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Abstract—Modeling illumination effects and pose variations of a face is of fundamental importance in the field of facial image analysis.
Most of the conventional techniques that simultaneously address both of these problems work with the Lambertian assumption and
thus, fall short of accurately capturing the complex intensity variation that the facial images exhibit, or recovering their 3D shape in
presence of specularities and cast shadows. In this paper we present a novel Tensor Spline based framework for facial image analysis.
We show that using this framework, the facial apparent BRDF field can be accurately estimated while seamlessly accounting for cast
shadows and specularities. Further, using local neighborhood information, the same framework can be exploited to recover the 3D
shape of the face (to handle pose variation). We quantitatively validate the accuracy of the Tensor Spline model using a more general
model based on the mixture of single lobed spherical functions. We demonstrate the effectiveness of our technique by presenting
extensive experimental results for face relighting, 3D shape recovery, and face recognition using the Extended Yale B and CMU PIE

benchmark datasets.

Index Terms—Tensor Splines, Non-Lambertian Reflectance, Face Relighting, 3D Shape Recovery, Facial Image Analysis .
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1 INTRODUCTION

RECISELY capturing appearance and shape of objects

has engaged human imagination ever since the con-
ception of drawing and sculpting. With the invention
of computers, a part of this interest was translated into
the search for automated ways of accurately modeling
and realistically rendering of appearances and shapes.
Among all the objects explored via this medium, human
faces have stood out for their obvious importance. In re-
cent times, the immense interest in facial image analysis
has been fueled by applications like face recognition (on
account of recent world events), pose synthesis and face
relighting (driven in part by the entertainment industry),
among others. This in turn has led to tomes of litera-
ture on this subject, encompassing various techniques
for modeling and rendering appearances and shapes of
faces.

Our understanding of the process of image formation
and the interaction of light and the facial surface has
come a long way since we started [31], with many
impressive strides along the way (e.g. [12], [23], [13]),
but we are still some distance from an ideal solution.
In our view, an ideal solution to the problem of mod-
eling and rendering appearances and shapes of human
faces should be able to generate extremely photo-realistic
renderings of a person’s face, given just one 2D image
of the face, in any desired illumination condition and
pose, at a click of a button (real time). Furthermore, such
a system should not require any manual intervention
and should not be fazed by the presence of common
photo-effects like shadows and specularities in the input.
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Lastly, such an ideal system should not require expensive
data collection tools and processes, e.g. 3D scanners,
and should not assume availability of meta-information
about the imaging environment (e.g. lighting directions,
lighting wavelength etc.).

These general requirements have been singled out be-
cause the state-of-the-art is largely comprised of systems
which relax one or more of these conditions while satis-
fying others. Common simplifying assumptions include
applicability of the Lambertian reflectance model (e.g.
[12]), availability of 3D face model (e.g. [9]), manual
initialization (e.g. [7]), absence of cast shadows in input
images(e.g. [10]), availability of large amounts of data
obtained from custom built rigs (e.g. [23]) etc. These
assumptions are noted as “simplifying” because — hu-
man faces are known to be neither exactly Lambertian
nor convex (and thus can have cast shadows), fitting a
3D model requires time consuming large-scale optimiza-
tion with manual selection of features for initialization,
specialized data acquisition can be costly and in most
realistic applications only a few images of a face are
available.

The method we propose in this paper moves the
state-of-the-art closer to the ideal solution by satisfying
more of the above mentioned attributes simultaneously.
Our technique can produce photo-realistic renderings
of human faces across arbitrary illumination and pose
using as few as 9 images (fixed pose, known illumina-
tion direction) with a spatially varying non-Lambertian
reflectance model. Unlike most techniques, our method
does not require input images to be free of cast shadows
or specularities and can reproduce these in the novel
renderings. It does not require any manual initialization
and is a purely image based technique (no expensive 3D
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Fig. 1. Lambertian Model vs. Cartesian Tensors. From
the synthetic example of the first row and the real data
below it, it can be noted that Cartesian tensor can capture
variations of intensity distributions more accurately than
the Lambertian model.

scans are needed). Furthermore, it is capable of working
with images obtained from standard benchmark datasets
and does not require specialized data acquisition.

Our technique is based on a novel framework of
Tensor Splines which can be used to approximate any
n-dimensional field of spherical functions. In the case
of faces, we use Tensor Splines to approximate the
field of Apparent Bidirectional Reflectance Distribution
functions (ABRDF) for a fixed viewing direction. Unlike
the BRDEF, the ABRDF (also known as the Reflectance
Field) at each pixel captures the variation in intensity
as a function of illumination and viewing direction and
is thus sensitive to the context of the pixel. Once the
ABRDF field has been captured, images of the face
under the same pose but with arbitrary illumination can
be generated by simply taking weighted combinations
of the ABRDF field samples. Next, we estimate the
surface normal at each pixel by robustly combining the
shape information from its neighboring pixels. To this
end, we put forth an iterative algorithm which works
by registering neighboring ABRDFs using an extremely
efficient linear technique. With as few as 1 or 2 iteration,
we can recover the surface normal fields of most faces
which are then numerically integrated to obtain the face
surfaces. Novel poses with novel illumination conditions
can then be rendered while seamlessly accounting for
attached as well as cast shadows. Note that in this paper
we use the term “ABRDF” to refer to a spherical function of
illumination direction with the pose held fixed.

2 RELATED WORK

The sheer size of the facial shape-reflectance modeling
literature allows its taxonomy to be carried along various
lines. Since the work presented in this paper deals with a
novel ABRDF model and subsequent shape recovery, we
would categorized the methods based on the assumed
reflectance models (Lambertian or Non-Lambertian). We
have focused primarily on bringing out the underlying
assumptions and limitations of the methods with respect

to the problem of relighting and shape recovery. In
particular, we are interested in knowing the number of
required input images, use of external 3D information
and handling of cast shadows by different methods.
Note that some of the surveyed methods deals with
objects in general, but are included here because they
can be easily adapted to work with faces. We have
summarized few of the key methods along with the
associated assumptions in Table 1.

A large fraction of the existing techniques for facial im-
age analysis work with the Lambertian assumption for
reflectance. This translates to assuming that the apparent
BRDF at each point on the object’s surface has the same
shape, that of a half cosine function, which has been
scaled by a constant — the albedo, and is oriented along
the surface normal at that location. One of the major
reason for the prevalence of this model is its simplicity.
Analysis has shown that under this assumption, if cast
and attached shadows are ignored, image of a convex
object, in a fixed pose, lit by arbitrary illumination lies
in a 3-dimensional subspace [32]. When an ambient
lighting component is included, this subspace expands to
become 4-dimensional [33] and when attached shadows
are taken into account, the subspace grows to become
an infinite dimensional — illumination cone [34]. Note
that the Lambertian model does account for attached
shadows but not cast shadows.

Spherical harmonic analysis of the Lambertian kernel
has shown that even though the illumination cone is
infinite dimensional, it can be approximated quite well
by a lower dimensional subspaces ([36], [13], [12]). In
particular, these methods can produce impressive results
with 9 basis images, though they require 3D shape
and the albedo field as input. These basis images can
also be directly acquired using the “universal virtual”
lighting conditions [40]. More recently, this idea has
been extended to 3D surfaces in [7] building on the
prior seminal work presented in [9] called Morphable
Models. Morphable Models can recover 3D shape of a
face by fitting an average 3D facial model to a given
2D image, accounting for necessary shape and texture
adjustments. Morphable Models are known to produce
excellent results for across pose face recognition but
cannot handle cast shadows or specularities robustly.
More importantly, they require manual delineation of
facial features to initialize a complicated non-linear opti-
mization which can take a long time to converge and can
suffer from local minima. Use of a single reference 3D
face to recover shape from a single image was explored
in [55]. Using the idea of low dimensional subspace
mentioned above, [30] represented the entire light-field
using a low dimensional eigen light-field.

It has been suggested that even though the time and
cost of acquiring the 3D data is decreasing, the majority
of the face databases still remain 2D and hence it is
more pragmatic to work with 2D images alone [22].
Methods that are purely image based and work with
the Lambertian assumption generally apply photometric
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TABLE 1
Requirements, Assumptions and Capabilities of Candidate Methods for Relighting and/or Pose Change
Methods Assumed No. of | Relit Shape Cast Purely Other Assumptions, Requirements and Limitations
Surface Images | Images | or Pose | Shad- Image
BRDF as Pre- Results | ows in | based
Model Input sented Pre- Input (No 3D
sented Scans)
1999 Georghiades et al. [19] © | Lambertian | > 3 X Near frontal illumination expected, Ray tracing for cast shadows.
1999 Blanz et al. [9] © Non-Lamb. 1 X X No attached shadows, Manual initialization to fit 3D model.
2000 Debevec et al. [23] © Non-Lamb. | > 2000 Custom rig for data collection, Structured lighting for shape.
2001 Ramamoorthi et al. [13] Lambertian >3 X X X Distant and isotropic lighting, 3D Scans needed as input.
2001 Malzbender et al. [35] Non-Lamb. | > 50 X X Custom rig for data acquisition, No specularity allowed in input.
2001 Georghiades et al. [10] © | Lambertian | > 7 X Almost no attached shadow, Symmetric faces, Ray tracing.
2001 Shashua et al. [29] ©® Lambertian 1 X X Bootstrap set of images required, Ideal class assumption.
2001 Zhao et al. [25] ©® Lambertian 1 X No attached shadows, Symmetric faces, piecewise constant albedo.
2001 Magda et al. [24] Non-Lamb. | > 300 X Known lighting directions, Lighting should doubly cover the directions
2003 Georghiades [20] © Non-Lamb. | >12 X 3 sources/pixel, ad-hoc shadow detection, Spatially constant BRDE
2003 Wen et al. [3] © Lambertian | 1 X X Symmetric lighting, 3D Model Fitting, Manual initialization.
2003 Basri et al. [12] © Lambertian 1 X X X Distant & isotropic lighting, 3D scans required, Manual initialization.
2004 Gross et al. [30] © Lambertian | > 1 X X Manual delineation of feature points for better recognition.
2005 Goldman et al. [21] Non-Lamb. | 12 X Known lighting, HDR images expected, Manual threshold selection
2005 Hertzman et al. [18] Non-Lamb. | >8 X X No shadows expected, Reference object expected, Symmetry of faces.
2005 Lee et al. [28] © Lambertian | 1 X X Shadowed pixel gets default albedo, Universal 3D face model required.
2006 Zhang et al. [7] © Lambertian 1 X X 3D Model Fitting with manual initialization.
2006 Zickler et al. [14] © Non-Lamb. | >1 X X X Point lighting sources with known directions, Object shape required.
2007 Chandraker et al. [4] Lambertian >4 X 3 sources/pixel, Known lighting, Normals can’t be on bisection planes.
2007 Alldrin et al. [15] Non-Lamb. > 32 X Point light sources, Known directions, BRDF isotropic about normal.
2007 Biswas et al. [27] © Lambertian | 1 X X Point sources with known directions, Registered avg. 3D model required.
2007 Zhou et al. [5] © Lambertian | 1 X No attached shadows expected, Symmetry of faces, Bootstrap set required.
2007 Basri et al. [11] Lambertian | 15 X X Distant and isotropic lighting, Works for only convex objects.
2008 Alldrin et al. [16] Non-Lamb. > 102 X Point sources with known directions, BRDF isotropic about normal.
Our Method © Non-Lamb. >9 Point sources with known directions.

© indicates that the method was primarily demonstrated on face images.

stereo or shape from shading to recover facial shape from
the given images. For instance, results for simultaneous
shape recovery using photometric stereo and reflectance
modeling were presented in [19] and [10]. Both of these
methods work with multiple images and expect no cast
shadows and very little attached shadows in the images.
Here the cast shadows in the relit images are rendered
using ray tracing, which can be computationally ex-
pensive. Examples of methods that recover shape from
shading working under the Lambertian assumption can
be found in [25] and [38]. As these methods work with
just a single image, besides requiring absence of cast
shadows in input, they make additional assumptions
like facial symmetry, as in [25]. An important point to
note here is that uncalibrated photometric stereo or shape
from shading methods that work with the Lambertian
assumption and orthographically projected images, also
suffer with the Bas-Relief Ambiguity ([37]). Resolving
this requires additional assumptions like symmetry of
face, nose and forehead being at the same height, known
lighting directions, etc., and manual assistance.

Recently, shape recovery using generalized photomet-
ric stereo, for objects in general, was presented in [11]
which relaxes some of the assumptions made by tradi-
tional photometric stereo. This method can recover shape
from images taken under general unknown lighting. On
account of the Lambertian assumption, cast shadows are
not entertained in the input images and the shape of
the object is assumed to be convex. Note that accurate
recovery of shape using this method requires 15 to 60
images as input. Another method for Lambertian shape
recovery with multiple illuminants, but without ignoring
shadows, was presented in [4] where the graph cuts
method was used to identify light source visibility and

information from shadow maps were used to recover the
shape. This method is again meant for objects in general
and but can be applied to faces.

In contrast to most of the methods mentioned above
are the techniques that seek illumination invariant repre-
sentations of faces which can be then used to render relit
images. Seminal work in this category was presented in
[29], where the so called “Quotient Images”, generated
using ratio of albedo values, were used to generate
images under novel illumination. More recently, use
of invariants was invoked in [3], where the radiance
environment map was deduced using the ratio image
technique ([39], [29]). Note that the shape recovery in
[3], like the Morphable Models, requires manual initial-
ization. Forgoing the ratio technique, direct use of albedo
as a illumination invariant signature of face images
was explored in [28], where using an universal 3D face
model, illumination normalized images of faces were
generated. This method worked with low resolution
images and did not render high quality relit images.
More recently an improvement was presented in [27]
where the albedo estimation was made more robust us-
ing the error statistics of surface normals and the known
illumination direction. This method requires a registered
average 3D model of the face and does not allow cast
shadows in the input but as compared to [28], it provides
better shape recovery. Improving upon the idea of ideal
class assumption ([29]), a generalized photometric stereo
was presented in [5]. Using a bootstrap set of facial
images and exploiting the subspace spanned by a set
of basis objects with Lambertian surfaces, images with
novel pose and illumination were generated. Faces were
assumed to be symmetric and the input was assumed to
be free of shadows.
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Next, we look at techniques that do not make the
Lambertian assumption. Seminal work in this class of
techniques was presented in [23] where using a custom
built rig, dense sampling of the illumination space for
faces was obtained. In this work the facial shape was
obtained using structured lighting and no assumption
about the surface BRDF was made. This completely
data driven technique was able to produce extremely
photo-realistic images of the face in novel illuminations
and poses. The specular component was captured using
polarized lighting and modified appropriately for pose
variation. This method demonstrated that if a large num-
ber of images (> 2000) for each subject can be obtained
under various lighting configurations, the relighting and
pose generation problem can be solved, but the cost of
such a system can be extremely high.

Use of biquadratic polynomials to model texture was
explored in [35]. This method required a custom built
rig and more than 50 specularity free images to recover
the model parameters. The shape of the object was not
recovered in this method. Use of a large number (> 300)
of images to recover the shape without making any
assumption about the nature of the BRDF was revisited
in [24]. This method required input images to doubly
cover the illumination direction which called for spe-
cialized data acquisition. Though no attempt to capture
the reflectance properties of the object was made in this
work, it was addressed in the follow-up work presented
in [53]. [53] was also possibly the first paper to coin the
phrase ”Apparent BRDF”. Note that all these methods
were targeted at general objects but can be applied to
faces.

One of the first non-Lambertian techniques that
worked with standard face databases and did not require
custom data was presented in [20] where the more gen-
eral Torrance-Sparrow ([47]) model for BRDF was used.
This method presented relighting and pose variation
results with 12 images as input but did not allow cast
shadows. Further, this method required each pixel to be
lit by at least 3 light sources in order to work properly.

Important contribution in the field of example based
shape recovery was made by [17] where objects of inter-
est were imaged along with a reference object of known
geometry (e.g. sphere). Multiple (> 8) cast shadow free
images were used as input. This work was expanded to
allow spatially varying BRDF by using multiple refer-
ences in [18]. An interesting extension of this work was
presented in [21] where the shape of an object was recov-
ered using the assumption that the BRDF of any object
is essentially composed of BRDFs of a few fundamental
materials. This method used 12 High Dynamic Range
images with known illumination direction and required
manual selection of a system parameter threshold. These
methods work with general objects and can also be used
with faces. Recently [57] presented a method where 16
to 59 input images are used recover the shape and the
reflectance of objects. Though useful in certain cases, this
method suffers from large memory, close initialization

and camera calibration requirements.

When the 3D shapes of the objects are assumed avail-
able, [14] presented a technique which, at times using
just 1 image, can recover their spatially varying non-
parametric BRDF fields. For the case of the human face,
this work presented results with 4 images where specu-
lar component was separately captured using polarized
lighting. The images were acquired from known illumi-
nation directions and no cast shadows were allowed.

Recently, [15] presented a new method for photometric
reconstruction of shape, which can be applied to faces,
assuming spatially varying but isotropic BRDFs. Given
32 or more images with known illumination, this method
recovers isocontours of the surface depth map from
which shape can be recovered by imposing additional
constraints. An extension of this work was presented in
[16] where the need for additional constraints to recover
shape from the depth map isocontour was alleviated by
assuming the surface to be composed of a few funda-
mental materials and that the BRDF at each point can be
approximated by a bivariate function. Results presented
in this work required 102 or more images. Another
interesting framework for photometric stereo using the
Markov Random Field approach was presented in [51].

Lastly, we note that in cases when extremely high
quality renderings are required and cost-time constraints
are relaxed, custom hardware is employed. For instance,
highly accurate measurements of material BRDF were
carried out using a gonioreflectometer in [42], various
customized hardware components and software were
used to render face images in the movie “The Ma-
trix Reloaded” [41]. In order to measure accurate skin
reflectance while accounting for sub-surface scattering,
custom built devices were again employed in [43] to
render high quality facial images.

It can be noted that most of the image based tech-
niques that do not make the simplifying Lambertian
assumption end up using a large amount of custom ac-
quired data or assuming some other parametric form for
BRDF (besides the other assumptions). In this paper we
explore the possibility of acquiring the non-Lambertian
reflectance and shape with just nine images in a purely
data driven fashion.

3 OVERVIEW

The technique that we propose in this paper simultane-
ously captures both shape and reflectance properties of
a face. Unlike the majority of existing techniques that
work with BRDFs, in order to seamlessly account for
specularities, attached shadows, cast shadows and other
photo-effects, we have chosen to work with the ABRDFs,
which are spherical functions of non-trivial shape. We
estimate them using Cartesian tensors, which in practice,
have enough flexibility to account for the variations
in ABRDF across the human face. Further, in order to
robustly estimate the ABRDF field from only a few
and often noisy samples, we draw upon the apparent
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smooth variation of reflectance properties across the face
and combine the Cartesian tensors with B-Splines. This
combination of Cartesian tensors with B-Splines is called
Tensor Splines in this paper.

Embedded in the ABRDFs at each pixel also lies the
surface normal of the shape. To extract the normal from
the ABRDF field riddled with cast shadows and specu-
larities, we invoke the homogeneity of the ABRDFs in
local neighborhoods, and infer surface normal at a pixel
using the information from its immediate neighbors.
More concretely, at each pixel we align the ABRDF with
its neighbors using a linearized algorithm for rotation
recovery and take a weighted geodesic mean of the
normals suggested by the neighbors to obtain the surface
normal. Our framework automatically discounts possi-
bly erroneous surface normal suggestions by weighting
the suggestion from a neighbor of substantially different
ABRDF shape lower than others. This process can be
iterated and in practice we find good solutions within 1
or 2 iterations.

Equipped with this mechanism to capture both re-
flectance properties and shapes of the human faces, we
can generate images of any face in novel poses and
illumination conditions.

3.1

Like all other techniques, our method also works with
certain assumptions. It requires at least 9 images of the
face under point illuminations from known directions
in a fixed pose. Note that these assumptions have been
used in the past by various methods, for example, [21]
worked with 12 images obtained from known lighting
directions in fixed pose. As the number of input images
increases so does the performance of our method. We
do not restrict input images to be free of attached or cast
shadows. We also do not restrict the BRDF to be Lamber-
tian ([10]) or isotropic ([15], [14]). Though global photo-
effects like subsurface scattering and interreflection are
not explicitly modeled, Tensor Splines can capture them
to some extent.

Assumptions

4 TENSOR SPLINES

We seek a mathematical framework that can represent a
field of spherical functions accurately. If a dense enough
sampling of the spherical function field is provided,
this can be accomplished to arbitrary accuracy, but the
central problem we face is precisely the scarcity of the
data. To solve this problem for the case of human facial
ABRDF fields, we exploit clues from the specific nature
of ABRDFs on human faces e.g. smooth variation of
ABRDF for the most part, presence of multiple lobes in
the ABRDF etc.

4.1

A spherical function in R? can be thought of as a function
. . T
of directions or unit vectors, v = (v; vy v3) . Such a

Spherical functions modeled as Tensors

function, T, when approximated using an n'" order !
Cartesian tensor [56] (a tensor in R?), is expressed as

T(v)= Z Tyt (v1)" (v2)' (v3)™

k+l+m=n

)

where T}, are the real-valued tensor coefficients and k&, [
& m are non-negative integers. This is a Cartesian tensor
with all the n arguments set to be v. The expressive
power of such Cartesian tensors increases with their
order. Geometrically this translates to presence of more
“lobes” on a higher order Cartesian tensor.

Note that the Lambertian model is intricately con-
nected to a special case of the Cartesian tensor formula-
tion. If v = (v1 v9 vg)T is the light source direction, n =
(n1 no ng)T is the surface normal and p is the surface
albedo, the Lambertian kernel is given by

max(p-n-v,0) p - mazx(nivy + navg + nzvs, 0)

= mazx( Z Trimvvbod*, 0) (2)
k+l+m=1
with Tio0 = p - n1, Toro = p-n2 and Toor = p - n3. A
comparison with Eq. 1 reveals that the Lambertian kernel
is exactly the positive half of the 15 order Cartesian
tensor.

The 1°¢, 274, 37@ and 5'* order Cartesian tensors
have 3, 6, 10 and 21 unique coefficients respectively.
For even orders, the Cartesian tensors are symmetric,
T(v) = T(—v), while for odd orders they are anti-
symmetric, T(v) = —T(—v). We must point out that
these definitions of symmetry and anti-symmetry are
different than the standard definition based on switching
of the arguments’ order. In this paper, we would use the
definitions we provided above.

4.2 Tensor Splines

When the task requires estimation of a p-dimensional
field of multi-lobed spherical functions from sparse and
noisy data, given the high noise sensitivity of higher
order tensors, it is reasonable to enforce smoothness
across the field of spherical functions. We accomplish
this by combining the Cartesian tensor basis at each
pixel with the B-Spline basis ([44]) across the lattice of
spherical functions.

We define a Tensor Spline as a B-spline of multilinear
functions of any order. In a Tensor Spline, the multilinear
functions are weighted by the B-spline basis N; j1(%)
[52]. The N;j+1(t) are polynomials of degree k, asso-
ciated with n+k+2 monotonically increasing numbers
called "knots” (t_g,t_k+1,-..,tn+1) and i is the index of
the control points.

The Tensor Spline for a p-dimensional lattice of spher-
ical functions, with k*" degree spline and n'* order
Cartesian tensor is defined as

S(t,v) = Z (HNia,k-t,-l(tia))ﬂl...ip(v)

(i1...1p)ED  ta

®)

1. In the notation used in this paper, this order is not same as the
number of indices used to represent the tensor.
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where t = (#1...t,) is the index into the spherical
function lattice, v = (v1 ve Ug)T is a unit vector, © is the
p-dimensional spline control point lattice and T3, .. ;, (V)
is given by Eq. 1. In Tensor Splines the usual B-Spline
control points have been replaced by control tensors
T;,...i,(v). The formulation presented in Eq. 3 is quite
general as it can be used to estimate a spherical function
field defined over an arbitrary dimensional lattice, with
the desired degree of B-Spline smoothing.

4.3 Facial
Splines
Human faces are known to be neither exactly Lam-
bertian nor convex, which leads to photo-effects like
specularities (oily forehead and nose tip) and cast shad-
ows (around protruding features like nose and lips)
in facial images. These effects cause such a complex
variation in the intensity values at various pixels as the
lighting direction changes that it cannot be captured
by a single lobed function (like the Lambertian kernel).
This motivated us to explore the use of higher order
Tensor Splines to model the ABRDFs. Note that here
the lattice is 2-dimensional and the assumption of local
homogeneity also holds to a reasonable degree in case of
facial ABRDFs. In order to ensure that the smoothness
is manifested only in a localized fashion, we have cho-
sen to use bi-cubic B-Splines in the ABRDF-specialized
version of Tensor Splines. This smoothing may cause the
estimated ABRDFs to be only an approximation of the
true functions at the material boundaries, but since the
skin reflectance is largely uniform across the face, this
approximation does not degrade rendered image quality.

The ability of the Cartesian tensors to better model
data with complex distributions can be noted in Fig.
1, where in the first row we show that for the case
of synthetic circular data (shown by green arrows), the
Cartesian tensors can more accurately approximate the
data than the Lambertian cosine bumps. In the second
row we show real facial ABRDFs approximated by the
Tensor Splines and the Lambertian model from a shadow
prone region of the face. It can be readily noted that the
Tensor Splines capture the variability in intensity values,
as a function of illumination direction, more accurately
than the Lambertian reflectance model.

We must point out that as the order of Cartesian
tensors increases, so does the amount of data samples
required to estimate the unknown coefficients. When
there are only a few images available, in order to satisfy
our desire to use higher order tensors, we must choose
between its odd (anti-symmetric) or even (symmetric)
components. Note that since most of the time we are
interested in the ABRDFs’ behavior on the frontal hemi-
sphere, both symmetric and anti-symmetric versions
provide the same representation power. Their behavior
only becomes pertinent when the illumination direction
is exactly perpendicular to the pose direction, and this
is where the use of anti-symmetric versions is advanta-
geous.

ABRDF approximation using Tensor
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Fig. 2. Symmetric and Antisymmetric ABRDF approxima-
tions.

This has been explained via a 2D example in Fig. 2
where case (a) shows a semicircular function. The blue
circle in the figure is considered to be the zero value.
Cases (b) and (d) show the same function being approx-
imated by a antipodally symmetric and anti-symmetric
functions respectively. In can be noted that the approx-
imation is quite accurate except near the angles 0° and
180°. When the original function (case (a)) is such that it
has positive value at one of these antipodal points and
near zero value at the other, a symmetric function forces
value at both of these crucial angles to be positive while
the anti-symmetric function force one to be positive and
other to be negative. Now, if we assume that only the
positive values of the function are preserved we get the
results as presented in cases (c) and (e).

The behavior of most facial ABRDFs is similar to the
function in case (a). This is because if a pixel has high
intensity value when lit from 0°, most of the time it
would have a low intensity value when lit from 180°
(due to attached and cast shadows), and vice versa. Thus,
if a symmetric function is used for approximating such
an ABRDF, it would cause non-negative values at both 0°
and 180° and would lead to visually significant artifacts
(unnatural lighting) in the images (case (f)). On the other
hand, in practise, use of an anti-symmetric function
does not cause visually significant artifacts (case (g)).
To summarize, even though both, anti-symmetric and
symmetric functions, introduce artifacts near 0° and 180°
directions, the artifacts created by an anti-symmetric
approximation are visual insignificant and hence we
have chosen to work with anti-symmetric components.

Two dimensional Tensor Splines with bi-cubic B-
Splines and odd order tensors can be written as

S(6v) = > Nia(ta)Nja(ty)Ti (v)
(i,§)€®D

4)

where vectors i, j,©,t and v have the same meaning as
before and the tensor has an odd order.

The problem at hand is that given a set of () face
images (I, ¢ = 1...Q) of a subject in a fixed pose
along with associated lighting directions v, = (vq1 vg2
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vg3), we want to estimate the ABRDF field of the face
using a bi-cubic Tensor Spline. We propose to accomplish
this by minimizing the following energy function which
minimizes the L, distance between the model and the
given data,

E(Tijkim) =
Q
DD 0D Nialta)Njalty)To(ve) = Lo(ta, 1) =

q=1 t:z:7t'y (l,])ED

Q
ZZ( Z Nia(tz)Nja(ty) Z EjklmvslvéQ’U;%

q=1tg,ty (i,j)€D ktltm=n
—Iy(te,ty))*

where t,,t, run through the lattice of the given images,
i,7 are the indices into the spline control point lattice
D(D x D), and the tensor order n is an odd integer.
The minimization of Eq. 5 is done with respect to the
unknown tensor coefficients T; ; 1. that correspond to
the control tensors 7; ;(vy,).

If the image size is M x M, there are M? unknown
ABRDF tensors which are interpolated from the con-
trol tensors (Eq. 4). We use a uniform grid D x D
of control tensors, which translates to 3D?, 10D? and
21D? unknown control tensor coefficients for 15¢, 37¢
and 5'" order tensors respectively. A value for D is
chosen according to the desired smoothness. For the
cases when the number of unknowns per control tensor
is one more than the number of data constraints, we
use an additional constraint which discourages solutions
with large norms. This is enforced by adding the term
AD55 2 kim Tk to the error function in Eq. 5, where
A is the regularization constant.

We recover the unknowns in Eq. 5 using the gradient
descent method with the control tensor coefficient field
initialized using all-ones unit vectors. This technique can
be efficiently implemented because the closed form for
the derivative of the objective function with respect to
the unknown coefficients can be easily obtained analyt-
ically.

Once the coefficients have been recovered, images
under novel illumination direction, v, can be synthesized
by evaluating the ABRDF field in the direction v, where
each ABRDF is given by Eq. 3. Possible negative values
obtained in Eq. 3 are set to zero (as in Lambertian
model). Furthermore, it should be noted that the gen-
erated images can be readily up-sampled by evaluating
Eqg. 3 on a more dense sampling lattice since the Tensor
Spline is a continuous function.

5 MIXTURE OF SINGLE-LOBED FUNCTIONS

In order to quantitatively validate whether the Tensor
Splines provide a good enough approximation of the
ABRDF field, we present a more expressive model here.
This validation model is more general in the sense that
it can accommodate arbitrarily large number of lobes to
approximate any spherical function. We define it using
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(5) Fig. 3. ABRDF alignment. Neighboring ABRDFs A and

B can be better aligned with each other than A and C.
This would weigh the normal suggested by B higher than
the normal suggested by C.

a mixture of single-lobed spherical functions. Such a
mixture is characterized by a kernel function, k(p;,v),
and a set of mixing weights, w;, associated with a set of
unit vectors u; as follows

B(v) =Y wik(ui,v), 6)
where v is the lighting direction and the vectors y; are
uniformly distributed on the unit sphere.

Of the various choices for singled lobed spherical
functions that can be used as the kernel function k(u, v),
we picked k(p,v) = eV — 1 due to two reasons —
it has a single peak and k(y,v) = 0 for all v such
that v - 4 = 0 (since if the viewing and illumination
directions are perpendicular we expect zero intensity).
Note that the these two properties are also satisfied by
the Lambertian kernel.

The task of estimating ABRDFs using this mixture
model requires us to recover the unknown weights
such that the weighted combination leads to a spherical
function which closely approximates the ABRDFs. Given
a set of N facial images with the same fixed pose
with associated lighting directions v,, we can setup
a N x M matrix A, ,, by evaluating e #Vv — 1 for
every v, and p;. M is the number of ; picked in the
model. The unknown weights (Eq. 6) for each pixel can
then be estimated by solving the overdetermined system
AW = B, where B is an N-dimensional vector of the
intensities at a fixed pixel in the N given images, and
W is the vector of the unknown weights. Since ABRDF
is a nonnegative function, we solve this system with the
positivity constraint using the non-negative least square
minimization algorithm developed in [45].

Note that this model would generally have a very
large number of unknowns (depending on the chosen
resolution while picking p;), and thus would require
a large number of ABRDF field samples (images) for
accurate recovery of the ABRDFs. But since this would
only be used as a tool to evaluate the Tensor Splines, it
is not considered a drawback.
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6 RECOVERING SHAPE FROM THE ABRDF
FIELD

Facial ABRDF is in part characterized by the local surface
normal and hence it should be possible to recover shape
information from it. But unlike the various popular
parametric reflectance models like Lambertian, Torrance-
Sparrow ([47]), Phong([46]) etc., which explicitly assume
a role for the surface normal in their formulae, Tensor
Splines make no such assumption. This allows spatially
varying and accurate approximation of the ABRDFs,
but also makes the recovery of the surface normal non-
trivial.

To recover the surface normal from the Tensor Spline
model we invoke the local homogeneity of the ABRDF
field. This assumption is physically sound because the
reflectance properties of a human face do not change
drastically in small neighborhoods (3 x 3 pixels) and
mathematically robust as Tensor Splines ensure that the
coefficients vary smoothly across the ABRDF lattice. We
assume that ABRDFs at two neighboring pixels have the
same shape and differ only by a rotation, R and thus,
if the surface normal at one of these pixels is known,
the surface normal at the other pixel can be derived by
rotating it by R.

For a given internal pixel (z,y) in the image, there
are eight immediate neighbors. If the surface normal at
(z,y) is inferred as described above, it would receive
eight suggestions for possible surface normals (assuming
that the surface normals for the neighbors are known).
Instead of picking one of the suggestion as its surface
normal, we take a weighted geodesic average of the
suggested vectors. The weights are set to be inversely
proportional to the registration error obtained during
rotation-alignment of the ABRDF pairs. There are two
main advantages to computing the surface normal is this
manner. Firstly, being an aggregate statistic, the geodesic
mean is more robust to noise than the individual sug-
gestions. Secondly and more importantly, the weighted
nature of the mean ensures that suggestions, which orig-
inate from neighbors whose ABRDFs are very different
in shape than the ABRDF at (z,y), are automatically
weighted less. This property of the mean is specially
useful at locations in the image where the homogeneity
assumption breaks down, e.g. shadow edges.

This processes is summarized in Fig. 3, where the
central ABRDF (A) is shown to be aligned with a higher
accuracy to its left neighbor ARBDF (B) than to its right
neighbor ABRDF (C). For both case, before and after
alignment configurations are shown from 2 different
points of view. As mentioned before, the misalignment
error is used to weight the normal suggestion from a
neighbor and hence the suggestion from the left ABRDF
(B) would eventually be weighted more than the sug-
gestion from the ABRDF on the right (C).

Once the rotation matrices for all the pixels in the
image have been computed, we initialize all the normals
with the directions in which ABRDFs have their maxima.

Initialization is followed by weighted geodesic mean
computations which provides us with a robust estimate
of the surface normals. The process of mean computation
is carried out iteratively but empirically it was noticed
that good results can be obtained in all cases with 1
or 2 iterations. Note that using the maxima directly
as a normal estimate provides inaccurate results. We
attribute this to the fact that unlike some reflectance
models (e.g. Lambertian), Tensor Spline do not ensure
that the maximal response of the ABRDF lies along the
surface normal direction.

6.1 Rotation Estimation

Recovering the surface normal field using the steps de-
scribed above requires computation of rotation matrices
for each pair of neighboring ABRDFs in the image. A
simple but computationally intensive approach would
be to search for the rotation matrix using a gradient
based constrained optimization technique. More con-
cretely, two ABRDFs, represented by their Cartesian ten-
sor coefficients w; and ws, can be aligned by minimizing
the following objective function

> (wiB(v) —wiB(R-v))*.
ves?

E(R) = @)
such that

RTR=1. (8)

where unit vector v is obtained by some uniform sam-
pling of directions on a sphere (e.g. 4th-order tessella-
tion of a icosahedron provides 642 fairly uniformly dis-
tributed directions), B is the vector of Cartesian tensor
basis defined in Eq. 1 and R is the sought rotation matrix.
This method for rotation matrix recovery would require
nonlinear optimization to be run ~ 8L? times for an
image of size L x L pixels. Even for an average sized
image this process can be quite intractable and hence,
we propose the following more efficient algorithm for
the rotation matrix recovery.

Let T31(v) and T»(v) be the two ABRDFs (Eq. 1) that
need to be aligned via a rotation. This implies that for
each v, we seek a Jv such that

Ty (v) = To(v + ov). )

Since the ABRDFs are from neighboring pixels, we as-
sume that the required §v would be small and thus using

the first order Taylor’s expansion, we get
Ty (v) = Ta(v) + VTo(v) ov. (10)

As we expect

L-v=v+dv, (11)

where L is a linear transformation containing the rotation
matrix, we get

Ty (v) = To(v) + VTa(v) v = VTy(v)" Lv, (12)
which leads to the following linear system

Az = B, 13)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

where the i** row of A contains vectorized entries of
VT5(vi)vi?, x contains the vectorized entries of L, the
ith entry of B is T1(vi)—Tz2(vi)+ VT2 (Vi)TVi and v; is the
it" unit vector obtained by uniform sampling of a sphere.
The embedded rotation matrix R can be recovered using
the QR decomposition from L.

6.2 Surface Normal Computation

As described earlier, the surface normal, n, at a pixel
(x,y) with ABRDF T can be computed by taking a
weighted geodesic mean of the normals suggested by its
neighboring pixels. Let all of its P immediate neighbors
be indexed 1...P with corresponding ABRDFs as T},
normals as n, and the rotation matrices computed using
the process described above as R; ... R,. The normal at
(x,y) is then given by
5 1 2
n= argmmﬂz md (np, 1), (14)
p=1

where d() is the geodesic distance defined on the space
of unit normals, arc length. We seek a geodesic mean
because the domain of unit normals is the unit sphere
and not the Euclidean space. This mean is also known as

the weighted Karcher mean and can be computed using
the following iterative scheme —

w— exp,(ev) (15)
- 1
v=(1/n —— _exp.'n (16)
(/)3 7, et e
where exp, the exponential map, is given as
expp(ev) = cos(lev|)u +sin(|ev|)(v/[v])  (17)
and exp;, ' (n,), the log map, is defined as
cap, ' (ny) = weos™ ((u,np))/v/ ((w,u)) — (18)
where
u=ny — (N, 1)H, (19)

and ¢ is the iteration step size. For more details on
computing means on manifolds see [52] and references
therein.

6.3 Shape Recovery

Once the normal field has been computed, we use one
of the standard techniques ([48]) to recover the surface.
If z(z,y) defines the surface, the normal at a location
(z,y) is given by (z; z, —1)T where z, and z, denote the
partial derivatives of the surface with respect to = and
y. If (ny ny n,)T denotes the surface normal at location
(z,y), we have the following relations

(20)

Ze = —Ng /N,

Zy = =Ny /N (21)

Lambertian Ground Truth Tensor Splines

(b) (c)

(d) (e) ()

Fig. 4. Synthetic Example. Cast shadows and specu-
larities are notedly better rendered using Tensor Splines
than the Lambertian Model.

Fig. 5. Recovered ABRDFs for a human face. Complex
shapes of ABRDFs in various regions of the face can be
readily noted. Functions are colored according on their
maximal value direction. The color to direction mapping is
shown on top left.

Using the forward difference approximation of the par-
tial derivatives we obtain the following two equations

(22)
(23)

nzz(x + 1vy) - nzz(m,y) =Ng
TLZZ(I,y + 1) - nzz(:r,y) = Ny,

which provide a linear relation between the surface
values at the grid point and the known surface normals.
The surface can now be recovered by solving an over-
determined system of linear equations. At the boundary
points, n, ~ 0 and hence the above formulation is not
valid. A single linear constraint is instead obtained by
eliminating n, in Eq. 22 and 23 above

nez(z,y) —nez(z,y+1) = nyz(z+1,y) —nyz(z,y). (24)

6.4 Novel Pose Relighting

With the facial shape in hand, novel poses can be ren-
dered by simply changing the viewpoint. But generating
novel illumination conditions in the novel pose is not
trivial as the ABRDFs estimated from a different pose
cannot be directly used. If the ABRDF field was esti-
mated in pose P; and if we wish to generate an image
with a novel illumination in a new pose P,, we have
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Fig. 6. Images synthesized using Tensor Splines under
novel illumination direction (mentioned on each image as
(azimuth,elevation)). 9 images used as input were illumi-
nated from (-20,60),(0,45),(20,60),(-50,0),(0,0),(50,0),(-
50,-40),(0,-35) and (50,40) directions.

(a) (b) (e)

Fig. 7. Images relit with complex lighting. 15t image of
both subjects is lit by a point source while the next two
are lit by Eucalyptus Grove and St. Peter’s Basilica light
probes respectively. Light probes are provided below the
facial images.

to rotate the ABRDFs by the same rotation which is
required to change P, to P,. Once the orientations of
the BRDFs have been rectified, images of the face in the
new pose with novel illumination can be generated by
evaluating the ABRDF field in the desired directions.
We would like to point out that the specularities
are view dependent and accurately speaking, cannot
be directly transferred from one pose to another. Most
of the existing Lambertian methods ignore this effect
but the few who deal with this problem, handle it by
either explicitly obtaining the specular component by
using polarized lighting (e.g. [14], [23]), which required
specialized data acquisition, or by assuming a parametric
form for the specular component of lighting (e.g. [20]).
Our Cartesian tensor representation for ABRDF does
not discriminate against specularities and estimates the
ABRDF as best as possible from the available intensity
values. Thus it should be possible to recover and ma-
nipulate the specular component separately, but at this
stage, we have made the assumption that specularities

(b)

(© (d)
Fig. 8. Distribution of errors as the configuration of
input changes. X-axis represents azimuth and Y-axis
represents elevation angles. Hotter colors show larger
errors. The white dots represent the exact directions of
illumination in images used as input.

Ground Truth Tensor Splines

Error Maps
Lambertian Tensor Splines

m = 20.6 m=123

Fig. 9. Relighting Comparison. Angle of illumination is
shown in the lower right corner of the ground truth images.
‘'m’ is the mean intensity error per pixel. Hotter colors in
the error maps indicate larger errors.

do not change drastically across facial poses. The validity
of this assumption is supported by the results presented
in the next section.
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Fig. 10. Per pixel intensity error comparison.

—— Subset 1 & 2, Lighting angles < 25°
Subsst 3, Lighting angles between 25°8 50°
— Subset 4, Lighting angles between 50°8 70°
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7 EXPERIMENTAL RESULTS

In order to evaluate the proposed method for relighting
and shape recovery, we conducted several detailed ex-
periments which are presented here. Since it has been
shown for the popular Lambertian model that the space
of images with illumination variation can be approxi-
mated quite accurately using a 9 dimensional subspace
([12], [13]), we have taken on the challenge of also
working with just 9 image. Note that with 9 samples
of the ABRDF field and the splines based smoothness
constraint, at most 10 coefficients can be recovered and
hence our central results use bi-cubic 3"? order Tensor
Splines. On a Dual Core AMD Opteron 2.2 GHz machine
with 4GB memory it takes around 10 second to complete
40 iterations, which provide reasonably good results.

The experiments were carried out on the Extended
Yale B [40] (28 subjects, in 9 poses and 64 illumina-
tion conditions) and the CMU PIE [49] (68 subjects in
13 poses and 43 illumination conditions) benchmark
databases. Note that CMU PIE has 21 usable point source
illuminated images while in Extended Yale B all 64
illuminations are point source. Qualitatively, we would
like to point out that the CMU PIE dataset has a very
narrow band of illumination variation above and below
the equator and Extended Yale B has inconsistencies
across pose change.

7.1

Synthetic Example: Foremost, in Fig. 4 we demonstrate
the expressibility of the Tensor Splines model over the
Lambertian Model using an artificially rendered scene.
The larger sphere is Lambertian while the smaller sphere
is more specular. The two cases (b) and (e) are chosen to
demonstrate the impact of cast shadows and speculari-
ties on both the proposed and the Lambertian models.
Nine images in each case were used to estimate the
intensity variation at each pixel using the two models
and then images under novel illumination directions
were rendered in cases (a), (c), (d) and (f). It can be noted
that the Tensor Splines model captures specularities and
cast shadows to a larger extent than the Lambertian
Model when the same amount of input data is used.

Relighting

ABRDF shape: Next we demonstrate that Tensor
Splines can capture non-trivial shapes of facial ABRDFs.
In Fig. 5 we show the ABRDF field of a subject from
the Extended Yale B database estimated using 9 images.

Fig. 11. Detailed pose variation with texture-less in upper
right and depth-map in lower right. Photo-realistic render-
ings even in extreme poses can be noticed.

Three different regions of the face have been shown
in detail where complicated shapes of the ABRDF can
be noticed. Regions A and B have more complicated
ABRDFs because these have to accommodate shadows.
The spherical functions in the image have been color
coded based on their maximal value direction. Mapping
of directions to colors is provided on the top left of the
figure.

Novel Relighting: In Fig. 6 four different subjects lit
in various novel point source illuminations are depicted.
For the first two rows the illumination direction varies
across the azimuth angle while in the next two rows
the variation is in the elevation angle. It can be noticed
that our method can accurately interpolate as well as
extrapolate from the images provided as input. Further,
difficult effects like cast shadows and specularities have
been photo-realistically rendered without using any ad-
ditional ray tracing.

Complex Lighting: Since our technique can estimate
the entire ABRDF field, it can be easily used to render
images in complex lighting conditions. In Fig. 7 we
present such results for two subjects from the CMU
PIE database. Below each face is its lighting condition.
Images (a) and (d) show one of the nine images used in
ABRDF estimation. The next two images for each of the
subjects are lit by light probes ([50]) named Eucalyptus
Grove and St. Peter’s Basilica respectively. For color
images we estimate the ABRDF field for each channel
separately. The images were relit by taking a weighted
combination of the point source lit images. We used 2500
samples of the light probe to render these images.

Impact of Input Image Distribution: To examine the
impact of the distribution of input images when the
order of tensor is fixed (3"? order in this case) we use
the Extended Yale B dataset in Fig. 8. To set a baseline
we estimated the ABRDF field for 10 subjects using all
the 64 images as input, rendered images in the same
64 direction and computed the total error with respect
to the ground truth in part (a). Errors were similarly
computed for three other cases with only 9 input images,
but in different configurations. In cases (b) and (c) input
image illumination was uniformly distributed in front
of the face while in case (d) images with the direction
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biased toward one side were used. To visualize the
results, we color coded larger errors with hotter colors
and plotted them as a continuous images. It can be noted
that when all 64 images are used as input, case (a),
the error is the least. For the 9 image cases (b) and(c),
where the illumination directions in the input images are
uniformly distributed, the error is more than case (a) but
notedly less than the case when distribution is skewed in
one direction, case (d). Hence, as expected, our method
performs better when the input images are uniformly
sampled from the sphere. Moreover, the errors in all
cases are concentrated towards the extreme illumination
angles and for near frontal illumination condition the
performance is not particularly affected by the input
image distribution.

Comparison with the Lambertian Model: Next we
present both qualitative and quantitative comparison
between the proposed model and the Lambertian model
in Fig. 9. Parts (a)-(c) present results on Extended
Yale B while parts (d)-(f) present results on CMU PIE
database. Next to the Lambertian, Ground Truth and
Tensor Splines results, error maps depicting the pixel-
wise errors in the Lambertian and Tensor Splines cases
are shown. It can be readily noted that the Tensor Splines
Model is successful in capturing the true appearance to
a larger extent than the Lambertian Model.

Comparison with the Validation Model: We present
a quantitative comparison among the variants of our
method, the Lambertian model and the validation model
(Section 5) in Fig. 10. A natural question that arises is
why should an order 3 Cartesian tensor be suitable for
estimating the ABRDFs? To answer this question, we
computed the average intensity error per pixel over all
38 subjects in 64 illumination directions of the Extended
Yale B dataset using the Lambertian model, 3"¢ order
Tensor Splines, 5" order Tensor Spline and the mixture
of single lobed functions (Eq. 6). All 64 illumination
directions were used for the mixture models (on account
of large number of unknowns) while for the other three
only 9 images were used. For the mixture model, we
chose p; values using a dense uniform sampling (642
directions) of the unit sphere obtained by the 4'"-order
tessellation of an icosahedron. We have presented results
shattered along the standard subsets of the Extended
Yale B database. It can be noted that the error for subset
with extreme lighting (subset 4) is more than that of
other sets, for all methods. More importantly, even with
a considerably large amount of data and a very flexible
estimation model, the errors obtained from the mixture
model is quite similar to those obtained from the 37
order Tensor Splines. This indicates that though a 3¢
order Tensor Spline can only accommodate three lobes,
for most facial ABRDFs this suffices. The 3¢ order
Tensor Spline outperforms the Lambertian model and
even the 5" order Tensor Spline, which suggests possible
over-fitting in the 5" order model.
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Fig. 12. Shape comparison with the Robust Photometric
Stereo on Extended Yale B dataset.

7.2 Estimating Shape

Before presenting results we would like to make an im-
portant observation that the proposed method recovers
normal at each pixel by taking local neighborhood into
account. This is at contrast with both the Lambertian
Photometric Stereo ([54]), which works at each pixel
independently and Morphable Models [9], which impose
a global prior on shape. Our method can be looked at
as being somewhere in between these two extremes.

Range of Pose Change: Since the primary objective
of our shape recovery method is to render images of
faces in novel poses, we present various images of a
face in a range of different pose in Fig. 11. The lighting
is held fixed as the poses changes from right profile
and left profile and from above the plane view to be-
low that plane view. The ABRDF field for this subject
was recovered using 9 images under the illumination
configuration shown in Fig. 8(b). The recovered shape
without any texture is presented on the right with the
depth map below it. It can be noted that the rendered
images are very photo-realistic, even in extreme poses.
Since we capture the ABRDF only for the frontal hemi-
sphere, while relighting using Tensor Splines model, the
maximum angle between the viewing direction (pose)
and the illumination direction can be 90°.

Comparison with Robust Photometric Stereo: We
present face shapes estimated by our method and the
Robust Photometric Stereo [54] (9 input images for both
methods) in Fig. 12. Results for four different subjects,
both with and without texture, are presented. Based on
the results following conclusions can be drawn: First,
since the Tensor Splines method imposes local smooth-
ness, the recovered shape lacks some minute details
like the mole on the chin in case (a) as compared
to the Robust Photometric Stereo. Second, since the
Tensor Spline more seamlessly handles cast shadows
and specularities as compared to Robust Photometric
Stereo, regions affected by cast shadows and specular-
ities, specially the nose, it is better recovered by Tensor
Splines. This can be readily noted in cases (a), (c) and
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Robust
Photometric

Stereo Error Maps

Ground Truth Tensor Splines
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Fig. 13. Shape comparison with the Robust Photometric
Stereo and the ground truth on CMU PIE dataset. ‘'m’ is
the mean intensity error per pixel. Hotter colors in the
error maps indicate larger errors. The azimuth angle for
the half vectors in input were 15°, 15° and —17° for three
cases respectively for both the subjects. The same angles
for novel images in case (a) were 43°, 16° and —27° and
in case (b) 43°, 22° and —31°.

(d). Finally, the Tensor Splines method seems to have
better global shape estimation. For instance, in case
(a), the shape recovered by Robust Photometric Stereo
is titling backwards towards the top. In case (c), the
region around the mouth seems unnaturally warped in
Robust Photometric Stereo while in case (d), relative
positioning of nose and eyes seems more realistic using
Tensor Splines. In summary, these results demonstrate
that Tensor Splines may lack minute details but models
facial features in a more photo-realistic fashion than
Robust Photometric Stereo, when the input images have
cast shadows and specularities. When the illumination
direction in the input images makes small angle with
the viewing direction i.e. when there is no significant
shadowing, Robust Photometric Stereo can be useful.
Comparison with Ground Truth: We used simultane-
ously obtained multiple poses from CMU PIE database
to compare the pose changed images generated using
Tensor Splines and the Robust Photometric Stereo with
the ground truth. Results are presented in Fig. 13 which
are used to demonstrate both the quality of shape recov-
ery as well as the impact moving specularities from one

Fig. 14. Simultaneous pose and illumination variation.

pose to another. In cases (a) and (b) intensity images are
presented where visually the results can be compared. In
cases (c) and (d), pixel wise error maps for cases (a) and
(b) respectively are presented. It can be noted that the
errors in global shape estimation in Robust Photometric
Stereo hampers it significantly as compared to Tensor
Splines. It is also evident that moving specularities from
one pose to another does not create visually significant
artifacts, since the texture images for both Tensor Splines
and Robust Photometric Stereo were taken in a different
pose than the ones shown in (a) and (b). For all cases,
the shape was recovered using the luminance channel.
Simultaneous Pose and Illumination Variation: In
Fig. 14 one subject each from CMU PIE and Extended
Yale B database are shown in various novel poses and
novel illumination conditions. The ABRDF fields for both
cases were recovered using 9 frontal pose images, and
the shape for the color images were recovered using the
luminance channel. With the change of pose we have
retained the ABRDF field learnt using the front pose but
it can noted that the results are photo-realistic even when
specularities are not explicitly modified and transferred.

7.3 Face Recognition

Face recognition is one of most popular applications of
facial image analysis. This problem is usually defined as
finding the closest match of a given probe (facial) image
from a set of gallery (facial) images. The complexity of
the recognition problem increases as the gallery set gets
less and less representative of the expected probe im-
ages. Thus, augmenting the gallery set with meaningful
images can aid recognition.

In the case of illumination invariant face recognition,
if the gallery set has nine or more images with known
illumination directions, the proposed method can be
used to generate realistic images with a much denser
sampling of the illumination space. This database aug-
mentation can potentially improve performance of any
classifier. Here we have demonstrated the usefulness of
the proposed scheme using the very simple Nearest-
Neighbor classifier.

We have used Extended Yale B data for this experi-
ment. The database is divided into 4 subsets with the
lighting getting more and more extreme as we go from
subset 1 to 4. The difficulty of classifying images from
these subsets also increases in a similar fashion. The
obtained recognition error rate are reported in Table
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2 where we have also presented results reported by
existing methods and their respective references are
listed. Results for the first seven techniques were taken
from [7] and the rest were taken from the respective
references. Along with the error rates, we have also listed
the number of images required by each method in the
gallery set. For our method we used the nine images
in the configuration shown in Fig. 8(b). It can be noted
that even with the naive nearest neighbor classification
strategy our method produces near perfect results.

8 CONCLUSIONS, LIMITATIONS AND FUTURE
WORK

In this paper we have presented a novel comprehensive
system for capturing the reflectance properties and shape
of the human faces using Tensor Splines. Since our
method requires at least 9 input images with known
illumination directions, we fall short of the ideal solution
described in the introduction, but show an improvement
over the popular Lambertian model. Accurate recovery
of ABRDF field from a single image with cast shadows
and specularities with no lighting information remains a
challenge. The central problem in the single image case
stems from the dearth of information to constrain the
space of all possible ABRDF fields. Use of strong prior
information presents itself as a potentially effective way
to constrain the search space, but attempts so far (e.g. [9])
suffer from the need of manual intervention and cum-
bersome computational requirements. We would like to
explore the use of Tensor Spline ABRDF fields as prior
information to meaningfully predict ABRDF fields using
single input images in future. Use of a shape prior can
also potentially aid in shape recovery.

While relighting images in novel poses, we make the
assumption that the ABRDF field maintains the same
specular information across poses. Though practically
useful, this is not fully valid. We have dealt with the
specularities in a data driven fashion but possible at-
tempt can be made to explicitly model the specularities,
which we would like to explore in future. It should be
noted that though the problem of detecting specularities
is relatively well studied, the problem of realistically
predicting specularities in novel poses without using
specialized imaging tricks (like special filters) remains
challenging. Possible improvement can also be made
in our model by incorporating non-uniform smooth-
ness as opposed to the current setup. In our relighting
framework, the angle between the viewing direction
(pose) and the illumination direction must be less than
90°. Note that our method aims to generate individual
images that are photorealistic and does not attempt
to tackle the more complicated problem of animation,
where temporal component is also involved.

Besides the relighting and pose change applications
described in the paper, our technique can also be used
for image up-sampling and compression. The former is
possible because the Tensor Splines representation cre-
ates a continuous field of ABRDF coefficients across the
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TABLE 2
Face recognition errors rates. N: # of input images.
Method N | Subsef Subsef Subsef Total
1&2 3 4

Correlation [2] 73.6
Eigenfaces [8]
Linear subspace [1]
Cones-attached [10]
Cones-cast [10]
9PL [40]

3D SH [7]
Harmonic (SFS) [6]
Tensor Splines

O = =0 NN N O
=3
o
=
o
o
o
=3
o

image, which can be sampled at a sub-pixel resolution.
The later exploits the capability of ABRDFs to represent
images of a face under infinitely many lighting directions
using just a few coefficients.

In conclusion, the Tensor Splines framework for the
analysis and modeling of illumination and pose varia-
tion of facial images provides a useful alternative to the
Lambertian assumption. It also seems that the collective
analysis of shape and reflectance through ABRDFs is
promising as an alternative to separate facial BRDF and
shape analysis.
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