model. To the best of our knowledge, 
this is the first study on prostate capsule segmentation in 
Micro-Ultrasound images. 
 

2. METHOD 
 
2.1. Dataset Acquisition and Preprocessing 
 
The Micro-Ultrasound images that were used in this study 
were obtained as part of a clinical evaluation for patients with 
suspected prostate cancer. Images were acquired in a standard 
transrectal fashion utilizing an EV-29L probe imaging at 29 
MHz achieving a resolution of 70 microns [13]. The probe 
was rotated in a clockwise fashion to acquire serial images 
from the patient’s right lateral prostate edge through the 
urethra to the left lateral edge. The prostate capsule was 
annotated by an expert prostate cancer surgeon (co-author 
Wayne Brisbane) and utilized for training and validation. 
This analysis was approved by the University of Florida 
Institutional Review Board (IRB202200785). 

In total, 2099 Micro-Ultrasound images were collected 
from 8 subjects, 1296 of which were annotated, by manually 
identifying the border of the prostate capsule. 
 

Table 1. Dataset. 
Dataset Images Annotated Images 

UCLA001 166 163 
UCLA002 278 91 
UCLA003 253 233 
UCLA004 202 37 

UF001 300 184 
UF002 300 202 
UF003 300 210 
UF004 300 176 
Total 2099 1296 

 
The obtained images were in DICOM (Digital Imaging 

and Communications in Medicine) format, and were pre-
processed in Python using the pydicom and OpenCV APIs in 
order to extract the grayscale Micro-Ultrasound images and 
convert the manual annotation from point sequences into 
binary masks of same resolution as the Micro-Ultrasound 
images. The primary key Instance UID of the original 
DICOM images was used as a unique identifier of the 

extracted images and masks for easy retrieval and 
referencing. 

Two dictionaries were created using these unique 
identifiers. One is the raw image dictionary (X), and another 
is the mask dictionary (Y) which were used in our deep neural 
network model training. X was the feature, and Y was the 
target value in the training and prediction. 
 
2.2. U-Net Model Design 
 
UNet enables precise localization by predicting the image 
pixel by pixel. Studies have shown that the UNet was strong 
enough to make good predictions based on very few training 
images and achieve high performance in segmentation [14]. 
We modified the UNet model based on femoral nerve block 
region segmentation on ultrasound images [15]. Table 2 
shows the architecture of the UNet model with 9 unit levels 
consisting of the contracting path, bottleneck, and expanding 
path, with two convolutional layers in each level. 
 

Table 2. Modified U-Net architecture. 
 Unit 

Level Layers Output 

Input    256x256x1 

Contracting 

Level 1 Conv 1 256x256x8 
Conv 2 256x256x8 

Level 2 Conv 3 128x128x16 
Conv 4 128x128x16 

Level 3 Conv 5 64x64x32 
Conv 6 64x64x32 

Level 4 Conv 7 32x32x64 
Conv 8 32x32x64 

Bottleneck Level 5 Conv 9 16x16x128 
Conv 10 16x16x128 

Expanding 

Level 6 Conv 11 32x32x64 
Conv 12 32x32x64 

Level 7 Conv 13 64x64x32 
Conv 14 64x64x32 

Level 8 Conv 15 128x128x16 
Conv 16 128x128x16 

Level 9 Conv 17 256x256x8 
Conv 18 256x256x8 

Output   256x256x1 
 

First, we resize all raw grayscale images to 256 × 256 
pixels and normalize their intensity values from [0, 255] to 
the range [0, 1]. The contracting path follows the block 
diagram in Figure 1. 
 

 
Fig. 1. Contracting path block diagram 

In this architecture, each contracting level consists of two 
convolutional layers followed by a rectified linear unit 

Conv layer 1 Conv layer 2 Max pooling



(ReLU) function, and the number of channels changes from 
1 to 128, as the convolution process increases the depth of the 
image. The max pooling process reduces the size of the image 
by half, and padding is used to keep the size of the images the 
same. This process is repeated four times.  

Second, at the bottleneck level, the UNet model still has 
two convolutional layers followed by ReLU but with no max 
pooling layers. Adding one dropout layer with 10% between 
convolutional layers can reduce the overfitting in the training. 
The images are resized to 16x16x128.  

Third, in the expanding path, the images are upsized to 
their original input size, following the steps shown in Figure 
2. 
 

 
Fig. 2. Expanding path block diagram 

Transposed convolution is an upsampling technology to 
double the size of image by adding padding to the original 
image followed by a 2x2 convolution. The image is upsized 
from 16x16x128 to 32x32x64. Next, this image is 
concatenated with the corresponding size image from the 
contracting path to make an image of size 32x32x128, which 
improves the precision of the prediction. After that, two 
convolution layers followed by ReLU are added and this 
process is repeated four times. 

The last step is to reshape the output image to match our 
input image size with a final 1x1 convolution layer. 

For assessing image segmentation results, the Dice 
similarity coefficient and intersection over union (IoU) have 
been widely used as metrics in training deep neural networks. 
In our preliminary tests we found similar performance 
between the Dice score and IoU score with a negligible 
difference (1-2%). Therefore, our modified UNet model was 
compiled with adam optimizer, binary cross entropy loss 
function and IoU score, calculated as follows: 

  
𝐼𝑜𝑈 = 𝐴𝑟𝑒𝑎	𝑜𝑓	𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝐴𝑟𝑒𝑎	𝑜𝑓	𝑈𝑛𝑖𝑜𝑛⁄  (1) 

 

  
Fig. 3. IoU score threshold 

In our network training, no early stopping was added, the 
epochs were 100, the batch size was 32, and the validation 
split was 10%. Based on the threshold of IoU score in Figure 
3, an IoU > 0.5 is considered an effective segmentation. 
According to this threshold, segmentation accuracy is defined 
as follows:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !.#$	&'()*+	,&-.	(0#123.4)
6#-(7	89':*;	#$	&'()*+

 (2) 

3. RESULTS 
 
The modified UNet model was developed and tested in the 
UF High-Performance Computing Facility (HiPerGator). The 
results of IoU score and loss after 100 epochs as shown in 
Figure 4. The training set (1008 images from 7 subjects) had 
IoU 95.05%, and the validation set (112 images from the 
same 7 subjects) had IoU 93.18%.  

 

 
Fig. 4. Model IoU (Left) and Loss (Right) in training and 

validation with 100 epochs 

Our test set consisted of 176 images from a separate 
subject in order to eliminate the within-group effect on the 
test accuracy. Because of the expected differences in shape 
and size of the prostate capsule of the subject in our test set, 
the IoU was 85.14%, which was slightly less compared to the 
IoU in the training and validation sets. However, even in this 
case the IoU was still greater than 50%, which is considered 
an effective segmentation result. Figure 5 shows the IoU in 
the three different sets. 

 

 
Fig. 5. IoU in three different sets 

The prediction duration for each image was 0.048 second 
using the GPU NVIDIA GeForce RTX 2080 Ti, 
demonstrating that the model can be used for the real-time 
prostate segementation. The source code is available at: 
https://github.com/digitalworlds/ProstateSegmentation. 

Figure 6 shows two examples of annotation from the 
UCLA dataset (Left) and the UF dataset (Right). The first row 
shows the original Micro-Ultrasound images from the two 
datasets. The second row shows the manually annotated 
“ground truth” masks of the prostate capsule. The third row 
presents the predicted masks. In the left image the calculated 
IoU is 96.78%, and in the right image IoU is 94.46%. 

Conv layer 11 Conv layer 12Conv 
transpose Concatenate

IoU <= 0.5
Poor

0.5 < IoU <= 0.9
Good

IoU > 0.9
Excellent



  
Fig. 6. Visual comparison of the segmentation results on 
two subjects (Left:UCLA dataset and right:UF dataset). 

 
Fig. 7. 10-fold cross-validation. 

 
4. DISCUSSION 

 
As shown in Figure 5, all three data sets (training, validation, 
and testing) demonstrated high IoU values, well above the 0.5 
lower limit. As expected, the IoU values from the test set were 
less than those in the training and validation sets, primarily 
because of the expected differences in the anatomy of the 
capsule in the test subject. By comparing the manual 
annotations and the calculated segmentations in Figure 6, it 
seems that the manual annotations have more sharp corners 
and features compared to the segmentation results which tend 
to be more round. Accuracy depended on the manually 
annotated datasets, which could be biased. Therefore, we 
used 10-fold cross-validation, as shown in Figure 7, using all 

the subjects from UF and UCLA datasets, and the IoU was 
above 0.9, which demonstrates that our modified UNet 
algorithm is suitable for segmenting the prostate capsule. 
Finally, Figure 8 shows the segmentation results of our 
method in three different Micro-Ultrasound frames from the 
same subject that correspond to different parts of the capsule. 
 

 

 

 
Fig. 8. Example of segmentation results overlayed on top of 
the raw micro-ultrasound images for qualitative assessment. 

 
5. CONCLUSION 

 
In this study, we developed a modified UNet deep neural 
network model and trained it with Micro-Ultrasound images 
from a pilot dataset, achieving satisfactory performance. Our 
preliminary results demonstrated high accuracy in prostate 
segmentation of the prostate capsule and assessed with 10-
fold cross-validation. Furthermore, the qualitative results 
demonstrated that automated annotation of the prostate 
capsule could be performed in Micro-Ultrasound images and 
could assist prostate cancer surgeons during the in-bore 
biopsy. Real-time prostate annotation may optimize 
surgeons’ time and improve precision. In the future, this can 
significantly impact the active surveillance monitoring and 
treatment planning for prostate cancer patients.  

One of the limitations of this pilot study was the small 
number of subjects. In our future work we plan to perform a 
larger scale study and test the method across a wider pool of 
subjects, which could improve the robustness of the training 
and avoid potential overfitting problems. Finally, we plan to 
extend our method to perform segmentation of other 
anatomical structures within the capsule, which will be the 
subject of our future studies. 
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