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Create Avatars using Kinect in Real-time

Angelos Barmpoutis, Member, IEEE

Abstract

Real-time 3D reconstruction of the human body has many applications in anthropometry, telecommunications,

gaming, fashion, and other areas of human-computer interaction. In this paper a novel framework is presented

for reconstructing the 3D model of the human body from a sequence of RGB-D frames. The reconstruction is

performed in real time while the human subject moves arbitrarily in front of the camera. The method employs a

novel parameterization of cylindrical-type objects using Cartesian tensor and b-spline bases along the radial and

longitudinal dimension respectively. The proposed model, dubbed tensor body, is fitted to the input data using a

multi-step framework that involves segmentation of the different body regions, robust filtering of the data via a

dynamic histogram, and energy-based optimization with positive-definite constraints. A Riemannian metric on the

space of positive-definite tensor splines is analytically defined and employed in this framework. The efficacy of

the presented methods is demonstrated in several real-data experiments using the Microsoft Kinect sensor.
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I. INTRODUCTION

INFRARED depth cameras in conjunction with regular RGB video cameras have been widely used as

low-cost peripheral devices for various applications related to virtual reality interaction using natural

user interfaces. The information captured on a daily basis by these devices can also be used to extract

useful information related to the tridimensional shape of the users’ body, as well as track changes on its

size, range of motion, and physical condition.

There are several examples in literature that present applications of RGB-D cameras [1]. A controller-

free exploration of medical image data for avoiding the spreading of germs was proposed in [2]. A game-

based rehabilitation system was presented in [3] using body tracking from RGB-D. Other applications

include human detection [4], interactive video morphing [5], model-based 3d tracking of hand articulations

[6], and real-time human pose recognition and tracking of body parts [7]. A detailed review of RGB-D

applications that utilize Microsoft Kinect sensor is presented in [1].

Several of the aforementioned applications employ various well studied principles from 2D image-based

computer vision in novel human computer interaction applications. It has been shown that many traditional

computer vision problems can be solved more efficiently and/or accurately using RGB-D cameras. For

example, there are several popular computer-vision approaches for reconstructing the 3D shape of a human

face, namely shape-from-shading, shape-from-stereo, shape-from-video, and others [8], [9], [10]. However,

a more efficient solution is offered in the framework presented in [11] by fitting a morphable face model

to RGB-D data.
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Similarly, human avatars can be reconstructed in 3D using image- or video-based approaches [12],

[13], [14], [15], [16]. These methods perform various intermediate steps, such as image processing to

label object pixels, calculating the volume intersection, and rendering the visual hull. However, several

of these techniques require prior environmental setup and the avatars are reconstructed as non-articulated

rigid objects, hence they cannot be re-rendered in new arbitrary postures.

The human bodies as articulated models have been recently studied in [17], [18]. Both techniques

use RGB-D frames to reconstruct the body in 3D with [18] or without [17] an underlying parametric

model of the human body; however both methods require long running times and hence are not suitable

for real-time reconstruction. Real-time reconstruction of the 3D model of the human body is necessary

in many applications such as gaming and teleconferencing. Furthermore, real-time measurements of the

human body such as circumference and volume are useful in many medical [19], anthropological, or even

fashion-related applications.

In this paper, a framework is presented for reconstructing the human body as an articulated generative

3D model that can be re-rendered in arbitrary novel postures by overcoming the aforementioned limitations

of the existing techniques. The proposed method fits in real-time a novel parametric model to the data

captured from a single RGB-D camera. One of the advantages of the proposed technique is that the

human subjects can be reconstructed in 3D while they naturally move and interact with the system,

without requiring from the users to stand in a particular posture.

The proposed parametric model employs the Cartesian tensor basis and b-spline basis, which are both

well studied mathematical tools, and can be used for approximating smoothly varying fields of spherical

functions [20]. The proposed body tensor model is an extension of the tensor spline framework that was

used in other applications, such as for modeling diffusivity functions in MRI data [20] and bidirectional

reflectance distribution functions [21]. In this paper, the proposed parameterization uses intrinsic positive-

definite constraints in order to approximate cylindrical-type 3D objects with positive volume. This positive-

definite tensor spline model is employed to approximate the arms, forearms, thighs, legs, and human torso

using an energy-driven data fitting process. Several experimental results are presented that demonstrate

the efficacy of the proposed framework showing a significant improvement compared to other existing

techniques, specifically ×103 improvement in running time for achieving results with similar fitting errors.

The contributions in this paper are four-fold: A) A novel framework for synthesizing avatars from

RGB-D is presented with various intermediate steps that include body segmentation and dynamic ro-

bust data filtering. B) A novel parameterization of the human body, dubbed tensor body, is presented

using tensor splines. C) Positive-definite constraints are imposed to the estimated tensor splines using

a Riemannian metric defined on the space of positive-definite tensor splines and is also employed for

interpolation/extrapolation between avatars. D) Notable improvement of 3 orders of magnitude (powers

of 10) in running time is shown compared to other existing techniques.

II. EXPERIMENTAL RESULTS

The results presented in this section were obtained by applying the proposed framework to real-time data

acquired using the PrimeSenseTMdepth sensor as well as the video camera of Microsoft KinectTMdevice.

The device was connected (via a USB 2.0 port) to a 64-bit computer with Intel Core i5 (quad core) CPU

at 2.53GHz and 4GB RAM. The resolution of the depth camera was 320×240 pixels with a viewing range

from 0.8m to 4.0m and horizontal field-of-view angle (FoV) angle of 57o. The resolution of the video

camera was 640 × 480 pixels with horizontal FoV of 62o. The proposed framework was implemented

solely in Java using the J4K Java library for Kinect, which is a Java binding for the Kinect SDK, and the

implementation is available at http://research.dwi.ufl.edu/ufdw/j4k.

In every iteration of the proposed framework cycle (illustrated in Fig. ??) the most recent pair of frames

is used as input data. The data are converted to a colored quadratic mesh {X, Y, Z,R,G,B}i,j , which is

then segmented into several body regions using the parameters of the skeletal model S computed from the

input data. In our implementation we used a skeletal model with 13 joints connected via 13 line segments



MANUSCRIPT ACCEPTED BY IEEE TRANSACTIONS ON CYBERNETICS, SUBMITTED OCTOBER 16, 2012 3

Fig. 1. Left: An intermediate state of the 3D reconstructed model before convergence. Right: The rectangular grid made of the current

peaks of the data histograms superimposed on the current input frame in 3D.

(L = 1 · · · 13 in Eq. ??) shown on the fifth plate of Fig. ??. Each line segment corresponds to a different

body region with the only exception of the torso, which is made out of 4 line segments. The proposed

method divides the data into 11 point-sets Pl in total (background, head, torso, 2 arms, 2 forearms, 2

thighs, and 2 legs) as discussed in Sec. ??.

Figure ?? shows the obtained quadratic mesh segments in different colors. Each plate shows the results

produced in real time from various frames during a natural body motion corresponding to body orientations

in [0o−180o]. The presented results show that even in extreme angles the segmentation is visually accurate.

As shown in Fig. ??, the fitted skeleton S is one of the two input sources of the body segmentation

module, hence the quality of the segmentation depends on the skeletal tracking method. In the case of an

erroneous skeletal fitting, the quality of the segmentation drops without though compromising the results

of the overall 3D body reconstruction, because such outliers are rejected by the proposed robust data

filtering method.

The proposed method uses the obtained point-sets to fit 9 positive-definite tensor-spline models to the

torso, arms, forearms, thighs, and legs. A discussion regarding the head, hands and joints can be found

in the beginning of Sec. ??. The data flow diagram in Fig. ?? shows that the data histograms are updated

in every frame using the incoming point-sets and then the robust data computed from the peaks of the

histograms are fed to the proposed tensor fitting method (Sec. ??). The tensor fitting is performed by

minimizing the energy function in Eq. ?? in an on-line fashion, i.e. one iteration of the minimization

algorithm is executed per frame. The cycle of the proposed framework (shown in Fig. ??) has linear

computational complexity with respect to the size of the input data (O(n)) and runs in real time (∼ 25
frames/second) using the computer configuration described earlier.

Figure 1 shows an example of an intermediate state of the real-time process, i.e. before the fitting

algorithm converges. The right plate shows a frame of the input data with the current peaks of the data

histograms (di,j in Eq. ??) superimposed as a quadratic grid. The left plate shows an intermediate state

of the 3D reconstructed body model.

Figures 2 and 3 show the computed positive-definite tensor-spline models after convergence. The tensor

spline models are visualized as quadratic meshes obtained by evaluating Eq. ?? at a predefined discrete

set of points in the input domain (φ, s). A picture of the corresponding person is also shown on the

right for visual comparison. In both cases all tensor-splines use tensor bases of degrees d = 2, 3 with

cubic B-splines, i.e. the number of unknown tensor coefficients are 7 per control point. This configuration

produces realistic approximation of the shape of the body segments, based on visual comparison with the

images of the depicted human subjects.

The use of the Riemannian metric on positive-definite tensor splines (Sec. ??) is demonstrated in Fig.

4. The third avatar from the left (A) and from the right (B) correspond to the positive-definite tensor-
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Fig. 2. Example of an estimated tensor body. The fitted tensor-splines are shown as quadratic meshes on the left. An image of the

corresponding human subject is shown on the right.

Fig. 3. Another example of a tensor body computed from a female human subject.

Fig. 4. Avatars on a geodesic defined in the Riemannian space of positive-definite tensor splines. The results of extrapolation and interpolation

between the two data points show natural transitions in the appearance of the body, such as the body fat added in the extrapolant on the left

(λ = −0.5).

spline models in Figs. 2 and 3 respectively. The 9 avatars in Fig. 4 lie on the geodesic defined in the

Riemannian space of positive-definite tensor-splines that passes through the two aforementioned avatars

at λ = 0 and λ = 1 respectively. Other avatars on this geodesic are shown for various values of λ in the

range [−0.5, 1.5] and correspond to results of interpolation or extrapolation using the Riemannian metric

presented in Sec. ??. By observing the avatar on the left (λ = −0.5), one can see that the shape of the

body shows natural-looking body fat in the torso and thighs. It should be emphasized that, although the

proposed algorithm does not model special parameters of the body, such as body fat, the result of the

extrapolation follows a natural increment of the body fat while transitioning from the right (thinner body
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Fig. 5. Example of 3D body reconstruction of a female pregnant model. Visualization of body changes measured by the proposed method

in a 3-month period during pregnancy.

type) to the left (bulkier body type).

Another useful application of the proposed tensor body reconstruction is shown in Fig. 5. The body

of a female subject was scanned using the proposed method two times between a 3-month period during

pregnancy. The difference between the two models can be computed by subtracting the corresponding

tensor splines (Eq. ??) for every point in the (φ,s) domain.

After having reconstructed the 3D shape of a human body using positive-definite tensor-splines, it can

be rendered in any arbitrary posture given in the form of a parametric skeleton S . The avatars shown in

Figs. 4, 6, 5 and 7 are examples of tensor-spline models rendered in various postures. The 3D models are

colored using the R,G,B values at the corresponding projection of the points in the video frames. Although

texture reconstruction was not discussed in this paper, it can be simply done by collecting R,G,B values

in the K-mean clusters along with the data values in the dynamic histogram method discussed in Sec. ??.

The proposed technique was validated using anthropometric measurements from a group of four male

volunteers. Standard protocols for anthropometry were followed as described in the ISAK guide [22],

in order to measure the circumference of the legs of the participants in five distinct zones identified by

their distance from the maximum girths of the calfs and thighs. The results were compared with those

computed from the 3D models using the proposed method, and the absolute errors are reported in Fig. 8.

According to the results, the median errors are in the range of 1.5-2cm, which are similar to the errors

reported in [18]. This observation, although it cannot lead to precise scientific comparisons between the

proposed method and the one presented in [18] due to differences in the pool of participants and potential

errors introduced by the anthropometry procedures, it shows a clear indication of similarities between the

reported results, in terms of the overall order of magnitude of the reported errors. A comparison between

the running time of these two techniques shows a notable difference of 3 orders of magnitude (i.e. 103).
Specifically the method in [18] requires more than 60 minutes for a single body reconstruction, while the

proposed technique converges in about 2 seconds (∼ 50 frames @25fps) using computer configurations

with similar computational power. This conclusively demonstrates the efficiency of the presented method.

Finally, the same validation procedure was followed to compare the 3D models computed from the

proposed method and those obtained using the Kinect Fusion algorithm included in the Microsoft Kinect

SDK [23]. The latter algorithm does not work when the body moves in front of the camera, unlike

the proposed method. Furthermore, the camera collected RGB-D images from a close distance from the

subjects (partially depicted in the images), which resulted to ∼ 10 times more precise data compare to

those collected using the Tensor Body reconstructions, in which case the camera was placed far from the

subjects so that they are fully depicted in the recorded images. Due to this significant difference in the

quality of the input data the results from the Kinect Fusion algorithm was treated as the ground truth and

was compared with the estimated Tensor Bodies (Fig. 9) using the same metric and format as in Fig. 8.



MANUSCRIPT ACCEPTED BY IEEE TRANSACTIONS ON CYBERNETICS, SUBMITTED OCTOBER 16, 2012 6

Fig. 6. A reconstructed Tensor-Body avatar rendered in two different natural postures.

Fig. 7. Example of tensor interpolation in the deformable area around the knee.

The reported errors were around 1.5cm, which is within the range of errors reported in Fig. 8.

III. DISCUSSION AND CONCLUSION

In this paper a novel framework for real-time 3D reconstruction of the human body was presented,

dubbed Tensor Body. A novel algorithm for estimating positive-definite tensor-splines from RGB-D data

was introduced. The proposed algorithm uses a mathematical model for parametrizing the space of positive-

definite tensors using a convex approximation of the space, which guarantees that the estimated tensors lie

within the positive-definite side of the space. Furthermore, a Riemannian metric on the space of positive-

definite tensor-splines was presented and employed for interpolation, extrapolation, and for computing

geodesics between 3D reconstructed avatars.

One of the benefits of the proposed method is that it runs in real-time and it does not require the human

subjects to be on a specific posture. The 3D reconstruction can be performed while the user plays a game

or in general interacts with a natural user interface environment, and hence is depicted in the RGB-D

frames on a variety of postures.

The presented framework has a robust mechanism that filters the incoming 3D points (input depth

measurements). It should be noted that the magnitude of errors reported in Figs. 8 and 9 is very close to

the resolution of the depth camera, which recorded 1 pixel per ∼ 1cm on the bodies of the human subjects.

More specifically, when the subject is fully depicted in the acquired pictures, ∼ 200 depth measurements

are recorded along the subject’s height (assuming that 40 out of the 240 pixels are not utilized due to

natural motion of the subject in front of the camera). Therefore, the camera records 1 depth measurement

per ∼ (h/200)cm, where h is the height of the human subject in centimeters (i.e. ∼ 0.95cm sampling



MANUSCRIPT ACCEPTED BY IEEE TRANSACTIONS ON CYBERNETICS, SUBMITTED OCTOBER 16, 2012 7

Fig. 8. Absolute errors between manual anthropometric measurements and those computed using the proposed tensor body method.

Fig. 9. Absolute errors between anthropometric measurements using the Kinect Fusion algorithm [23] and those computed using the

proposed tensor body method.

frequency for h = 190cm). Hence, it is natural to expect anthropometric errors in the magnitude reported

in Figs. 8 and 9 due to the resolution limit of the depth sensor.

The proposed method for real-time 3D reconstruction of the human body has the potential to be em-

ployed in several applications in the areas of anthropometry, communications, psychology, tele-medicine,

and other areas of human-computer interaction. Furthermore, it can be used as a module for frequency-

based shape compression of human bodies depicted in holographic videos. Future improvements on the

resolution of the depth sensor will also allow the proposed method to be used in other areas that require

higher quality graphics such as motion pictures.

In the future, the author plans to apply the proposed framework to monitor changes in the shape of

human bodies and perform quantitative analysis of body shapes in specific age/gender groups, which

could potentially be proven to be a significant tool against obesity, or other related diseases, such as heart

disease [19]. Furthermore, the Tensor Body framework can be used as a tool for indirect anthropometry in

order to compute body shape atlases from healthy subjects of various ages, genders, and ethnicities. Such

an atlas could be used for analyzing quantitatively the shape differences of the bodies across population

groups and derive various useful statistical results.
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Abstract—Real-time 3D reconstruction of the human body
has many applications in anthropometry, telecommunications,
gaming, fashion, and other areas of human-computer interaction.
In this paper a novel framework is presented for reconstructing
the 3D model of the human body from a sequence of RGB-
D frames. The reconstruction is performed in real time while
the human subject moves arbitrarily in front of the camera.
The method employs a novel parameterization of cylindrical-type
objects using Cartesian tensor and b-spline bases along the radial
and longitudinal dimension respectively. The proposed model,
dubbed tensor body, is fitted to the input data using a multi-
step framework that involves segmentation of the different body
regions, robust filtering of the data via a dynamic histogram,
and energy-based optimization with positive-definite constraints.
A Riemannian metric on the space of positive-definite tensor
splines is analytically defined and employed in this framework.
The efficacy of the presented methods is demonstrated in several
real-data experiments using the Microsoft Kinect sensor.

Index Terms—3D reconstruction, Avatar, Kinect, Tensor Basis,
Positive-Definite constraints, B-Spline.

I. INTRODUCTION

INFRARED depth cameras in conjunction with regular

RGB video cameras have been widely used as low-cost

peripheral devices for various applications related to virtual

reality interaction using natural user interfaces. The informa-

tion captured on a daily basis by these devices can also be

used to extract useful information related to the tridimensional

shape of the users’ body, as well as track changes on its size,

range of motion, and physical condition.

There are several examples in literature that present appli-

cations of RGB-D cameras [1]. A controller-free exploration

of medical image data for avoiding the spreading of germs

was proposed in [2]. A game-based rehabilitation system was

presented in [3] using body tracking from RGB-D. Other

applications include human detection [4], interactive video

morphing [5], model-based 3d tracking of hand articulations

[6], and real-time human pose recognition and tracking of

body parts [7]. A detailed review of RGB-D applications that

utilize Microsoft Kinect sensor is presented in [1].

Several of the aforementioned applications employ various

well studied principles from 2D image-based computer vision
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in novel human computer interaction applications. It has been

shown that many traditional computer vision problems can

be solved more efficiently and/or accurately using RGB-D

cameras. For example, there are several popular computer-

vision approaches for reconstructing the 3D shape of a human

face, namely shape-from-shading, shape-from-stereo, shape-

from-video, and others [8], [9], [10]. However, a more efficient

solution is offered in the framework presented in [11] by fitting

a morphable face model to RGB-D data.

Similarly, human avatars can be reconstructed in 3D using

image- or video-based approaches [12], [13], [14], [15], [16].

These methods perform various intermediate steps, such as

image processing to label object pixels, calculating the volume

intersection, and rendering the visual hull. However, several

of these techniques require prior environmental setup and the

avatars are reconstructed as non-articulated rigid objects, hence

they cannot be re-rendered in new arbitrary postures.

The human bodies as articulated models have been recently

studied in [17], [18]. Both techniques use RGB-D frames

to reconstruct the body in 3D with [18] or without [17] an

underlying parametric model of the human body; however both

methods require long running times and hence are not suitable

for real-time reconstruction. Real-time reconstruction of the

3D model of the human body is necessary in many applications

such as gaming and teleconferencing. Furthermore, real-time

measurements of the human body such as circumference and

volume are useful in many medical [19], anthropological, or

even fashion-related applications.

In this paper, a framework is presented for reconstructing

the human body as an articulated generative 3D model that

can be re-rendered in arbitrary novel postures by overcoming

the aforementioned limitations of the existing techniques. The

proposed method fits in real-time a novel parametric model

to the data captured from a single RGB-D camera. One of

the advantages of the proposed technique is that the human

subjects can be reconstructed in 3D while they naturally move

and interact with the system, without requiring from the users

to stand in a particular posture.

The proposed parametric model employs the Cartesian

tensor basis and b-spline basis, which are both well stud-

ied mathematical tools, and can be used for approximat-

ing smoothly varying fields of spherical functions [20]. The

proposed body tensor model is an extension of the tensor

spline framework that was used in other applications, such

as for modeling diffusivity functions in MRI data [20] and

bidirectional reflectance distribution functions [21]. In this

paper, the proposed parameterization uses intrinsic positive-

definite constraints in order to approximate cylindrical-type
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3D objects with positive volume. This positive-definite tensor

spline model is employed to approximate the arms, forearms,

thighs, legs, and human torso using an energy-driven data

fitting process. Several experimental results are presented that

demonstrate the efficacy of the proposed framework showing

a significant improvement compared to other existing tech-

niques, specifically ×103 improvement in running time for

achieving results with similar fitting errors.

The contributions in this paper are four-fold: A) A novel

framework for synthesizing avatars from RGB-D is presented

with various intermediate steps that include body segmentation

and dynamic robust data filtering. B) A novel parameterization

of the human body, dubbed tensor body, is presented using

tensor splines. C) Positive-definite constraints are imposed

to the estimated tensor splines using a Riemannian metric

defined on the space of positive-definite tensor splines and is

also employed for interpolation/extrapolation between avatars.

D) Notable improvement of 3 orders of magnitude (powers

of 10) in running time is shown compared to other existing

techniques.

II. TENSOR SPLINE FRAMEWORK

In this section a novel parameterization of cylindrical-type

3D shapes with positive volume is presented by employing

Cartesian tensor basis with positive-definite constraints.

A. Tensors as spherical functions

There are several different known parameterizations of

real-valued functions defined on the n-sphere (dubbed here

spherical functions), f(x) : Sn → R, where Sn denotes

the space of the n-dimensional sphere that lies in the n + 1
Euclidean space. Most of the parameterizations use a set of

basis functions such as finite elements, spherical harmonics,

or their Cartesian equivalent. The finite element bases have

local support, which allows for local fitting to data samples,

while the spherical harmonic or Cartesian tensor bases provide

a global support, which allows for robust global fitting to

data samples, and for this reason are employed in this work.

The reader is referred to [22] for an in-depth presentation of

Cartesian tensors and their use as a basis for approximating

continuous real-valued spherical functions.

Spherical functions can be parameterized using a Cartesian

tensor of degree d in the form of the following homogeneous

polynomial:

Td(x) =
∑

i1+i2+···+in+1=d

ci1,i2,··· ,in+1
xi1
1 xi2

2 · · ·x
in+1

n+1 (1)

where xi is the ith component of the (n+1)-dimensional unit

vector x ∈ Sn, and ci1,i2,··· ,in+1
are the tensor coefficients

((n+d)!/n!d! in total), and the indices i1, i2, · · · , in+1 ∈ N0.

In the case of n = 1, Eq. 1 can be written as

Td(φ) =
∑

i1+i2=d

ci1,i2cos
i1φsini2φ (2)

by substituting x1 and x2 with cosφ and sinφ respectively,

where φ is the angular parameter of S1. The number of

coefficients in Eq. 2 is d+ 1.

Let T n
d denote the space of functions f : Sn → R

parameterized using tensors of degree d given by Eq. 1. It can

be easily shown that T n
d ⊂ T n

d+2 ∀d ≥ 0, since ∃ Td+2 ∈ T
n
d+2

: Td+2(x) = xxTTd(x) ∀ given Td(x) ∈ T
n
d . Based on the

above, it can be easily shown that any spherical function can

be approximated by parameterizing its symmetric and anti-

symmetric component as the sum of an even and an odd degree

tensor:

fd(x) = Td(x) + Td+1(x). (3)

In the case of n = 1, the number of coefficients in Eq. 3 is

2d+ 3.

B. Positive-definite tensors

In several applications there is the need to approximate non-

negative quantities, such as distance, magnitude, and weight.

If such quantities are given as a function of a unit vector,

this function can be approximated by fitting the model in

Eq. 3 to the data using positive-definite constraints [23], [22].

Let T n
d × T n

d+1 denote the space of the functions given by

Eq. 3. The part of the space T n
d × T n

d+1 that corresponds

to positive-definite functions is clearly a convex subspace,

more precisely a hyper-cone, since any convex combination

or positive scale of the elements of that subspace is also

an element of the subspace. Therefore, any positive-definite

function in T n
d × T n

d+1 can be approximated by a positive-

weighted sum of the elements of the boundary of the hyper-

cone. Given a dense linearly independent sampling of the

boundary, the non-negative elements of T n
d × T n

d+1 can be

approximated by

fd(x) =

m
∑

i=1

wif
∗
d,i(x) (4)

where f∗d,i(x) is a set of linearly independent elements of

the boundary of the space of positive-definite functions in

T n
d × T n

d+1, and wi > 0 ∀ i ∈ [1,m]. The accuracy of the

approximation of the hyper-cone space T n
d × T n

d+1 by the

hyper-polygon in Eq. 4 can be expressed as a function of m
and d [22]. The sum

∑m

i=1 wi is positive, but not necessarily

equal to one, since wi also captures the scale of the modeled

function fd(x), which is factored out of the boundary elements

f∗d,i(x) due to their linear independence.

In our application we used the set of positive semi-definite

functions in T 1
d × T

1
d+1 given by

f∗d,i(x) =
2π

m
∫ 2π

0
cosdωdω

[yi(x)
d + yi(x)

d+1] (5)

where yi(x) = x1cosθi + x2 sin θi, θi = 2πi/m, and

x ∈ S1. Note that Eq. 5 is non-negative for even d, and
∑m

i=1 f
∗
d,i(x) = 1 ∀x ∈ S1. Besides these useful properties,

this particular function behaves as a sampling kernel since

limd→∞ f∗2d,i(x) = δ(x1 − cos θi)δ(x2 − sin θi), where δ is

the Dirac delta function (see Fig. 1). This natural property of

sampling kernels associates the sampling frequency with the

degree d of the tensor in our parameterization (i.e. the higher

the degree of the tensor, the higher the frequencies that can

be captured by this model).



PREPRINT ACCEPTED BY IEEE TRANSACTIONS ON CYBERNETICS, OCTOBER 2013 3

Fig. 1. Plots of Eq. 5 for various degrees d, and orientations defined by
i = 1 · · · 10, m = 20.

In the case of d = 2, the 7 coefficients of f∗2,i(x) are

cos2θi/m, sin2θi/m, 2cosθisinθi/m, cos3θi/m, sin3θi/m,

3cos2θisinθi/m, 3cosθisin
2θi/m and correspond to the

monomials x2
1, x2

2, x1x2, x3
1, x3

2, x2
1x2, and x1x

2
2 respectively.

Similarly, the coefficients of fd(x) in Eq. 4 are given by the

weighted sum of the coefficients in f∗2,i(x). For example, the

coefficient
∑m

i=1 wicos
2θi/m corresponds to the monomial

x2
1.

The degrees of freedom of the model in Eq. 4 are given by

the number of the tensor coefficients (2d + 3 in Eq. 5) and

not by the number m of unknown weights wi. This can be

easily shown by rewriting Eq. 4 as v(x)TFw, where v(x)
is a vector with all the monomials of x in f∗d,i(x), F is a

2D matrix with all the polynomial coefficients in f∗d,i(x), and

w is an m-dimensional vector that consists of the values wi.

Similarly, the size of F in Eq. 5 is (2d+3)×m, and its rank

(that corresponds to the degrees of freedom in Eq. 4) is at

most 2d+3, assuming that m > 2d+3, since m was defined

as the size of a dense set of linearly independent elements

on the boundary of the space of positive-definite functions in

T n
d × T

n
d+1.

C. Positive-Definite Tensor Splines

A continuous and smoothly varying 1-dimensional field of

positive-definite spherical functions in the form of Eq. 4 can

be modeled by using the B-spline basis [24], [20], [21] of

degree k, denoted by Nj,k+1(s), where j corresponds to a

discretization sj (commonly known as knots) of the domain

s as follows:

fd(x, s) =

m
∑

i=1

n
∑

j=0

wi,jNj,k+1(s)f
∗
d,i(x). (6)

In Eq. 6 the weights wi,j are the so-called control points,

which are blended across j using the B-spline basis. Further-

more, the positive-definite tensors given by
∑m

i=1 wi,jf
∗
d,i(x)

∀j ∈ [0, n] play the role of control tensors along an 1-

dimensional field.

The mathematical model in Eq. 6 can be used for param-

eterizing cylindrical type of objects with one radial and one

longitudinal dimension. The 3D coordinates of the points on

the parameterized surface are given by [x1fd(x, s), x2fd(x, s),

TABLE I
LIST OF TENSOR COEFFICIENTS IN EQ. 7 FOR d = 2

i1 + i2 ci1,i2,j

2 c2,0,j =
∑m

i=1
wi,jcos

2(2πi/m)/m

2 c0,2,j =
∑m

i=1
wi,jsin

2(2πi/m)/m

2 c1,1,j =
∑m

i=1
wi,j2cos(2πi/m)sin(2πi/m)/m

3 c3,0,j =
∑m

i=1
wi,jcos

3(2πi/m)/m

3 c0,3,j =
∑m

i=1
wi,jsin

3(2πi/m)/m

3 c2,1,j =
∑m

i=1
wi,j3cos

2(2πi/m)sin(2πi/m)/m

3 c1,2,j =
∑m

i=1
wi,j3cos(2πi/m)sin2(2πi/m)/m

s], where the third dimension corresponds to the longitudinal

axis s, and x = [cosφ, sinφ]. A typical symmetric cylinder of

radius ρ and height h can be parameterized using a uniform

tensor spline by setting wi,j = ρ ∀i, j and sj+1 − sj =
h/(n+ 1− k) ∀j in Eq. 6.

By substituting Eqs. 2 and 5 into Eq. 6 the following

positive-definite tensor spline model can be derived for S1:

fd(φ, s) =
n
∑

j=0

∑

i1,i2

ci1,i2,jNj,k+1(s)cos
i1φsini2φ (7)

where the second sum is over all pairs of indices (i1, i2) :
i1 + i2 ∈ {d, d + 1}, i1, i2 ∈ N0. In the case of d = 2, there

are 7 tensor coefficients ci1,i2,j , which are listed in table I.

Eq. 7 is positive-definite fd(φ, s) > 0 ∀φ ∈ [0, 2π], and

s ∈ [s0, sn+1−k]. Note that there are no additional constraints

imposed on the range of the values of the tensor coefficients

ci1,i2,j , besides the fact that wi,j > 0. The degrees of freedom

of the models in Eqs. 6 and 7 are given by the number of

tensor coefficients ci1,i2,j . In the particular case of Eq. 7 the

number of coefficients is (2d + 3) × (n + 1), i.e. it depends

linearly on the degree of the tensor, as well as the number of

control points of the B-spline.

D. Tensor Spline Distance Measure

Let ad(x, s) and bd(x, s) be two positive-definite ten-

sor splines (defined as in Eq. 7), with coefficients ai1,i2,j
and bi1,i2,j respectively. There are several possible met-

rics that can be used to define the distance between ad
and bd, such as the Euclidean distance dist(ad, bd) =
√

∑n

j=0

∑

i1,i2
(ai1,i2,j − bi1,i2,j)

2, or the L2 norm given by

dist(ad, bd) =
√

∑n

j=0

∫

S1
(ad(x, s)− bd(x, s))2dx. In the

latter case, the integrals can be analytically computed as pow-

ers of trigonometric functions by parameterizing the vectors

in S1 as x = [cosφ sinφ]. Such metrics are useful not only

for computing the distances between tensor splines, but also

for atlas construction, as well as for interpolation and extrap-

olation, and for defining energy functionals in optimization

methods.

In the case of the two aforementioned metrics, the tensor

splines ad(x, s) and bd(x, s) can be treated as elements of a

Euclidean space, and be represented in this space by vectors

a, b ∈ R
(2d+3)×(n+1) that consist of the coefficients ai1,i2,j

and bi1,i2,j respectively. However, tensor splines that are not
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necessarily positive-definite can also be mapped to the same

Euclidean space, hence there is no guarantee that the result

of extrapolation given by a + λ(b − a) : λ ∈ (−∞, 0) ∪
(1,∞) will correspond to a positive-definite tensor spline. This

may produce shapes of negative volume that are unnatural in

many applications, including the one presented in Sec. III for

modeling the 3D shape of human body parts. To overcome

this problem the positive-definite parameterization that was

introduced in Sec. II-B will be employed.

E. Riemannian metric

Let the coefficients ai1,i2,j and bi1,i2,j be parameterized, as

in table I, using the positive weights wa
i,j and wb

i,j respectively

(the table lists the formulas for the 2nd and 3rd degree

coefficients only, but it can be easily extended to higher

degrees by expanding the terms in Eq. 5). The corresponding

tensor splines can be treated as elements of the R
m×(n+1)
∗+ ,

and be represented in this space by stacking the weights wa
i,j

and wb
i,j in the form of vectors wa, wb ∈ R

m×(n+1)
∗+ , where

R∗+ denotes the space of positive real numbers.

The distance measure in this space can be defined us-

ing the Riemannian metric on R∗+ that utilizes its tan-

gent space (defined by the log mapping [25], [26], [27]):

dist(ad, bd) = ||Log(wa) − Log(wb)||, where the function

Log() is the natural logarithm applied individually to every

element of the input vector. The same Riemannian metric can

be used for interpolation/extrapolation using the exp projection

from the tangent space to R∗+ as follows: Exp(Log(wa) +
λ(Log(wb) − Log(wa))), where the function Exp() is the

natural exponential applied individually to every element of

the input vector. The computed vectors are guaranteed to

correspond to positive-definite tensor splines ∀λ ∈ R. The

Riemannian metric assigns infinite distance between positive-

definite tensor splines and semi-definite tensor splines, hence

the boundary of the space of positive-definite tensor splines

can be approached by extrapolating towards the boundary

using limλ→∞. Examples of interpolation and extrapolation

of positive-definite tensor splines using the Riemannian metric

are shown in Fig. 7 in the Experimental Results section.

III. AVATARS AS TENSOR BODIES

Most parts of the human body can be modeled as a set of

positive-definite tensor splines that approximate the shape of

the arms, forearms, legs, thighs, and torso. These segments of

the human body can be approximated by rigid tridimensional

models, since there are no large deformations in their structure

during a natural human motion, unlike the hands, the head (for

3D face reconstruction from RGB-D see [11]), and the elbows

and knees, which can be easily rendered by interpolating the

adjacent tensors. The coefficient vector w of each tensor spline

can be estimated from real data captured by RGB-D cameras.

In this section, a novel method is presented for real-time

human avatar synthesis by fitting a tensor body model, i.e.

a set of positive-definite tensor-splines, to point-sets collected

from a sequence of RGB-D frames. The proposed framework

consists of several steps depicted in Fig. 2.

Fig. 2. Flow chart of the proposed framework for avatar reconstruction from
RGB-D frames.

A. RGB-D data acquisition and skeleton fitting

Depth cameras generate sequences of discrete depth frames

in the form of 2D arrays Di,j , which can be equivalently ex-

pressed as quadratic meshes given by Xi,j = (i− ic)Di,jc
−1
d ,

Yi,j = (j − jc)Di,jc
−1
d , and Zi,j = Di,j , where ic, jc denote

the coordinates of the central pixel in the depth frame, and cd
is the focal length of the depth camera.

The video frames captured by an RGB camera can be

associated with the 3D quadratic meshes by using a UV texture

mapping given by the coordinates Ui,j = X ′
i,jZ

′
i,j
−1

cv ,

Vi,j = Y ′i,jZ
′
i,j
−1

cv , where the coordinates of the vector [X ′

Y ′ Z ′]T are related to [X Y Z]T via a known rigid trans-

formation (rotation and translation), and cv is the focal length

of the video camera [8]. The aforementioned transformation

corresponds to the mapping between the locations of the focal

points and orientations of the two cameras (RGB and D).

Each frame of the RGB-D sequence can be considered a

set of arrays {Xi,j , Yi,j , Zi,j , Ri,j , Gi,j , Bi,j}, where R,G,B
correspond to the red, green, and blue color channels of the

video frame at the image coordinates Ui,j , Vi,j . This sequence

of data frames can be used to detect the presence of a particular

skeletal geometry, such as human skeletal geometry, and fit to

each frame a skeletal model that consists of the following set

of parameters:

S = {al ∈ R
3,bl ∈ R

3,Rl ∈ SO(3) : l ∈ L} (8)

where L is a set of indices of line segments defined by the end-

points al and bl, and its orientation in the 3D space is given

by the rotation matrix Rl. There are several algorithms that

compute S from RGB-D, or just D, such as those implemented

in the Microsoft Kinect SDK [28], in OpenNI library [29] (see

detailed discussions in [30], [31] and comparison of these two

libraries in [1]), and others [4], [7], any of which could be

used as a module in the proposed framework (Fig. 2).

B. RGB-D Segmentation

The parameters in the skeletal model S can be used in

order to segment the quadratic mesh that corresponds to a

frame of the RGB-D sequence into different body regions. For

every vertex p = [Xi,j Yi,j Di,j ]
T in the quadratic mesh we

compute the index l of the closest line segment in the skeletal
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Fig. 3. Examples of the quadratic mesh segmentation results obtained from different RGB-D frames depicting various orientations of the body. The fitted
skeleton is shown on the fifth plate.

model as follows:

l(p) = argminl∈L||al + sl(p)(bl − al)− p|| (9)

where al,bl ∈ R
3 are vertices/joints that define a particular

line segment in the skeletal model (Eq. 8), and sl(p) is the

projection of p onto the lth line segment given by:

sl(p) = max{min{
(bl − al)

T (p− al)

||bl − al||2
, 1}, 0} (10)

The max and min functions in Eq. 10 guarantee that, if the

projection falls outside the line segment, the distance given

as the argument of argmin in Eq. 9 will be equal to the

Euclidean distance between p and the closest end-point of

the line segment (i.e min{||al − p||, ||bl − p||}). Using Eq.

9 every vertex p in the quadratic mesh is assigned to the

closest body segment. This process segments the quadratic

mesh into several body regions and is performed for every

frame of the RGB-D sequence. The points of the deformable

areas around the elbows and knees, whose projections fall

outside the line segment will be intentionally mapped to the

boundary of the closest body part, and consequently will be

ignored by the robust data fitting algorithm (see Sec. III-D).

This useful property of Eq. 10 guarantees that the deformable

areas around joints will not be explicitly reconstructed by the

proposed tensor body parameterization as it was discussed

in the beginning of Sec. III. Instead, elbows and knees are

rendered by interpolating the adjacent tensors in the tensor

body model (Fig. 10). Note that the points that do not belong

to the depicted human subject can be easily thresholded across

Zi,j , since the background objects usually have larger Di,j

values. This is an implicit assumption of many skeletal fitting

algorithms including the one employed in our experiments

(provided by Microsoft Kinect SDK).

The points that belong to a particular body region form the

point-set Pl = {p ∈ R
3 : l(p) = l, 0 < sl(p)(p) < 1}, which

will be used as our data source in the positive-definite tensor

spline fitting algorithm described in the next sections. Results

from the quadratic mesh segmentation are shown in Fig. 3 and

are discussed in detail in Sec. IV.

C. Tensor Spline Estimation

In order to fit a positive-definite tensor spline (Eq. 6) to a

pointset Pl that consists of points on the surface of the lth

body region, we first need to map each point in Pl to the

domain of the function in Eq. 6. In our particular application,

the domain is S1×R and corresponds to the relative orientation

and location of each point with respect to the central axis of

the tensor spline.

Every point p ∈ Pl can be uniquely mapped to R
2 (i.e. the

2D plane of the unit circle S1) by

xp =

[

1 0 0
0 0 1

]

R−1
l (p−

al + bl

2
) (11)

where al, bl, and Rl are the parameters of the lth segment of

the skeleton modeled by Eq. 8. The role of the matrix on the

left is to project the result to a 2D plane that is perpendicular to

the central axis of the tensor spline. Without loss of generality,

the central axis is assumed here to be parallel to the y-axis

of the Cartesian space hence the first (x) and the third (z)

components of the rotated vector are used as the elements of

xp.

The positive-definite tensor spline model (Eq. 6) can be

fitted to the magnitude ||xp|| by minimizing the following

energy function with respect to the coefficient vector wl:

E(wl) =
∑

p∈Pl

(fl(xp/||xp||, sl(p)(p))− ||xp||)
2. (12)

The data value ||xp|| in Eq. 12 corresponds to the unit vector

xp/||xp|| in the angular domain of the tensor spline model

and the point sl(p)(p) along the longitudinal dimension. The

unknown vector wl can be estimated by any gradient-based

optimization method [32] using the analytically computed

gradients of Eq. 12. Additionally, positive-definite constraints

can be applied to the elements of wl by updating their values

using gradients computed in the Riemannian space discussed

in Sec. II-E.

Finally, the fitting process can be easily extended to ac-

commodate multiple point-sets Pl that correspond to several

RGB-D frames.
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D. Robust data fitting

The least-squares fitting process described in Sec. III-C

performs averaging over the data values ||xp|| that correspond

to the same angular and longitudinal coordinates (x, s) of

the tensor spline domain in Eq. 6. If the corresponding data

values vary across multiple frames due to misfit of the skeletal

model, or due to deformations in the areas around joints, then

the result of the least-square fit is equivalent to the result

obtained by fitting the tensor spline model to the mean of

the corresponding data values. The average value, or L2-norm

statistical quantities in general, are significantly affected by the

presence of outliers in the data, causing in our case erroneous

tensor spline estimates.

This problem can be solved by introducing a robust energy

function based on the distribution of the data values computed

in the form of a histogram as follows:

h(f,x, s;P) =
∑

p∈P

N(f ; ||xp||, σ
2
f )N(s; sl(p)(p), σ

2
s)V (x;

xp

||xp||
, κ)

where f ∈ R, x ∈ S1, s ∈ R, and the functions N() and V ()
denote the Normal and von Mises probability density functions

respectively. The parameters σ2
f , σ2

s , and κ are the variances

and concentration of the probability functions.

For a given pair (x, s) the histogram h(f,x, s;P) shows

the distribution of the data values ||xp|| in the space of real

numbers, parameterized here by f . The peak of the histogram

corresponds to the most dominant data value for a given (x, s)
and it is robust to outliers. The robust data estimate is given

by

d(x, s) = argmaxf∈Rh(f,x, s;P), (13)

and can be used for robust positive-definite tensor fitting in

the following energy function

E(wl) =

∫

S1

∫ 1

0

(fl(x, s)− d(x, s))2dsdx. (14)

The integrals in Eq. 14 are over the unit circle S1 and the [0, 1]
interval of the longitudinal axis of the tensor spline. Note that

s = 0 and s = 1 correspond to two 2D sections of the tensor

spline that are perpendicular to the line segment (al,bl) and

pass through al and bl respectively. The energy function in

Eq. 14 can be optimized with respect to the unknown vector

wl using any gradient-based method.

E. Implementation details

For real-time (∼ 25 frames/second) 3D body reconstruction,

the histogram h(f,x, s;P) discussed in Sec. III-D can be

implemented by discretizing the domains of f , x, and s.

The unit circle can be divided into M sections represented

by xi = [cos(2πi/M) sin(2πi/M)], i = 1 · · ·M and the

longitudinal axis can be similarly divided into N line segments

represented by sj = (j − 1)/(N − 1), j = 1 · · ·N . For every

new data pair (xp/||xp||, sl(p)(p)) the closest bin (xi, sj) in

the discretized histogram will be used.

The domain of f is dynamically discretized in the form of

an on-line K-means clustering algorithm. For each of the K

clusters the mean value of the cluster fk is stored, as well as

the number of data points assigned to this cluster hk, k =
1 · · ·K, without explicitly storing the individual data points.

For every new data value ||xp|| in the bin (xi, sj), the closest

cluster is found (i.e. argmink=1···K |fi,j,k − ||xp|||), and if

the distance from this cluster is smaller than σ2
f , the cluster is

properly updated (i.e. fi,j,k ← (fi,j,khi,j,k+||xp||)/(hi,j,k+1)
and hi,j,k ← hi,j,k+1). Otherwise, the cluster with the smaller

population is found (i.e. argmink=1···Khi,j,k) and is updated

as follows: fi,j,k ← ||xp||, and hi,j,k ← 1.

The discretized version of Eq. 13 is given by

di,j = fi,j,argmaxk=1:Khi,j,k
(15)

and can be used for robust positive-definite tensor fitting in

the following energy function

E(wl) =
M
∑

i=1

N
∑

j=1

(fl(xi, sj)− di,j)
2. (16)

In our experiments we used N = 64, M = 64, K = 21, and

σ2
f = 10−2. Note that the histogram in Eq. 15 does not use

a point-set P as one of its arguments, because the histogram

hi,j,k is updated on-line by one data point at a time, in contrast

to Eq. 13. Finally, Eq. 16 is a polynomial and its derivatives

with respect to wl can be easily computed analytically.

After estimating the coefficient vectors wl ∀l ∈ L, the

human avatar can be rendered in any arbitrary posture given

in the form of a skeleton structure S . For the purpose of

rendering, each tensor-spline model is scaled by the magnitude

of ||al−bl|| along the longitudinal axis, its center is translated

to the point (al + bl)/2 and rotated by Rl. In the next

section, the proposed method is demonstrated through several

experiments using real RGB-D datasets.

Finally, the areas around the knees and elbows are rendered

by smoothly interpolating between the two boundary tensors

of the adjacent body parts using the Riemannian framework

discussed in Sec. II-E. Figure 10 shows an example of a fitted

tensor body model with and without filling the gap between

the reconstructed tensor-spline segments of the legs.

IV. EXPERIMENTAL RESULTS

The results presented in this section were obtained by apply-

ing the proposed framework to real-time data acquired using

the PrimeSenseTMdepth sensor as well as the video camera of

Microsoft KinectTMdevice. The device was connected (via a

USB 2.0 port) to a 64-bit computer with Intel Core i5 (quad

core) CPU at 2.53GHz and 4GB RAM. The resolution of the

depth camera was 320×240 pixels with a viewing range from

0.8m to 4.0m and horizontal field-of-view angle (FoV) angle of

57o. The resolution of the video camera was 640×480 pixels

with horizontal FoV of 62o. The proposed framework was

implemented solely in Java using custom bindings to OpenGL

and Kinect SDK libraries, and the implementation is available

at http://www.digitalworlds.ufl.edu/angelos/lab/kinect.

In every iteration of the proposed framework cycle (illus-

trated in Fig. 2) the most recent pair of frames is used as

input data. The data are converted to a colored quadratic mesh

{X,Y, Z,R,G,B}i,j , which is then segmented into several
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Fig. 4. Left: An intermediate state of the 3D reconstructed model before
convergence. Right: The rectangular grid made of the current peaks of the
data histograms superimposed on the current input frame in 3D.

body regions using the parameters of the skeletal model S
computed from the input data. In our implementation we used

a skeletal model with 13 joints connected via 13 line segments

(L = 1 · · · 13 in Eq. 8) shown on the fifth plate of Fig. 3.

Each line segment corresponds to a different body region with

the only exception of the torso, which is made out of 4 line

segments. The proposed method divides the data into 11 point-

sets Pl in total (background, head, torso, 2 arms, 2 forearms,

2 thighs, and 2 legs) as discussed in Sec. III-B.

Figure 3 shows the obtained quadratic mesh segments

in different colors. Each plate shows the results produced

in real time from various frames during a natural body

motion corresponding to body orientations in [0o − 180o].
The presented results show that even in extreme angles the

segmentation is visually accurate. As shown in Fig. 2, the

fitted skeleton S is one of the two input sources of the body

segmentation module, hence the quality of the segmentation

depends on the skeletal tracking method. In the case of an

erroneous skeletal fitting, the quality of the segmentation drops

without though compromising the results of the overall 3D

body reconstruction, because such outliers are rejected by the

proposed robust data filtering method.

The proposed method uses the obtained point-sets to fit

9 positive-definite tensor-spline models to the torso, arms,

forearms, thighs, and legs. A discussion regarding the head,

hands and joints can be found in the beginning of Sec. III. The

data flow diagram in Fig. 2 shows that the data histograms are

updated in every frame using the incoming point-sets and then

the robust data computed from the peaks of the histograms

are fed to the proposed tensor fitting method (Sec. III-D).

The tensor fitting is performed by minimizing the energy

function in Eq. 16 in an on-line fashion, i.e. one iteration

of the minimization algorithm is executed per frame. The

cycle of the proposed framework (shown in Fig. 2) has linear

computational complexity with respect to the size of the input

data (O(n)) and runs in real time (∼ 25 frames/second) using

the computer configuration described earlier.

Figure 4 shows an example of an intermediate state of the

real-time process, i.e. before the fitting algorithm converges.

Fig. 5. Example of an estimated tensor body. The fitted tensor-splines are
shown as quadratic meshes on the left. An image of the corresponding human
subject is shown on the right.

Fig. 6. Another example of a tensor body computed from a female human
subject.

The right plate shows a frame of the input data with the current

peaks of the data histograms (di,j in Eq. 15) superimposed as

a quadratic grid. The left plate shows an intermediate state of

the 3D reconstructed body model.

Figures 5 and 6 show the computed positive-definite tensor-

spline models after convergence. The tensor spline models are

visualized as quadratic meshes obtained by evaluating Eq. 7 at

a predefined discrete set of points in the input domain (φ, s).
A picture of the corresponding person is also shown on the

right for visual comparison. In both cases all tensor-splines

use tensor bases of degrees d = 2, 3 with cubic B-splines, i.e.

the number of unknown tensor coefficients are 7 per control

point. This configuration produces realistic approximation of

the shape of the body segments, based on visual comparison

with the images of the depicted human subjects.

The use of the Riemannian metric on positive-definite

tensor splines (Sec. II-E) is demonstrated in Fig. 7. The third

avatar from the left (A) and from the right (B) correspond

to the positive-definite tensor-spline models in Figs. 5 and

6 respectively. The 9 avatars in Fig. 7 lie on the geodesic

defined in the Riemannian space of positive-definite tensor-

splines that passes through the two aforementioned avatars at

λ = 0 and λ = 1 respectively. Other avatars on this geodesic

are shown for various values of λ in the range [−0.5, 1.5] and
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Fig. 7. Avatars on a geodesic defined in the Riemannian space of positive-definite tensor splines. The results of extrapolation and interpolation between the
two data points show natural transitions in the appearance of the body, such as the body fat added in the extrapolant on the left (λ = −0.5).

correspond to results of interpolation or extrapolation using the

Riemannian metric presented in Sec. II-E. By observing the

avatar on the left (λ = −0.5), one can see that the shape of the

body shows natural-looking body fat in the torso and thighs.

It should be emphasized that, although the proposed algorithm

does not model special parameters of the body, such as body

fat, the result of the extrapolation follows a natural increment

of the body fat while transitioning from the right (thinner body

type) to the left (bulkier body type).

Another useful application of the proposed tensor body

reconstruction is shown in Fig. 8. The body of a female subject

was scanned using the proposed method two times between a

3-month period during pregnancy. The difference between the

two models can be computed by subtracting the corresponding

tensor splines (Eq. 7) for every point in the (φ,s) domain.

After having reconstructed the 3D shape of a human body

using positive-definite tensor-splines, it can be rendered in any

arbitrary posture given in the form of a parametric skeleton

S . The avatars shown in Figs. 7, 9, 8 and 10 are examples

of tensor-spline models rendered in various postures. The 3D

models are colored using the R,G,B values at the correspond-

ing projection of the points in the video frames. Although

texture reconstruction was not discussed in this paper, it can

be simply done by collecting R,G,B values in the K-mean

clusters along with the data values in the dynamic histogram

method discussed in Sec. III-E.

The proposed technique was validated using anthropometric

measurements from a group of four male volunteers. Standard

protocols for anthropometry were followed as described in the

ISAK guide [33], in order to measure the circumference of

the legs of the participants in five distinct zones identified by

their distance from the maximum girths of the calfs and thighs.

The results were compared with those computed from the 3D

models using the proposed method, and the absolute errors

are reported in Fig. 11. According to the results, the median

errors are in the range of 1.5-2cm, which are similar to the

errors reported in [18]. This observation, although it cannot

lead to precise scientific comparisons between the proposed

method and the one presented in [18] due to differences in

the pool of participants and potential errors introduced by

the anthropometry procedures, it shows a clear indication of

similarities between the reported results, in terms of the overall

order of magnitude of the reported errors. A comparison

between the running time of these two techniques shows

Fig. 8. Example of 3D body reconstruction of a female pregnant model.
Visualization of body changes measured by the proposed method in a 3-month
period during pregnancy.

a notable difference of 3 orders of magnitude (i.e. 103).

Specifically the method in [18] requires more than 60 minutes

for a single body reconstruction, while the proposed technique

converges in about 2 seconds (∼ 50 frames @25fps) using

computer configurations with similar computational power.

This conclusively demonstrates the efficiency of the presented

method.

Finally, the same validation procedure was followed to

compare the 3D models computed from the proposed method

and those obtained using the Kinect Fusion algorithm included

in the Microsoft Kinect SDK [28]. The latter algorithm does

not work when the body moves in front of the camera, unlike

the proposed method. Furthermore, the camera collected RGB-

D images from a close distance from the subjects (partially

depicted in the images), which resulted to ∼ 10 times more

precise data compare to those collected using the Tensor Body

reconstructions, in which case the camera was placed far from

the subjects so that they are fully depicted in the recorded

images. Due to this significant difference in the quality of

the input data the results from the Kinect Fusion algorithm

was treated as the ground truth and was compared with the

estimated Tensor Bodies (Fig. 12) using the same metric and

format as in Fig. 11. The reported errors were around 1.5cm,

which is within the range of errors reported in Fig. 11.
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Fig. 9. A reconstructed Tensor-Body avatar rendered in two different natural
postures.

Fig. 10. Example of tensor interpolation in the deformable area around the
knee.

V. DISCUSSION AND CONCLUSION

In this paper a novel framework for real-time 3D reconstruc-

tion of the human body was presented, dubbed Tensor Body. A

novel algorithm for estimating positive-definite tensor-splines

from RGB-D data was introduced. The proposed algorithm

uses a mathematical model for parametrizing the space of

positive-definite tensors using a convex approximation of the

space, which guarantees that the estimated tensors lie within

the positive-definite side of the space. Furthermore, a Rieman-

nian metric on the space of positive-definite tensor-splines was

presented and employed for interpolation, extrapolation, and

for computing geodesics between 3D reconstructed avatars.

One of the benefits of the proposed method is that it runs in

real-time and it does not require the human subjects to be on

a specific posture. The 3D reconstruction can be performed

while the user plays a game or in general interacts with a

natural user interface environment, and hence is depicted in

the RGB-D frames on a variety of postures.

The presented framework has a robust mechanism that filters

the incoming 3D points (input depth measurements). It should

be noted that the magnitude of errors reported in Figs. 11

and 12 is very close to the resolution of the depth camera,

which recorded 1 pixel per ∼ 1cm on the bodies of the

human subjects. More specifically, when the subject is fully

depicted in the acquired pictures, ∼ 200 depth measurements

Fig. 11. Absolute errors between manual anthropometric measurements and
those computed using the proposed tensor body method.

Fig. 12. Absolute errors between anthropometric measurements using the
Kinect Fusion algorithm [28] and those computed using the proposed tensor
body method.

are recorded along the subject’s height (assuming that 40 out

of the 240 pixels are not utilized due to natural motion of the

subject in front of the camera). Therefore, the camera records

1 depth measurement per ∼ (h/200)cm, where h is the height

of the human subject in centimeters (i.e. ∼ 0.95cm sampling

frequency for h = 190cm). Hence, it is natural to expect

anthropometric errors in the magnitude reported in Figs. 11

and 12 due to the resolution limit of the depth sensor.

The proposed method for real-time 3D reconstruction of

the human body has the potential to be employed in several

applications in the areas of anthropometry, communications,

psychology, tele-medicine, and other areas of human-computer

interaction. Furthermore, it can be used as a module for

frequency-based shape compression of human bodies depicted

in holographic videos. Future improvements on the resolution

of the depth sensor will also allow the proposed method to be

used in other areas that require higher quality graphics such

as motion pictures.

In the future, the author plans to apply the proposed

framework to monitor changes in the shape of human bodies

and perform quantitative analysis of body shapes in specific

age/gender groups, which could potentially be proven to be a

significant tool against obesity, or other related diseases, such

as heart disease [19]. Furthermore, the Tensor Body framework

can be used as a tool for indirect anthropometry in order to

compute body shape atlases from healthy subjects of various

ages, genders, and ethnicities. Such an atlas could be used for

analyzing quantitatively the shape differences of the bodies

across population groups and derive various useful statistical
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results.
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