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Concepts from Information Theory have been used quite widely in Image
Processing, Computer Vision and Medical Image Analysis for several decades
now. Most widely used concepts are that of KL-divergence, minimum descrip-
tion length (MDL), etc. These concepts have been popularly employed for image
registration, segmentation, classification etc. In this chapter we review several
methods, mostly developed by our group at the Center for Vision, Graphics &
Medical Imaging in the University of Florida, that glean concepts from Informa-
tion Theory and apply them to achieve analysis of Diffusion-Weighted Magnetic
Resonance (DW-MRI) data.

This relatively new MRI modality allows one to non-invasively infer axonal
connectivity patterns in the central nervous system. The focus of this chapter is
to review automated image analysis techniques that allow us to automatically
segment the region of interest in the DWMRI image wherein one might want to
track the axonal pathways and also methods to reconstruct complex local tissue
geometries containing axonal fiber crossings. Implementation results illustrating
the algorithm application to real DW-MRI data sets are depicted to demonstrate
the effectiveness of the methods reviewed.

1 Introduction

Modern technological developments in image acquisition techniques have made
it possible to capture images from various medical image modalities in high
resolution. Magnetic Resonance Imaging (MRI) allows capturing of high con-
trast images of the soft human tissues. More specifically, Diffusion-Weighted
MRI (DW-MRI) is the only non-invasive method for capturing the diffusivity
of molecules of water in human tissue. The local diffusion properties usually
change in different parts of the tissue being imaged due to changes encoun-
tered in anisotropy to water diffusion and these variations in anisotropy result
in variations in signal attenuation which are captured in the acquired signal. By
analyzing the local diffusion characteristics one can obtain information about
the connectivity patterns prevalent say in the brain or the spinal cord, which
motivates the development of appropriate methods for processing these datasets.
The acquired DW-MRI signal is attenuated at locations of higher diffusivity and
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can be observed if they are along the direction of the diffusion sensitizing mag-
netic gradient. This attenuation is popularly approximated by the Stejkal-Tanner
equation [1] as follows:

S/S0 = e−bd(g) (1)

where S is the signal acquired by applying diffusion-weighting magnetic gradi-
ent field with direction g and (a weighting) b-value b, S0 is the signal acquired
without diffusion-weighting, and d(g) is the so called diffusivity function. In the
original form of the signal attenuation equation (by Stejskal and Tanner [1]) the
diffusivity function was approximated by a constant d(g) = d representing the
mean diffusivity. The advances in imaging techniques however made it possible
to acquire several diffusion-weighted MR images Si by applying different diffu-
sion gradient directions gi. This allowed for the approximation of the diffusivity
function with a second-order tensor d(g) = gTDg, where D is a 3×3 symmetric
and positive-definite matrix – see Basser et al., [2], for pioneering research in
this direction.

The relation between the diffusion-weighted signal attenuation (eq. 1) and the
diffusion propagator equation is given by the following Fourier integral expression

P (r) =

∫

S(q)/S0e
−2πiqT rdq (2)

where q is the reciprocal space vector, S(q) is the DW-MRI signal value associ-
ated with vector q, S0 the zero gradient signal and r is the displacement vector
[3]. Note that the direction of vector q in Eq. 2 is the same with that of g in
Eq. 1 and that b is related to the magnitude of q with the expression b = 4πq2t,
where t is the effective diffusion time.

By using the tensorial approximation of the diffusivity function, the Fourier
transform in Eq. 2 can be computed analytically and is given by,

P (r) =
1

√

(2π)3|2tD|
e−

1

4t
rT D−1r. (3)

The orientation r that maximizes the displacement probability P (r) corresponds
to the orientation of maximum water molecule diffusion. In the diffusion tensor
model case, it can be easily seen that Eq. 3 is maximized when the quantity
rT Dr is also maximized, i.e. for vectors r which are parallel to the primary
eigen-vector of matrix D. Therefore, by computing the primary eigen-vector
of D using the method of spectral decomposition one can easily estimate the
orientation of maximum diffusion, which is one of the advantages of diffusion
tensor imaging. Furthermore, by following the primary eigen-vectors one can
trace the underlying fiber paths in the neural tissue [4]. This procedure is known
as fiber tracking and it is a tool for obtaining information and analyzing the
brain connectivity.

The estimation of a smooth field of diffusion tensors and its segmentation
can be performed by using an information theoretic approach first introduced in
literature by Wang et al., [5] and reviewed in Sec. 2. Other methods include the



geometric approach using the Riemannian metric of the space of positive-definite
matrices [6–9], tensor spline regularization [10], the log-Euclidean framework [11]
and the Geodesic-loxodromes method [12] for tensor interpolation.

The diffusion tensor model can be extended for cases of complex fiber struc-
tures, such as fiber crossings, using the multi-compartmental model also known
as the mixture model given by:

S(q)/S0 =

N
∑

i

wiSi(q) (4)

where wi are unknown mixing weights [13]. The drawback in this discrete mixture
model is that its difficult to select a priori, the number N of mixing compart-
ments. This problem can however be solved by using the continuous mixture
model as was first proposed in Jian et al., [14] and later in Kumar et al., [15, 16],
both of which can be expressed in the following unified de-convolution framework
introduced in Jian and Vemuri [17],

S(q)/S0 =

∫

f(X)K(q|X)dX. (5)

In Eq. 5 the signal response is parametrized using a kernel function K(q|X),
where X is a set of parameters, f(X) is a properly chosen mixing density function
over the domain of X , and the integration is with respect to X .

In Sec. 3 we study two different versions of Eq. 5: a) setting X to be the
diffusion tensor D and f(D) to be a mixing density function on the space of
3 × 3 symmetric and positive-definite matrices [14], and b) setting X to be a
3-dimensional unit vector µ representing the orientation of maximum signal re-
sponse and f(µ) to be a mixing density over the space of unit vectors (i.e. over
the unit sphere) [15].

Other methods for multi-fiber reconstructions include higher-order tensor
models [18, 19], and their equivalent spherical tensor expansion [20], diffusion
orientation transform for computing the displacement probability profiles from
given diffusivity profiles [21], the estimation of orientation distribution function
in q-ball imaging [22–24], spherical de-convolution [25–28], diffusion spectrum
magnetic resonance imaging [29]. Recently, Jian and Vemuri [17] developed the
unified de-convolution framework (Eq. 5) for multi-fiber reconstruction within
a voxel from diffusion weighted MRI and posed several of the existing methods
in this framework that facilitated easy comparison and showed superior perfor-
mance of their continuous mixture of Wisharts model [14].

The performance of methods reviewed in this chapter are demonstrated us-
ing synthetic and real diffusion-weighted MRI data. The goal of applying various
information theoretic concepts to analyze the real data is to unravel the under-
lying fiber geometry making explicit the connectivity patterns in various regions
of the neural tissue. From a clinical point of view, to date, several methods for
analyzing the diffusivity have been used in monitoring encephalopathy, sclerosis,
ischemia and other brain disorders [30, 31]. We hope that some of the methods



reviewed here will be of use in analyzing these neurological disorders in the near
future. The rest of the chapter is organized as follows. In Sec. 2 we review the
information theoretic method from [5] for regularizing and segmenting diffusion
tensor fields. Information geometric methods for multi-fiber reconstruction are
reviewed in Sec. 3. Each section is accompanied by an experimental results sub-
section demonstrating the performance of the presented methods. Finally in Sec.
4 we conclude.

2 Information theoretic methods for processing DTI

In this section we review an information theoretic dissimilarity measure for the
space of positive definite-matrices. A dissimilarity measure between tensors is
needed in several tensor-valued image analysis methods, such as in regulariza-
tion, interpolation and segmentation of tensor fields.

2.1 An information theoretic dissimilarity measure

It is well known that Brownian motion of the water molecules in the soft tissue
is a Gaussian process, and therefore it is known that the diffusion propagator
is given by the Gaussian probability expressed in Eq. 3. The diffusion tensor is
defined as the covariance matrix in this probability density function; hence a
natural dissimilarity measure between diffusion tensors can be defined by em-
ploying a divergence between the corresponding Gaussian probabilities. Wang
and Vemuri defined a dissimilarity measure between two given tensors D1 and
D2 by using the J-divergence as follows

d(D1,D2) =
√

J(P (q|D1), P (q|D2)) =

√

KL(P1, P2) + KL(P2, P1)

2
(6)

where P1 = P (q|D1), P2 = P (q|D2) and KL is the well known KL-divergence

[32] given by KL(p1, p2) =

∫

p1(q)log(
p1(q)

p2(q)
)dq. By substituting P (q|D1) and

P (q|D2)) in Eq. 6 by the Gaussian probability in Eq. 3, the following closed
form can be derived

d(D1,D2) =
1

2

√

trace(D−1
1 D2 + D−1

2 D1) − 2n (7)

where n is the dimension of the matrix, i.e. in the diffusion tensor case n = 3.
The proof of Eq. 7 was first published in [5]. A useful property of the dissimilarity
measure defined above is the invariance to affine transformations. In other words,
d(D1,D2) = d(AD1A

T ,AD2A
T ) where A is an affine transformation matrix.

The dissimilarity measure given by Eq. 7 cannot be considered as a distance
between tensors since it fails to satisfy the triangle inequality. However, it can
be shown that for infinitesimally close tensors D1 and D2, Eq. 7 approximates
the squared Riemannian geodesic distance between them (which was used in



[6]). Therefore, in this case we can say that Eq. 7 approximates the Rao dis-
tance (which is also the Riemannian distance) between the two nearby Gaussian
distributions P1(q) and P2(q).

The above dissimilarity measure can be employed for defining the average
tensor Dµ in a tensor field as the minimizer of

∫

d2(Dµ,D(x))dx, i.e. Dµ is
the tensor representing the mean of the elements of the field. Here the vector x

denotes the lattice index in the tensor field. By substituting Eq. 7 into the above
integral, it was shown in [5] that the average tensor is given by

Dµ =
√

B−1

√√
BA

√
B
√

B−1 (8)

where A =
∫

R
D(x)dx and B =

∫

R
D−1(x)dx

Here we note that Eq. 8 is valid also for computing the average tensor Dµ

defined as the mid-point in the geodesic between two tensors D1 and D2 using the
Riemmanian metric of Pn [6, 7, 9] and setting A = D1 and B = D−1

2 . The symbol
Pn denotes the space of n × n symmetric positive-definite matrices. However,
in the Riemmanian framework there is no analytic formula for computing the
average of more than two tensors (e.g. tensor field), and an iterative optimization
method has been used instead, which significantly increases the execution time
of the diffusion tensor processing algorithms.

In the next section, we review how the formulas presented here can be em-
ployed in a level-set framework for segmenting diffusion tensor fields.

2.2 Application to DTI segmentation

The segmentation of a DTI field can be performed by minimizing the following
Mumford-Shah energy function

E(D, C) = Edist+Ereg+Earc = α

∫

Ω

d2(D(x),D0(x))dx+

∫

Ω/C

∇D(x)dx+β|C|

(9)
where D0(x) is the given noisy tensor field, D(x) is the approximated (fitted)
tensor field, Ω is the domain of the field (i.e. <2 or <3 for 2D or 3D fields
respectively), C is the boundary between the segmented regions, and α and β
are constant factors. The first term in Eq. 9 measures the dissimilarity between
the fitted tensor field and the original noisy field, the second term measures the
variation (or the lack of smoothness) within the segmented regions, and the last
term measures the arc length of the segmentation curve C.

In the case that the fitted field D(x) is chosen to be a piecewise constant
model, the second term in Eq. 9 becomes Ereg = 0, while the first term is given
by

Edist =
∑

x∈R

d2(D1,D0(x)) +
∑

x∈Rc

d2(D2,D0(x)) (10)

where D1 is the mean tensor in the region R enclosed by the curve C and D2

is the mean tensor in the region Rc outside the segmentation curve. Note that



since the given tensor field is on a discrete lattice, the integral of Eq. 9 has been
replaced by a summation in Eq. 10.

Instead of the piecewise constant model used above, a piecewise continuous
model may be chosen to approximate the tensor field. In this case the dissimi-
larity term in Eq. 9 is given by the following expression

Edist = α
∑

x∈R

d2(D(x),D0(x)) + α
∑

x∈Rc

d2(D(x),D0(x)) (11)

and the second term in Eq. 9 becomes

Ereg =
∑

(x,y)∈R,y∈Nx

d2(D(x),D(y)) +
∑

(x,y)∈Rc,y∈Nx

d2(D(x),D(y)). (12)

where each term measures the lack of smoothness within the segmented regions
and Nx is a neighborhood centered at location x.

In both piecewise constant and piecewise continuous models, the distance
function d(, ) can be set to the dissimilarity measure defined in Eq. 7 since
the latter approximates the geodesic distance between two nearby elements in
the space Pn of positive definite matrices. Furthermore, the simple closed-form
expression of Eq. 7 and 8 make it possible to produce analytic update formulas
for minimizing the variational principle, which is one of the main advantages of
this information theoretic dissimilarity measure over the Pn Riemannian metric.

The curve evolution equations for the above segmentation framework are
reported along with their derivations in [5]. There in also lies a detailed discussion
about the implementation of the algorithm and the numerical techniques used
to solve the flow equations. The above methods are demonstrated in the next
section using simulated synthetic and real diffusion-weighted MR data sets.

2.3 Experimental Results

In this section we present experimental results obtained by applying the DTI
segmentation method reviewed earlier to synthetic and real DW-MRI data sets.
The synthetic tensor field (shown in Fig. 1) is of size 32 × 32 and consists of
the following regions: (1) a ring with principal eigenvectors tangent to circles
centered in the lower left corner of the image; (2) two triangular regions with
horizontal principal eigenvectors; and (3) two triangular regions with vertical
principal eigenvectors. All three regions have distinct piecewise constant frac-
tional anisotropy. Figure 1 (upper left plate) shows a plot of the primary eigen-
vectors.

We applied the piecewise continuous DTI segmentation method presented in
Sec. 2.2 for segmenting the circular region in the synthetic data set. The challenge
in segmenting this data set is due to the smooth transitions between the regions,
especially at the locations shown in the upper central plate of Fig. 1. In the
method we used the values α = −2.5 (advection) and the β = 0.01 (smoothing).
The segmentation boundaries were initialized as shown in the lower left plate
of the same figure. After the execution of the method the boundaries converged



Fig. 1. Application of the piecewise continuous DTI segmentation method in a
synthetic dataset.

as shown in the lower right plate, accurately segmenting the ring region. This
demonstrates the effectiveness of the presented method.

Finally, in order to illustrate the performance of the segmentation framework
on real data sets, we applied the method to a DTI data set from an excised
rat hippocampus (shown in Fig. 2). The original DW-MRI data set contained
22 images acquired using a pulsed gradient spin echo pulse sequence, with 21
different diffusion gradients and approximate b value of 1250 s/mm2. From this
data set we estimated a DTI field using the variational formulation proposed in
[33, 34]. Then, we segmented the hippocampal region that consists of fimbria,
stratum oriens and dorsal commisure using the method reviewed in this section.
The tensor field in this region is smoothly varying and highly anisotropic. For
the segmentation of this field we used the same value for α as before, but we
increased the regularization parameter β = 2.0 in order to enforce smoothing of
the segmentation curve and therefore avoid producing results with ’bumps’ and
other artifacts due to the presence of noise in the data set. Figure 2 shows, in 2D
and 3D views, part of the principal eigenvector field and the segmentation result.
By observing the figures we can see that smooth segmentation boundaries have
been created successfully enclosing the aforementioned hippocampal regions.

For more experimental results testing the performance of the method under
various noise conditions the reader is referred to [5].

3 Multi-fiber reconstruction

In the information theoretic framework discussed in the previous section, a sec-
ond order tensor (Diffusion Tensor) was employed to approximate the diffusivity



Fig. 2. Segmentation of the fimbria-stratum oriens-dorsal commisure region in
a real rat hippocampus dataset. Left: Fractional anisotropy, Center and Right:
2D and 3D view of the segmented region.

function in the Stejskal-Tanner model of DW-MRI attenuation (Eq. 1). How-
ever, the second-order tensorial approximation fails to represent complex local
geometries of the tissue, such as fiber crossings [21, 4]. Several methods have
been proposed for multi-fiber reconstruction, and they can be categorized into
model-free and model-based methods as was mentioned in Sec. 1. Jian and Ve-
muri [17] have shown that many of the model-based methods can be regarded as
special cases of the unified framework formulation presented by them and given
by Eq. 5.

In this section we discuss two special cases in this unified framework by
setting the mixing density f(X) in Eq. 5 to be (a) a mixture of Wishart dis-
tributions, and (b) a mixture of von Mises-Fisher distributions. The motivation
for studying these two methods is that the first one approximates the DW-MRI
signal attenuation by using statistics on the space of diffusion tensors while the
second one solves the same problem by following a more general approach for
approximating any function on a spherical domain.

3.1 The Mixture of Wisharts model

The Wishart distribution of positive-definite matrices is a generalization of the
gamma distribution (to non-integer degrees of freedom) and of the chi-square
distribution (to multiple dimensions) and its probability density function [35] in
the case of (3 × 3) matrices is given by

fw(D|Σ, p) =
|D|p−2exp(−trace(Σ−1D))

22p|Σ|pΓ3(p)
(13)

where D is the matrix-valued random variable, Σ is the scale parameter (both
D and Σ are positive definite matrices), and p is a scalar that controls the shape
of the distribution.



The DW-MRI signal attenuation model of discrete mixture of Gaussians
can be extended to a continuous mixture model in this unified framework [14]
given by 5 and setting the parameter vector X to be a 3 × 3 positive-definite
matrix D, the mixing density f(X) to be the Wishart distribution (Eq. 13) and
the signal Kernel K(q|X) to be the Stejskal-Tanner model (Eq. 1). After these
substitutions, we obtain a continuous mixture model that is given by

S/S0 =

∫

fw(D)e−bgT DgdD =

∫

fw(D)e−trace(BD)dD (14)

where B is a 3 × 3 matrix defined as bggT and the integration is over the space
of positive-definite matrices. Note that the exponent in the right side of Eq.
14 is written in the equivalent form of the trace of BD. In this form, Eq. 14
can be seen as the Laplace transform (in the case of matrices) of the Wishart
distribution [14]. This Laplace transform integral can be computed analytically
as it has been shown in [14], giving the following expression

S/S0 = |I + BΣ|−p = |1 + bgTΣg|−p. (15)

Equation 15 is a novel model for the DW-MRI signal attenuation distinct from
the commonly used Eq. 1. The latter was however shown to be a limiting case
of Eq. 15 by setting Σ = D/p and p → ∞. Thus, the model in equation 15 is
a generalization of the 35 year old and popular Stejskal-Tanner model for MR
signal decay. Another interesting observation is that it is also a generalization of
the multi-compartmental (bi-Gaussian etc.) models [22] popular in literature.

The obtained model is still incapable of approximating complex local geome-
tries of the tissue due to the fact that the mixing density was limited to the
case of a single Wishart distribution. This problem can be solved by setting the
mixing density to be a mixture of N Wishart distributions. Note however that,
we still have a continuous approximation and not a discrete approximation. In
this case, Eq. 14 becomes

S/S0 =

∫ N
∑

i=1

wifw(D|Σi, p)e−bgT DgdD =

N
∑

i=1

wi|1 + bgTΣig|−p (16)

where wi are the mixing weights and Σi are the corresponding scaling parameters
of the Wishart distributions. For simplicity the shape parameter p was taken to
be the same in all mixing components.

Here we should note that although Eq. 16 can be seen as a discrete mixture
of functions in the form |1 + bgTΣig|−p, it was derived as a continuous mixture
of signal attenuations modeled by the Stejskal-Tanner Eq. 1. Hence, the number
of mixing components N should not be interpreted as the number of underlying
distinct fiber populations but as the resolution of the mixing density f(D).
Theoretically, any distribution of positive-definite matrices can be arbitrarily
approximated by taking an appropriately large number N in the mixture of
Wisharts.



Fig. 3. Illustration of the dimensionality reduction of 3× 3 symmetric positive-
definite matrices, shown here as Gaussian ellipsoids. Left: We assume the two
smallest eigen-values λ1 and λ2 to be equal due to the cylindrical geometry of
fibers. Right: Reduction of the space of rotations due to symmetry.

The set of the positive-definite matrices Σi must be constructed in such a way
that the full space of 3 × 3 positive-definite matrices is appropriately sampled.
However, the space of symmetric positive-definite matrices is a 6-dimensional
space, hence it cannot be efficiently sampled by a computationally feasible man-
ner. In order to overcome this issue, further assumptions about the fiber geome-
try must be made in order to reduce the above space to those matrices Σi which
are practically meaningful in our particular application.

If we express the matrix Σ using the spectral decomposition as vΛvT (where
v is an orthogonal eigen-vector matrix and Λ is a diagonal matrix of eigen-
values), 3 out of the 6 degrees of freedom are in the three eigenvalues λ1, λ2,
λ3 and the other 3 degrees are in the orthogonal eigen-vector matrix. By con-
sidering the approximately cylindrical geometry of the fibers, we can reduce our
solution to those matrices Σ whose two smallest eigen-values are equal [14], i.e.
elimination of 1 degree of freedom. Furthermore, due to the rotational symme-
try of those matrices along the plane defined by the two smallest eigenvectors,
the dimensionality of the orthogonal eigen-vector matrices is reduced to 2 [14],
i.e. elimination of 1 additional degree of freedom. The above assumptions (illus-
trated in Fig. 3.1) produce a 4-dimensional space whose sampling is practically
more feasible and is employed in the experiments presented in Sec. 3.4.

In the next section, we review another special case of the unified de-convolution
framework, by using the von Mises-Fisher distribution instead of the Wishart.

3.2 The Mixture of von Mises-Fisher model

The von Mises-Fisher (vMF) distribution is the special case in 3 dimensions of
the von Mises distribution of unit vectors. The vMF distribution is the analogous
of the Gaussian distribution on the space of 3-dimensional unit vectors and it
has the following probability density function

fvMF (x|µ, κ) =
κ

4πsinhκ
eκµT x (17)



where x and µ are unit vectors, µ is the center of the distribution and κ is
a positive scalar that controls the concentration of the probability. Figure 3.2
shows examples of the von Mises-Fisher distribution for different concentration
values.

Fig. 4. Samples drawn from von Mises-Fisher distributions using different con-
centrations κ.

In the area of diffusion-weighted MR imaging, the vMF distribution has
been used by McGraw et al. [36, 37] for approximating orientation distribution
functions (ODF) and more recently mixtures of hyperspherical vMF have been
used for high angular resolution DW-MRI approximation [38]. Here we should
note that the magnitude of the DW-MR signal as well as the estimated ODF,
the displacement probability and the diffusivity function are all antipodally sym-
metric, i.e. f(x) = f(−x). Since the vMF distribution function is not antipodally
symmetric, a symmetrised vMF expression was employed in a mixture of vMF
distributions [36] in order to model the ODF at each voxel of a DW-MRI data
set as shown in the following equation.

N
∑

i=1

wi [fvMF (x|µi, κi) + fvMF (−x|µi, κi)] /2 (18)

where wi are the unknown mixing weights, which are non-negative and sum up
to 1 in order the obtained mixture of vMFs (Eq. 18) to be also a probability
density function. N is the number components and is assumed to be predefined,
which is the main drawback of this model.

The above discrete mixture of vMFs can be extended using a continuous
mixture of vMFs [15] by following similar reasoning with the formulation of the
continuous mixture of Wisarts distributions, discussed in the previous section. In
general, a continuous mixture of vMFs can be used to approximate any spherical
function. The diffusion-weighted MR measurements when acquired over a single
sphere of the q-space, i.e. with constant b-value and varying diffusion gradient
orientation gi, can be approximated by a spherical function model such as the



continuous mixture of vMFs given by the expression

S/S0 =

∫

f(µ) [fvMF (g|µ, 1) + fvMF (−g|µ, 1)]dµ =

∫

f(µ)
cosh(µT g)

4πsinh(1)
dµ

(19)
where f(µ) is a mixing probability density function and the integration is over
the unit sphere, i.e. the space of unit vectors µ. Since f(µ) is also a probability
in the space of unit vectors, it can be modeled by the vMF density function (Eq.
17), or in the more general case by a mixture of vMFs. In this case, the MR
signal attenuation is expressed by the following continuous mixture model

S/S0 =

∫ N
∑

i=1

wifvMF (µ|vi, κ)
cosh(µT g)

4πsinh(1)
dµ (20)

where N is the resolution of the mixing density, i.e. the number of unit vectors
vi spanning the unit hemi-sphere. Note that the same concentration parameter
κ was used in all the components of the mixture for simplicity.

By substituting Eq. 17 into Eq. 20 and taking the summation out of the
integral, we obtain a sum of integrals in the form of Laplace transforms. These
integrals can be computed analytically, as it was shown in [16, 15] obtaining
finally the model

S/S0 =

N
∑

i=1

wiκ

4πsinh(1)sinh(κ)

[

sinh(‖ κvi − g ‖)
‖ κvi − g ‖ +

sinh(‖ κvi + g ‖)
‖ κvi + g ‖

]

. (21)

Theoretically, any spherical function S(g) can be arbitrarily accurately ap-
proximated by Eq. 21 by using an appropriately large number N for the reso-
lution of mixing density. As it was pointed out also in Sec. 3.1, although Eq.
21 is expressed in the form of a discrete mixture, the approximation is still a
continuous mixture of symmetrized vMF distributions since it was derived from
Eq. 20.

3.3 Estimation from DW-MRI data

In this section, we study methods for fitting to DW-MRI data a mixture model
such as the mixture of Wisharts or the mixture of von Mises-Fisher distributions
discussed in Sec. 3.1 and 3.2 respectively. In both cases, the goal of the fitting
procedure is to estimate the unknown mixing weights wi such that the squared
distance between the given data and the model is minimized.

Having acquired a set of M diffusion-weighted MR images, the goal is to
fit either one of the mixture models described in the previous sections. At each
voxel of the acquired images a spherical function modeled by the selected mixture
model is fitted to the data by minimizing the following sum of squares energy

E(w1, ..., wN ) =
M
∑

j=1

(

Sj/S0 −
N
∑

i=1

wiS(b,gj|Xi)

)2

(22)



where Sj are the M acquired diffusion-weighted images associated with b-value
b and magnetic gradient direction gj, and S0 is the acquired image without

diffusion weighting. The expression

N
∑

i=1

wiS(b,gj|Xi) is the general form of Eq.

16 and Eq. 21 for the case of the mixture of Wisharts and the mixture of von
Mises-Fisher respectively, where Xi denotes the parameters of each model, i.e.
Σi and vi respectively. The energy function is minimized with respect to the
unknown mixing weights wi, i = 1...N .

Equation 22 can be rewritten in the form of an over determined linear system
Aw = b, where A is an M × N matrix whose elements are Aj,i = S(b,gj |Xi),
w is a N -dimensional vector of unknowns wi, and b is a N -dimensional vector
whose elements are the acquired signal attenuations bj = Sj/S0. This over de-
termined linear system can be solved in a least square sense, whose solution will
correspond to the solution obtained by minimizing Eq. 22. In the case of the
mixture of Wisharts model, the elements of matrix A are given by

Aj,i = |1 + bgT
j Σigj|−p (23)

while in the case of the mixture of von Mises-Fisher model, the elements are

Aj,i =
κ

4πsinh(1)sinh(κ)

[

sinh(‖ κvi − gj ‖)
‖ κvi − gj ‖ +

sinh(‖ κvi + gj ‖)
‖ κvi + gj ‖

]

. (24)

Different methods for solving the obtained linear system have been compared
extensively by Jian and Vemuri in [39]. According to the results presented in [39]
the best results are obtained by using the NNLS algorithm. Here, we should note
that theoretically the weights wi are non negative and they sum up to 1, since
they were introduced as the mixing components in a probability distribution
function (see Sec. 3.1 and 3.2). However, due to inaccuracies in measuring the
signal attenuation ratio Sj/S0, the sum of the estimated weights may not be 1,
although each wi is greater than or equal to zero. In this case the weights can be
normalized by dividing the vector w as well as the vector b with the normalizing
factor Σwi.

After having fitted the mixture model to the data, the reconstructed signal
S(g) at each voxel can be plotted as a spherical function, i.e. over the space of
unit vectors g. However, in order to understand the estimated diffusivity pattern
which corresponds to the underlying fiber structure, the displacement probability
function P (r) must be computed, whose peaks corresponds to the orientation of
distinct fiber distributions. The displacement probability can be estimated by
evaluating the Fourier integral given by Eq. 2.

In both mixture model cases this integral cannot be evaluated analytically.
In the case of the mixture of Wisharts the integral can be approximated by
ΣwiPi(r), where Pi(r) is given by Eq. 3. The error introduced by this approx-
imation decreases with increasing parameter values for p in the Wishart distri-
bution and becomes zero when p → ∞. Jian et al. [14] have used the value p = 2
based on the analogy between Eq. 15 and the Debye-Porod law of diffraction [40]



for porous media, and it has been shown that the accuracy of the approximated
displacement probability in estimating fiber orientations is higher than that of
other existing techniques.

In the case of the mixture of von Mises-Fisher distributions, the Fourier inte-
gral cannot be computed analytically either, and no approximation formula has
been reported to date. An efficient way to estimate the displacement probability
from this model is to use the general method presented in [41] for approximating
the probability from a set of DW-MR acquired images. In our particular case of
the von Mises-Fisher model, the recovered signal attenuation can be computed
from the approximated mixture model by evaluating Eq. 21 for a large set of unit
vectors gi. The set of vectors can be constructed by tessellating the icosahedron
on the unit hemi-sphere. After having computed the Si = S(gi)/S0 the set of
Si can be considered as a new high angular resolution DW-MR data set and
used by the algorithm in [41] for estimating the displacement probability as a
4th-order Cartesian tensor.

Finally, after having estimated the displacement probability P (r) it can be
plotted as a spherical function over displacement vectors r of same magnitude.
The orientations r that correspond to the peaks of the probability function can
be computed by following the maxima of this spherical function. In order to
compute all the peaks of the possibly multi-lobed displacement probability, the
gradient ascent is initialized in multiple different orientations r. The obtained
orientations of maximum water molecule displacement probability can be further
used by a fiber tracking method for computing complicated fiber structures such
as crossing and splaying fibers [42, 43].

In the next section several examples of multi-fiber reconstruction from syn-
thetic as well as real diffusion-weighted MR data are shown. A table of compar-
ison between the discussed mixture models is also presented and it is supported
by quantitative experimental results.

3.4 Experimental results

In this section we present experimental results obtained by applying the multi-
fiber reconstruction methods presented previously, using synthetic and real DW-
MRI datasets. The synthetic data set was produced by simulating the signal
response on a fiber of cylindrical geometry using the realistic model in [44].

First, we compared the basis derived from the MoW and MovMF models (Eq.
23 and 24 respectively) with the simulated signal response, in order to demon-
strate the ability of the basis derived from the MoW model in approximating
the true DW-MRI signal. In this experiment we first defined a fiber orientation
v and simulated the DW-MRI signal for various diffusion magnetic gradient di-
rections gi. Then, we evaluated the basis functions given by Eq. 23 and Eq. 24
respectively for various gi. The primary eigenvector of Σ in Eq. 23 was taken
to be parallel to the fiber orientation v, and we used the parameters p = 2 and
κ = 10 for the MoW and MovMF models respectively. The plots of the three
functions are shown in Fig. 5.



Fig. 5. Plots of the DW-MRI signal response for a single fiber when using the
MoW and MovMF basis function-based models respectively.

Fig. 6. Multi-fiber reconstruction example. Left: orientations of the synthetic
fiber crossings. Center and Right: The corresponding displacement probabilities
estimated by the MoW and the MovMF models.

By observing Fig. 5 we can see that the MoW model better approximates the
simulated DW-MRI signal in comparison to the MovMF model-based approx-
imation. Therefore, a single fiber response can be approximated by employing
only one basis in the MoW model (i.e. only one non-zero wi in Eq. 16), while
on the other hand an appropriate mixture of the MovMF basis must be em-
ployed (i.e. several non-zero wi in Eq. 17). This experimentally validates the
MoW model as a better suited approximation over the MovMF model which
is simply a general set of basis for approximating spherical functions but not
necessarily well suited to represent the MR-signal decay. As an interesting side,
note that the MovMF model has been also used in approximating facial appar-
ent bidirectional reflectance distribution functions [16], which are also spherical
functions.

In order to demonstrate the ability of the methods in resolving fiber orienta-
tions in the presence of fiber crossings, we simulated the DW-MRI signal [44] for
the cases where two fibers are crossing each other and form an angle of 60o, 70o

and 80o degrees respectively (shown in the left plate of Fig. 6). The simulated sig-
nal, consisting of 81 measurements (at each crossing location) corresponding to
different gradient directions, was approximated by the MoW and MovMF meth-
ods. The estimated displacement probabilities for the two methods are shown in
the central and right plates of Fig. 6 respectively. In the MoW case the resulting
spherical function plots have sharper lobes than those in the MovMF model.
The sharpness of the plots in the MoW model is due to the ability of the model
to better approximate the true DW-MRI signal and the existence of an analytic



Fig. 7. Application of the MoW and MovMF methods to a rat brain data set.
The depicted ROI shows fibers from the cingulum and corpus callosum crossing
over.

form for approximating the displacement probability, which improves the accu-
racy of computation. A detailed comparison of the accuracy of each method in
estimating fiber orientations can be found in [15].

Further, we applied the methods to a real data set from an excised perfusion-
fixed rat brain. The DW-MRI data set was acquired using a pulsed gradient
spin echo pulse sequence with 32 diffusion gradients and b ' 1250 s/mm2. The
region of interest depicted in Fig. 7 contains intersecting fibers from cingulum
and corpus callosum. By observing the computed displacement probabilities, as
anticipated, we can see that both methods estimated crossings at voxels located
in the center of this region.

Fig. 8. Fiber tracking example by following the intra-voxel fiber orientations
estimated by the MoW method.

After having estimated the water molecule displacement probabilities as
shown in Fig. 7, one can perform fiber tracking by applying a fiber tracking
method to the field of probabilities [4, 43]. Figure 8 shows some of the estimated



fibers from the cingulum and the corpus callosum crossing over. A fiber crossing
is more clearly depicted in the right plate of the same figure, with the estimated
displacement probability plots superimposed.

Wishart model von Mises-Fisher model
Model specialized in: DW-MRI spherical functions
Integration space: Pn S2

Pre-defined shape parameter: p κ
The space of mixing densities: not spanned completely spanned uniformly
Signal attenuation is modeled: very accurately poorly

Table 1. Properties of the two models discussed in Sec. 3.1 and 3.2 [14, 15].

Finally we present in Table 1 a summary of the properties of the two methods
studied in this section. First, the MoW model was defined (in Eq. 14) as a
continuous mixture of Gaussians, where each Gaussian is in the form of the
DW-MRI signal attenuation defined in Eq. 1. This produces a model (in Eq. 23)
which is natural for DW-MRI, while on the other hand, the MovMF model is
a general basis (Eq. 24) for approximating any spherical function. Furthermore,
the basis (Eq. 23) derived in the MoW model, approximates closely the true
DW-MRI signal response obtained by using the realistic simulation model in
[44]. However, as it was expected, the basis (Eq. 23) derived in the MovMF case
fails to approximate the signal response since it is a general spherical function
basis and not specifically tailored to approximate the MR signal response from
single fibers.

4 Conclusions

In this chapter we reviewed several information theoretic methods for DTI and
DW-MRI processing and analysis. In the case of DTI, we reviewed an information
theoretic dissimilarity measure between two tensors and then employed it in a
tensor field segmentation framework. The main advantages of this dissimilarity
measure over other existing metrics is that it has an analytic form and it also
approximates the Riemannian geodesic distance between two nearby tensors [5].
Additionally, unlike most other non-Euclidean measures, it provides a closed
form expression for computing the mean tensor of a set of tensors and hence is
very useful as a computationally efficient tensor interpolation technique.

Furthermore, we studied two methods for multi-fiber reconstruction by mod-
eling the DW-MRI signal as a continuous mixture of basis. In the first method
the mixing density was set to be mixture of Wishart distributions, while the
von Mises-Fisher distribution of unit vectors was employed in the other method.
The mixture of Wisharts model is a natural choice for modeling the MR signal
response in the presence of multiple fibers in a voxel since this model constitutes



a continuous mixture of responses from single fibers. In contrast, the continuous
mixture of vMFs is a natural choice for expressing any multi-lobed spherical
functions which may or may not necessarily have anything to do with MR signal
responses obtained in the presence of multiple fibers in a voxel. For more details
on the mixture of Wishart’s and the mixture of vMFs model we refer the reader
to [14, 39, 17] and [15] respectively.
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